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Introduction to Path Integrals in Quantum
Mechanics

My notes may differ somewhat in some places from Ryder; they are
based on the notation of the Abers and Lee, Physics Reports.

Introductory Ideas

• In the usual formulation of QM, the quantities q and p are replaced
by operators which obey Heisenberg commutation relations. The
mathematics is that of operators in Hilbert space.

• The path integral formulation is instead based directly on the notion of a
propagator K(qf , tf ; qi, ti) which is defined such that

ψ(qf , tf) =

∫
K(qf , tf ; qi, ti)ψ(qi, ti)dqi (1)

i.e. the wave function at later time is given by a Huygen’s principle in
terms of the wave function at an earlier time, where we have to integrate
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over all the points qi since all can, in principle, send out little wavelets
that would influence the value of the wave function at qf at the later
time tf .

This equation is very general and is simply an expression of causality.

• According to the usual interpretation of QM, ψ(qf , tf) is the probability
amplitude that the particle is at the point qf and the time tf , which
means that K(qf , tf ; qi, ti) is the probability amplitude for a transition
from qi and ti to qf and tf .

The probability that the particle is observed at qf at time tf if it began
at qi at time ti is

P (qf , tf ; qi, ti) = |K(qf , tf ; qi, ti)|2 . (2)

• Let us now divide the time interval between ti and tf into two, with t as
the intermediate time, and q the intermediate point in space.

Repeated application of Eq. (1) gives

ψ(qf , tf) =

∫ ∫
K(qf , tf ; q, t)dqK(q, t; qi, ti)ψ(qi, ti)dqi (3)
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from which it follows that

K(qf , tf ; qi, ti) =

∫
dqK(qf , tf ; q, t)K(q, t; qi, ti) . (4)

In words, this equation says that the transition from (qi, ti) to (qf , tf)
may be regarded as the result of the transition from (qi, ti) to all available
intermediate points q followed by a transition from (q, t) to (qf , tf).

• The two-slit experiment provides a useful reference point for intuition.
Moving from left to right, consider the light source as located at position
1, the two slits as located at positions 2A and 2B and the screen on
which we see the interference pattern is at location 3.

The result of Eq. (4) then simplifies to

K(3; 1) = K(3; 2A)K(2A; 1) +K(3; 2B)K(2B; 1) (5)

and the intensity pattern of the screen 3 is given by the probability

P (3; 1) = |K(3; 1)|2 (6)
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which will clearly contain interference terms characteristic of the quantum
theory.

Note that we cannot say that the electron traveled either through slit 2A
or 2B — we had to allow at the amplitude level for it to travel over both
paths (if not detected at the slits).

This notion of all possible paths is crucial in the path integral formulation
of QM.

• We now show that

K(qf , tf ; qi, ti) = 〈qf , tf |qi, ti〉H . (7)

To see this, we need only remember that

ψ(q, t) = 〈q|ψ, t〉S, (8)

where the state vector |ψ, t〉S in the Schroedinger picture is related to
that in the Heisenberg picture |ψ〉H by (recall that in the Heisenberg
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H picture the states are time-independent and the operators are time-
dependent, whereas in the Schroedinger S picture the states are time
dependent and the operators time-independent)

|ψ, t〉S = e−iHt|ψ〉H , (9)

or, equivalently,
|ψ〉H = eiHt|ψ, t〉S . (10)

We also define the vector

|q, t〉H = eiHt|q〉S (11)

which is the Heisenberg version of the Schroedinger state |q〉. Then, we
can equally well write

ψ(q, t) = 〈q, t|ψ〉H . (12)

By completeness of states we can write

〈qf , tf |ψ〉H =

∫
〈qf , tf |qi, ti〉H〈qi, ti|ψ〉Hdqi , (13)
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which with the definition of Eq. (12) becomes

ψ(qf , tf) =

∫
〈qf , tf |qi, ti〉Hψ(qi, ti)dqi. (14)

Upon comparing to where we started, Eq. (1), we see that

〈qf , tf |qi, ti〉H = K(qf , tf ; qi, ti) (15)

as claimed. (Note: Ryder implicitly drops the H subscript, but I have
kept it explicitly up to this point. I will drop it in what follows.)

Setting up the Path Integral

• We begin with the Heisenberg state |q, t〉H, where q is a coordinate,
so that QH(t)|q, t〉H = q|q, t〉H where QH(t) = eiHtQSe

−iHt, where
subscript S denotes the Schroedinger representation.

Of course,

|q〉S = e−iHt|q, t〉H , |q, t〉H = eiHt|q〉S (16)
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and we will denote |q〉S ≡ |q〉.

• Let us now compute the NRQM propagator

〈q′, t′|q, t〉H = 〈q′|e−iH(t′−t)|q〉. (17)

• We will rewrite this propagator using the path integral approach which
will incorporate the quantization of the coordinates.

• The first step is to divide up the time interval into n + 1 tiny pieces:
tl = lε+ t with t′ = (n+ 1)ε+ t.

• By completeness, we can then write

〈q′, t′|q, t〉H =

∫
dq1(t1) . . .

∫
dqn(tn)〈q′, t′|qn, tn〉H

〈qn, tn|qn−1, tn−1〉H . . . 〈q1, t1|q, t〉H . (18)

The integral
∫
dq1(t1) . . . dqn(tn) is an integral over all possible “trajectories”.

These are not trajectories in the normal sense, since there is no
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requirement of continuity. The paths are really what are called Markov
chains.

• Now notice that for small ε we can write (dropping the H subscripts to
avoid so much writing):

〈q′, ε|q, 0〉 = 〈q′|e−iεH|q〉 = δ(q′ − q)− iε〈q′|H|q〉 . (19)

• Now, we need to recall that H = H(P,Q) (where P,Q are the
momentum and coordinate operators).

For example, let us assume that H = 1
2
P 2 + V (Q).

Then,

〈q′|H(P,Q)|q〉 = 〈q′|
1

2
P 2|q〉+ V

(
q + q′

2

)
δ(q′ − q)

=

∫
dp

2π
〈q′|p〉〈p|

1

2
P 2|q〉+ V

(
q + q′

2

)∫
dp

2π
ei(q

′−q)p

=

∫
dp

2π
eip(q′−q)

[
1

2
p2 + V

(
q + q′

2

)]
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=

∫
dp

2π
eip(q′−q)H

(
p,

1

2
(q′ + q)

)
. (20)

In the above, we inserted a complete set of momentum basis states in
order to evaluate the operator P in terms of the number p.

• Putting this into our earlier form we obtain

〈q′, ε|q, 0〉 '
∫
dp

2π
exp

[
i

{
p(q′ − q)− εH

(
p,

1

2
(q′ + q)

)}]
,(21)

where the 0th order in ε ⇒ δ(q′ − q) and the 1st order in ε ⇒
−iε〈q′|H(P,Q)|q〉.

• We now need to substitute many such forms into Eq. (18). This will
yield:

〈q′, t′|q, t〉H = lim
n→∞

∫ n∏
i=1

dqi

n+1∏
k=1

dpk

2π
exp

{
i

n+1∑
j=1

[
pj(qj − qj−1)

−H
(
pj,

1

2
(qj + qj−1)

)
(tj − tj−1)

]}
, (22)
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with q0 = q and qn+1 = q′. It is important to keep track of what the
above formula says.

– For each little interval, we had a pk over which we had to integrate.
– Each interval is defined by the qi on either end, and we needed n
qi(ti)’s and these were integrated over in our original form of Eq. (18).

– We multiplied exponentials associated with each of these little intervals
together and got an exponential of the sum of all the arguments of
the exponentials.

– Roughly, the above formula says to integrate over all possible momenta
and coordinate values associated with a small interval, weighted by
something that’s going to turn into the exponential of the action in
the limit where ε→ 0.

– Again, it should be stressed that the different qi and pk integrals are
independent. This implies that pk for one interval can be completely
different from the pk′ for some other interval (including the neighboring
intervals). See fig 5.4 of Ryder for a picture.

– You could question whether or not the complicated integral above
can be defined mathematically. Below, we will claim that it should be
defined by analytic continuation into the complex plane of, for example,
the pk integrals. This is something you should be familiar with from
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the 204 course. It is actually related to the +iε prescription for the
Feynman propagator. The appropriate analytic continuation is one of
several different choices that could be made and the one made will
correspond to the Feynman boundary conditions.

• In fact, what we do now is to go to the differential limit where we call

tj − tj−1 ≡ dτ and write
(qj−qj−1)

(tj−tj−1)
≡ q̇, in which case the above formula

takes the form

〈q′, t′|q, t〉 =

∫ [
dpdq

2πh̄

]
exp

{
i

h̄

∫ t′

t

[pq̇ −H(p, q)] dτ

}
(23)

where we have used the shorthand notation∫ ∏
τ

dq(τ )dp(τ )

2πh̄
≡
∫ [

dpdq

2πh̄

]
(24)

and we have temporarily put back in the h̄’s so that you will recognize
the quantum mechanical action exponential.

Note that the above integration is an integration over the p and q values
at every time τ . This is what we call a functional integral.
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We can think of a given set of choices for all the p(τ ) and q(τ ) as
defining a path in the 6-dimensional phase space.

• The most important point of the above result is that we have obtained
an expression for a quantum mechanical transition amplitude in terms of
an integral involving only pure c-numbers (no operators).

• We can actually perform the above integral for Hamiltonians of the type
H = H(P,Q) (i.e. no products of P and Q). We use square completion
in the exponential for this, defining the integral in the complex p plane
(i.e. by writing p → p(1 − iθ) and continuing to the physical situation
by taking θ → 0)

In particular, we have

∫ ∞
−∞

dp

2π
exp

{
iε(pq̇ −

1

2
p2)

}
=

∫ ∞
−∞

dp

2π
exp

{
−

1

2
iε(p− q̇)2 +

1

2
iεq̇2

}

=
1

2π

√
π

1
2
iε

exp

[
1

2
iεq̇2

]
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=
1

√
2πiε

exp

[
1

2
iεq̇2

]
. (25)

• Substituting this result into Eq. (22), we obtain

〈q′, t′|q, t〉H =
1

√
2πiε

lim
n→∞

∫ n∏
i=1

dqi√
2πiε

exp
{
iε

n+1∑
j=1

[1
2

(
qj − qj−1

ε

)2

−V
(
qj + qj−1

2

)]}
≡

∫ [
dq
√

2πiε

]
exp

{
i

∫ t′

t

L(q, q̇)dτ

}
, (26)

where there is actually the extra 1√
2πiε

that gets lost in the nice (but too

simplistic) general notation. In the above,

L =
1

2
q̇2 − V (q) (27)
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is the Lagrangian, and

S =

∫
L(q, q̇)dτ (28)

is the standard action.

• Let us check that this is the correct answer in the case being discussed.
To do that, we must see how the Schroedinger equation emerges from
our expression. For this, we separate out the very last dqn integral and
write

〈q′, t′|q, t〉H =

∫ ∞
−∞

dqn√
2πiε

exp

{
i
(q′ − qn)2

2ε
− iεV

(
q′ + qn

2

)}
〈qn, t′ − ε|q, t〉H . (29)

Now, it is clear that the rapid oscillation of the exponential guarantees
that qn must be very close to q′. This implies that we can expand the
above and write

〈q′, t′|q, t〉H =

∫ ∞
−∞

dqn√
2πiε

exp

{
i
(q′ − qn)2

2ε

}[
1− iεV (q

′
)
]

×
[

1 + (qn − q′)
∂

∂q′
+

1

2
(qn − q′)2 ∂2

∂q′ 2
+ . . .

]
〈q′, t′ − ε|q, t〉H (30)
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We now perform the dqn integral using∫
dxe−ax

2
=

√
π

a
,

∫
dxxe−ax

2
= 0,

∫
dxx2e−ax

2
=

1

2a

√
π

a
(31)

to obtain

〈q′, t′|q, t〉H =

√
2πiε
√

2πiε

[
1− iεV (q

′
) +

iε

2

∂2

∂q′ 2
+ . . .

]
〈q′, t′ − ε|q, t〉H

=

[
1− iεV (q

′
) +

iε

2

∂2

∂q′ 2
+ . . .

] [
〈q′, t′|q, t〉H − ε

∂

∂t′
〈q′, t′|q, t〉H

]
.(32)

Noting that the terms of order ε0 cancel and comparing terms of order
ε1 we find

i
∂

∂t′
〈q′, t′|q, t〉H =

[
−

1

2

∂2

∂q′ 2
+ V (q′)

]
〈q′, t′|q, t〉H (33)

which says that our propagator (which in Eq. (1) we called K(q′, t′; q, t))
obeys the Schroedinger equation (with m = h̄ = c = 1), as it must
given that it propagates the wave function, see again Eq. (1).

• More complicated H forms can lead to an “Seff” which is a bit more
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complicated than the above. Typical cases in which this happens are
when the Lagrangian L depends upon q̇ and q in an entwined fashion:

e.g. L = q̇2

2
f(q).

• As you see, we should not worry about the
∏n
i=1

1√
ε

which seems to

diverge as ε → 0. In fact, it is canceled because of the fact that
neighboring qi’s must be very close to one another in order to escape
rapid oscillations of the exponential phase. In field theory, such factors
disappear since we deal only with normalized transition amplitudes.

• Always keep in mind that the pretty continuous expressions are defined by
the finite interval expressions, and it is only at the end that we can take
ε→ 0.

Generalization to many degrees of freedom

〈q′1 . . . q
′
N, t

′|q1 . . . qN, t〉

=

∫ N∏
n=1

[
dqndpn

2πh̄

]
exp

{
i

h̄

∫ t′

t

[ N∑
n=1

pnq̇n −H(p1, . . . , pN ; q1, . . . , qN)

]
dτ

}
(34)

J. Gunion 230B, 2nd Quarter of Field Theory 16



where qn(t) = qn and qn(t′) = q′n for all n = 1, N , and we are allowing
for the full Hamiltonian of the system to depend upon all the N momenta
and coordinates collectively. Of course, it could be that H is a sum of N
independent Hn’s in some cases, but this is not necessary to the derivation.

• For the moment, we will continue with some additional results keeping
N = 1.

• We will shortly see how it is that time ordering enters into this path
integral game.

• Consider first,

〈q′, t′|Q(t0)|q, t〉

=

∫ ∏
i

dqi(ti)〈q
′
, t
′|qn, tn〉 . . . 〈qi0, ti0|Q(t0)|qi−1, ti−1〉 . . . 〈q1, t1|q, t〉 , (35)

where we choose one of the time interval ends to coincide with t0, i.e.
ti0 = t0. If we operate Q(t0) to the left, then it is replaced by its
eigenvalue qi0 = q(t0).

Aside from this one addition, everything else is evaluated just as before
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and we will obviously obtain:

〈q′, t′|Q(t0)|q, t〉 =

∫ [
dqdp

2π

]
q(t0) exp

{
i

∫ t′

t

[pq̇ −H(p, q)] dτ

}
.

(36)

• Next, suppose we want a path integral expression for

〈q′, t′|Q(t1)Q(t2)|q, t〉 (37)

in the case where t1 > t2. Well, we have to insert as intermediate states
|qi1, ti1〉〈qi1, ti1| with ti1 = t1 and |qi2, ti2〉〈qi2, ti2| with ti2 = t2 and
since we have ordered the times at which we do the insertions we must have
the first insertion to the left of the 2nd insertion when t1 > t2.

Once these insertions are done, we evaluate 〈qi1, ti1|Q(t1) = 〈qi1, ti1|q(t1)
and 〈qi2, ti2|Q(t2) = 〈qi2, ti2|q(t2) and then proceed as before with
everything else and obtain

〈q′, t′|Q(t1)Q(t2)|q, t〉 = I (38)
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with

I =

∫ [
dqdp

2π

]
q(t1)q(t2) exp

{
i

∫ t′

t

[pq̇ −H(p, q)] dτ

}
. (39)

Now, let us ask what the above integral is equal to if t2 > t1? Well, I
assume it is obvious that what you get is I = 〈q′, t′|Q(t2)Q(t1)|q, t〉.

In short,
I = 〈q′, t′|T{Q(t1)Q(t2)}|q, t〉 . (40)

Clearly, this generalizes to an arbitrary number of Q operators.

• Of course, when we go to field theory, the Q’s will be replaced by
fields, since it is the fields that play the role of coordinates in the 2nd
quantization conditions.

Functional Techniques and Scattering

• The type of boundary condition employed above, i.e. q(tf) = qf and
q(ti) = qi, while appropriate in the motion of classical particles, is not
what we meet in field theory.
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• Its analogue there would be, for example, ψ(ti) = ψi and ψ(tf) = ψf .
But, in our applications in field theory, what happens is that particles
are scattering from one another (colliding) and perhaps creating other
particles, and then the final state particles are destroyed by the detector
which observes them.

• The act of creation may be represented as a source, and that of
destruction by a sink, which is, in a manner of speaking, also a source.
The boundary conditions and sequence of events that define the problem
may then be represented as:

1. starting with a vacuum state at t→ −∞,
2. followed by creation of the scattering particles,
3. followed by their interaction,
4. followed by destruction of the final state particles emerging from the

interaction,
5. followed by a vacuum state at t→ +∞.

What this means is that we want the vacuum-to-vacuum transition
amplitude in the presence of the required sources and sinks.
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• The source is represented by modifying the Lagrangian:

L→ L+ h̄J(t)q(t) . (41)

• Let us define |0, t〉J as the ground state (vacuum) vector (in the moving
frame — i.e. with the eiHt included, that is multiplying the Schroedinger
state) in the presence of the source. The required transition amplitude is

Z[J ] ∝ 〈0,∞|0,−∞〉J , (42)

where we have omitted a proportionality factor that will not matter in the
end as we will have a ratio of two things with the same proportionality
factor.

• The source J(t) plays a role analogous to that of an electromagnetic
current, which acts as a “source” of the electromagnetic field. In other
words, think JµAµ, where Jµ is the current from a scalar or Dirac field
acting as a source of Aµ.

In the same way, we can always define a current J that acts as the source
for some arbitrary field φ.
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• Z[J ] is a functional of J (indicated by the [J ] notation), and we now
derive an expression for it, i.e. for the transition amplitude up to a
constant factor.

We will later return to what we mean by a functional in case you are not
used to this language. Basically, a functional, as opposed to a function,
is a quantity that depends upon another function (such as J(t), which is
itself a function, in this case a function of time).

• Let us consider L 6= L(t) (no explicit time dependence).

• Let us define energy eigenstates in the absence of the source term: |n〉
with H|n〉 = En|n〉.

• Let us define φn(q) = 〈q|n〉 with φ0(q) being the ground state wave
function.

Recall that |q〉 is the Schroedinger representation state. (We use the
notation |q, t〉 = eiHt|q〉 for the Heisenberg state.)

• We wish to calculate the amplitude for φ0(q) at T → −∞ to transition
to φ0(q) at T ′ → +∞ in the presence of an external source term
J(t)q(t) added to L during the interval [T, T ′].
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We will see that this is useful later in the field theory context.

• Consider first,

〈Q′, T ′|Q, T 〉J

=

∫ [
dpdq

2π

]
exp

{
i

∫ T ′

T

[p(τ )q̇(τ )−H(p, q) + J(τ )q(τ )] dτ
}

=

∫
dq′

∫
dq〈Q′, T ′|q′, t′〉〈q′, t′|q, t〉J〈q, t|Q, T 〉 , (43)

where from t′ to T ′ and from T to t, J = 0; i.e. J(τ ) 6= 0 only in the
interval τ ∈ [t, t′].

• Now, we write

〈q, t|Q, T 〉 = 〈q| exp {−iH(t− T )} |Q〉

=
∑
n

〈q|n〉〈n| exp {−iH(t− T )} |Q〉

=
∑
n

φn(q)φ∗n(Q) exp {−iEn(t− T )} (44)
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as allowed in the time interval being considered where J = 0.

Similarly,

〈Q′, T ′|q′, t′〉

=
∑
m

φ∗m(q′)φm(Q′) exp {iEm(t′ − T ′)} . (45)

• We now substitute these expressions into Eq. (43) and consider the
limit T ′ → ∞e−iδ and T → −∞e−iδ, where δ is an arbitrary angle
0 < δ ≤ π/2. This is equivalent to rotating the overall time axis so that
it has a downward slant as time runs from −∞ to +∞.

Since the imaginary part of T is i|T | sin δ and is getting very large, the
term iEnT in the exponential of Eq. (44) is being damped, with the
damping being larger for larger En. The least damped term will be that
with the lowest energy, namely n = 0.

A similar argument implies that in the T ′ case only the m = 0 term
survives in the limit.
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• We then end up with

lim
T ′→∞e−iδ,T→−∞e−iδ

[
〈Q′, T ′|Q, T 〉J

φ∗0(Q)φ0(Q′) exp [−iE0(T ′ − T )]

]

=

∫
dq′dqφ∗0(q′, t′)〈q′, t′|q, t〉Jφ0(q, t)

=

∫
dq′dq〈0|q′, t′〉〈q′, t′|q, t〉J〈q, t|0〉

≡ 〈0|0〉J

≡ Z[J ] (46)

i.e. we have an expression for the ground state to ground state transition
amplitude. In getting the above expression, we have used |q, t〉H =
eiHt|q〉S (but with H and S subscripts implicit) in the following manner:

φ0(q, t) = 〈q, t|0〉 = 〈q|e−iHt|0〉 = e−iE0t〈q|0〉 = e−iE0tφ0(q)

φ∗0(q′, t′) = 〈0|q′, t′〉 = 〈0|eiHt
′
|q′〉 = eiE0t

′
〈0|q′〉 = eiE0t

′
φ∗0(q′)
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(47)

• By recognizing that (just insert
∑
n |n〉〈n| and take limit)

lim
T ′→∞e−iδ,T→−∞e−iδ

〈Q′, T ′|Q, T 〉

= lim
T ′→∞e−iδ,T→−∞e−iδ

∑
n

φn(Q′)φ∗n(Q) exp [−iEn(T ′ − T )]

= φ0(Q
′)φ∗0(Q) exp [−iE0(T

′ − T )] (48)

we can write

Z[J ] = 〈0|0〉J = lim
T ′→∞e−iδ,T→−∞e−iδ

〈Q′, T ′|Q, T 〉J

〈Q′, T ′|Q, T 〉
. (49)

Note that Z[J = 0] = 1! That is, we are always implicitly dealing with
a normalized ratio. In what follows, it is most convenient to simply drop
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the denominator in the above expression and write:

Z[J ] = lim
T ′→∞e−iδ,T→−∞e−iδ

〈Q′, T ′|Q, T 〉J

=

∫ [
dpdq

2π

]
exp

{
i

∫ T ′

T

[p(τ )q̇(τ )−H(p, q) + J(τ )q(τ )] dτ
}

(50)

keeping in mind that at the very end we should normalize so that
Z[J = 0] = 1.

• Instead of rotating the time axis to have an imaginary component, the
ground state contribution may also be isolated by adding a small negative
imaginary component to the Hamiltonian:

H → H −
1

2
iεq2 , or L→ L+

1

2
iεq2 . (51)

With this addition En → En − iε′n where ε′n is larger for larger n by
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virtue of 〈q2〉n being larger at larger n. As a result, for example,∑
n

φn(q)φ∗n(q) exp [−iEn(t− T )]

→
∑
n

φn(q)φ∗n(q) exp
[
−i(En − iε′n)(t− T )

]
(52)

implying a damping factor as T → −∞ ∝ eε′nT which isolates the n = 0
state since ε′n is smallest for n = 0.

Functional Techniques

• We now need to have a brief excursion into the mathematics of functional
techniques.

• As we said earlier, a functional is an object that maps a function into a
number.

For example, in∫ [
dpdq

2π

]
exp

{
i

∫ T ′

T

[p(τ )q̇(τ )−H(p, q) + J(τ )q(τ )] dτ
}

(53)
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the argument of the exponential depends upon the functions q(τ ) and
p(τ ) and we then integrate over all possible forms of these two functions.
So the exponential is a functional that maps a choice for these two
functions into a number.

The functions are defined on a manifold M (for example, the time
τ above, or in another case the coordinate space ~x set of numbers,
or maybe the 4-d space consisting of τ, ~x). If the function is n-fold
differentiable, then a function on that manifold is denoted Cn(M).

The functional then defines a mapping

functional : Cn(M)→R . (54)

• This differs from a normal function that maps a number or set of numbers
into a number or set of numbers.

For example, φ(~x) maps the set of numbers ~x into a single number, or
~E(~x) maps the set of numbers ~x into another set of numbers, namely
the electric field 3-vector at point ~x.

function : Rn→Rm , (55)
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• Anyway, the thing that we need is the concept of a functional derivative.
We define the derivative of a functional F [f ] with respect to the function
f(y) as

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
. (56)

A specific example. Consider

F [f ] =

∫
f(x)dx . (57)

Then,

δF [f ]

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
=

∫
δ(x− y)dx = 1 . (58)

As a 2nd example, consider

Fx[f ] =

∫
G(x, y)f(y)dy . (59)
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Then,

δFx[f ]

δf(z)
= lim

ε→0

1

ε

(∫
{G(x, y)[f(y) + εδ(y − z)]} dy −

∫
G(x, y)f(y)dy

)
=

∫
G(x, y)δ(y − z)dy

= G(x, z) . (60)

It is this last type of case that will be crucial in what follows.

Back to Z[J ]

• We had

Z[J ] =

∫
dq′dqφ∗0(q′, t′)〈q′, t′|q, t〉Jφ0(q, t) (61)

inside of which

〈q′, t′|q, t〉J =

∫ [
dpdq

2π

]
exp

{
i

∫ t′

t

[p(τ )q̇(τ )−H(p(τ ), q(τ )) + J(τ )q(τ )]dτ

}
.

(62)
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Thus, we have

lim
J→0

[
1

Z[J ]

δnZ[J ]

δJ(t1) . . . δJ(tn)

]

= i
n

∫
dqdq′φ∗0(q′, t′)φ0(q, t)

∫ [dpdq
2π

]
exp

{
i
∫ t′
t [pq̇ −H(p, q)]dτ

}
q(t1) . . . q(tn)∫

dqdq′φ∗0(q′, t′)φ0(q, t)
∫ [dpdq

2π

]
exp

{
i
∫ t′
t [pq̇ −H(p, q)]dτ

}
= i

n〈0|T {Q(t1) . . . Q(tn)} |0〉
〈0|0〉

, (63)

where we always need to remember that H(p, q) contains the −1
2
iεq2

term that isolates the ground state to ground state transition denoted in
Ryder as |0,−∞〉 → |0,+∞〉.

• For a quadratically completable H(p, q), the p integral can be performed
as done earlier (the −1

2
iεq2 addition to H was chosen so as to not

interfere with this) yielding

Z[J ] = 〈0,+∞|0,−∞〉J ∝
∫

[dq] exp

{
i

∫ +∞

−∞
dτ (L+ Jq +

1

2
iεq2)

}
,

(64)
where all quantities under the dτ integral are functions of τ .
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On to Field Theory

• Let us now treat, just as we did in the earlier commutator technique for
2nd quantization, the abstract field φ(x) (for the moment we discuss the
scalar field case) as a coordinate in the sense that we imagine dividing
space up into many little cubes and the average value of the field φ(x)
in that cube is treated as a coordinate for that little cube (just as we
might use the multi-coordinate generalization discussed earlier).

Then, we go through the multi-coordinate analogue of the procedure we
just considered and take the continuum limit.

The result would be

Z[J ] ∝
∫

[dφ] exp

{
i

∫
d4x

[
L(φ) + J(x)φ(x) +

1

2
iεφ2

]}
(65)

where for L we would employ the Klein Gordon Lagrangian form.

In the above, the dx0 integral is the same as dτ , while the d3~x integral
is simply summing over the sub-Lagrangians of all the different little
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cubes of space and then taking the continuum limit. L is the Lagrangian
density describing the Lagrangian for each little cube after taking the
many-cube limit.

• Perhaps this is completely obvious. But let me present a direct derivation.

Recall the generalization to many degrees of freedom given earlier.
Normal commutator quantization of these many independent degrees of
freedom is clearly equivalent to the path-integral computation represented
by (H subscripts on the ’Kernel’ or overlap bra and ket are implicit as
always)

〈q′1 . . . q
′
N , t
′|q1 . . . qN , t〉

=

∫ N∏
m=1

[
dqmdpm

2πh̄

]
exp

{ i
h̄

∫ t′

t

[ N∑
n=1

pnq̇n −H({pi}, {qi})
]
dτ
}
,

(66)

where {pi} denotes the set of all the momenta p1, . . . , pN , and similarly
{qi} denotes the set q1, . . . , qN . As usual, such an expression is actually
defined by the discretized version where we go back and discretize the

J. Gunion 230B, 2nd Quarter of Field Theory 34



integral over all possible functional forms for the qn and pn functions by
dividing up into many steps in time:

〈q′1 . . . q
′
N , t
′|q1 . . . qN , t〉 =∫ N∏

γ=1

lim
n→∞,ε→0

 n∏
i=1

[
dqγ(ti)

] n+1∏
i=1

[
dpγ(ti)

2π

]
× exp

i n∑
j=1


N∑
α=1

pα(tj)[qα(tj)− qα(tj−1)]− εH
(
pα(tj),

qα(tj) + qα(tj−1)

2

)
 .
(67)

• This can be directly applied to field theory as suggested earlier by dividing
space into cubes of size ε and defining an average value φα for each little
cube:

φα(t) =
1

ε3

∫
Vα

d3~xφ(~x, t)→ qα(t) . (68)

We can then approximate the Lagrangian by

L =

∫
d3~xL =

∑
α

ε3Lα
(
φ̇α(t), φα(t), φα±s(t)

)
, (69)
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where Lα is obviously a Lagrangian density, and the conjugate momentum
for cell α will be

pα(t) =
∂L

∂φ̇α(t)
= ε3 ∂Lα

∂φ̇α(t)
≡ ε3πα(t) . (70)

Similarly, we will have

H =
∑
α

pαq̇α − L =
∑
α

ε3Hα , (71)

where
Hα = παφ̇α − Lα . (72)

We now imagine 2nd quantizing this system by assuming the usual
[qα, pβ] → ε3[φα, πβ] = iδαβ, where α and β are labels for different
cells of size ε3. Making these replacements in our multi-coordinate path
integral generalization that we have shown is equivalent to commutator
quantization yields the form (where {φα} denotes the set of average
fields values in all the spatial cells labeled by the index α)
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〈{φα(t
′
)}|{φα(t)}〉

= lim
n→∞,ε→0

∫ N∏
γ=1

 n∏
i=1

dφγ(ti)

n+1∏
i=1

ε3dπγ(ti)

2π


exp

i n+1∑
j=1

ε
∑
α

ε
3
[
πα(tj)

φα(tj)− φα(tj−1)

ε
−Hα

(
πα(tj),

φα(tj) + φα(tj−1)

2
, . . .

)]
≡

∫
[dφ]

[
ε3dπ

2π

]
exp

[
i

∫ t′

t
dτ

∫
d

3
~x

[
π(~x, τ )

∂φ(~x, τ )

∂τ
−H(~x, τ )

]]
, (73)

where π(~x, t) = ∂L
∂φ̇(~x,t)

the cell average of which is just the πα(t)

defined earlier.

• We now move from the above to Z[J ] by adding −1
2
iεφ2

α to each Hα
and by adding a Jαφα for each cell yielding the result:

Z[J ] ∝
∫

[dφ]

[
ε3dπ

2π

]
exp

[
i

∫
d

4
x

[
π(x)φ̇(x)−H(x) +

1

2
iεφ

2
(x) + J(x)φ(x)

]]
. (74)
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Further, from the QM example, we know that[
δnZ[J ]

δJ(x1) . . . δJ(xn)

]
J=0

∝ in〈0|T {φ(x1) . . . φ(xn)} |0〉 . (75)

• As in the QM case, if H is simple enough, we can perform the dπ
integral(s) explicitly. In particular, if

H =
1

2
π2(x) + f [φ(x), ~∇φ(x)] (76)

we have dπ integrals of the form∫ [
dπ

2π

]
exp

[
i

(∫
d4x[π(x)φ̇(x)−

1

2
π2(x)]

)]
=

∫ [
dπ

2π

]
exp

[∫
d4x

[
−

1

2
i(π − φ̇)2 +

1

2
iφ̇2

]]
∝ exp

[
i

∫
d4x

1

2
φ̇2

]
, (77)
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where we have really done these integrals cell-by-cell and then converted
to the continuum limit. In the above, cell-by-cell means the following:∫ [

dπ

2π

]
exp

[∫
d4x

[
−

1

2
i(π − φ̇)2 +

1

2
iφ̇2

]]

=

∫ N∏
γ=1

∏
i

dπγ(ti)

2π
exp

∑
j

N∑
α=1

ε4

[
−

1

2
i(πα(tj)− φ̇α(tj))

2 +
1

2
iφ̇2
α(tj)

]
=

N∏
γ=1

∏
i

(
1

√
2πiε4

)
exp

∑
j

N∑
α=1

ε41

2
iφ̇2
α(tj)

 ∝ exp

[
i

∫
d4x

1

2
φ̇2

]
. (78)

The result is

Z[J ] ∝
∫

[dφ] exp

{
i

∫
d4x[L(x) + J(x)φ(x)]

}
(79)

with

L(x) =
1

2
(∂0φ)2 − f(φ(x), ~∇φ(x)) +

1

2
iεφ2(x) , (80)
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where the 1
2
(∂0φ)2 term in L(x) simply comes from the residual

exp

[
i

∫
d4x

1

2
φ̇2

]
(81)

obtained above.

As always, the exact form of the proportionality constant will be irrelevant
in our applications.

• For the example of Klein Gordon theory, we would use

L = L0 + LI , L0 =
1

2
[∂µφ∂

µφ− µ2φ2] , LI = LI(φ) . (82)

• In order to define the above Z[J ], we have to include the standard
convergence factor that we are using to isolate the vacuum to vacuum
transition. The result is

L0 →
1

2
[∂µφ∂

µφ− µ2φ2 + iεφ2] (83)
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so that

Z0[J ] ∝
∫

[dφ] exp

{
i

∫
d4x

(
1

2
[∂µφ∂

µφ− µ2φ2 + iεφ2] + Jφ

)}
(84)

is the appropriate generating function in the free field theory case.

• To actually compute this object, we first of all perform a partial integration
on the ∂µφ∂µφ term to obtain

Z0[J ] ∝
∫

[dφ] exp

{
i

∫
d

4
x

(
1

2
φ[−∂2 − µ2

+ iε]φ + Jφ

)}

=

∫
[dφ] exp

{
i

∫
d

4
x

∫
d

4
y

(
1

2
φ(x)[−∂2 − µ2

+ iε]δ
4
(x− y)φ(y)

)
+ i

∫
d

4
xJ(x)φ(x)

}
(85)

and then we have to go back to dividing space-time up into cells (where
in the following equation λ, α and β are labels for space-time cells —
e.g. λ ≡ (γ, i) of earlier equations, where γ is a space cell index and i
denotes a particular one of the time divisions)

Z0[J ] = lim
ε→0

∫ ∏
λ

dφλ exp

i
∑

α

ε4
∑
β

ε41

2
φαKαβφβ +

∑
α

ε4Jαφα


 ,

(86)
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where
lim
ε→0

Kαβ = (−∂2 − µ2 + iε)δ4(x− y) . (87)

We perform the dφλ integrations explicitly by completing the square (see
later and Ryder 6.2) to obtain

Z0[J ] = lim
ε→0

1√
detKαβ

∏
α

√
2πi

ε8
exp

−1

2
i
∑
α

ε4
∑
β

ε4Jα
(K−1)αβ

ε8
Jβ

 .

(88)
Here, K−1 is defined by

∑
γ

[
ε4Kαγ

] [(K−1)γβ

ε8

]
=
δαβ

ε4
, (89)

where I have inserted some ε powers for the appropriate identifications
below. In particular, as ε→ 0 we have

1

ε4
δαβ → δ4(x− y) ,

∑
α

ε4 →
∫
d4x , , (90)
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as can be checked from the identity:

1 =

∫
d4xδ4(x− y)→

∑
α

ε4 1

ε4
δαβ = 1 . (91)

So, let us define

lim
ε→0

1

ε8
(K−1)αβ = ∆F (x− y) (92)

so that Eq. (89) becomes in the ε→ 0 limit∫
d4z(−∂2

x − µ
2 + iε)δ4(x− z)∆F (z − y) = δ4(x− y) (93)

which is equivalent to

(−∂2
x − µ

2 + iε)∆F (x− y) = δ4(x− y) , (94)

the defining equation for the Feynman propagator function. Thus, in the
ε→ 0 limit we have

Z0[J ] ∝ exp

{
−

1

2
i

∫
d4x

∫
d4yJ(x)∆F (x− y)J(y)

}
, (95)
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where (as before) the solution to Eq. (94) is the Feynman propagator
form

∆F (x− y) =

∫
d4k

(2π)4
e−ik·(x−y) 1

k2 − µ2 + iε
. (96)

Finally, the appropriate normalization (as we have seen earlier and will
review below) is to define the proportionality constant so that Z0[J =
0] = 1, i.e.

Z0[J ] = exp

{
−

1

2
i

∫
d4x

∫
d4yJ(x)∆F (x− y)J(y)

}
. (97)

This is effectively equivalent to normal ordering. With this normalization,[
δnZ[J ]

δJ(x1) . . . δJ(xn)

]
J=0

= in〈0|T {φ(x1) . . . φ(xn)} |0〉 . (98)

• Let us check this by showing that 〈0|T {φ(x1)φ(x2)} |0〉 = i∆F (x1−x2)
when the l.h.s. is computed using the functional techniques. We have

〈0|T {φ(x1)φ(x2)} |0〉 = i
2 δ

δJ(x1)

δ

δJ(x2)
Z0[J ]

∣∣∣∣
J=0

=

(
i
2 δ

δJ(x1)

[(
−i
∫
d

4
x
′
J(x
′
)∆F (x

′ − x2)

)
exp

{
−

1

2
i

∫
d

4
x

∫
d

4
yJ(x)∆F (x− y)J(y)

}])
J=0
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where the factor of 1
2

was canceled by virtue of the fact that we could
differentiate either of the two J ′s in the exponential.

Turning to the 2nd derivative, it can act either on the stuff multiplying
the exponential or on the exponential itself.

– If it acts on the exponential, another factor just like the 1st multiplying
(. . .) is brought down, and each of these (. . .) vanishes when J = 0.

– If it acts on the existing (. . .), then we get

〈0|T {φ(x1)φ(x2)} |0〉

=

(
i
2 (−i∆F (x1 − x2)

)
exp

{
−

1

2
i

∫
d

4
x

∫
d

4
yJ(x)∆F (x− y)J(y)

})
J=0

= i∆F (x1 − x2) (99)

which is the required result.

• Before going on to introduce interactions, let us return to the derivation
that takes us from

Z0[J ] = lim
ε→0

∫ ∏
λ

dφλ exp

i
∑

α

ε4
∑
β

ε41

2
φαKαβφβ +

∑
α

ε4Jαφα


 ,

(100)
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to

Z0[J ] = lim
ε→0

1√
detKαβ

∏
α

√
2πi

ε8
exp

−1

2
i
∑
α

ε4
∑
β

ε4Jα
(K−1)αβ

ε8
Jβ

 ,

(101)
by square completion.

We begin by using vector notation:

ε4φα = ~x ≡ x , (102)

where the final object x is to be thought of as a column matrix with let
us say n (the total number of cells) components. Then, we can write (T

means transpose)∑
α

ε4
∑
β

ε41

2
φαKαβφβ +

∑
α

ε4Jαφα

=
1

2
[xTKx] + JTx ≡

1

2
(x,Kx) + (J, x)

=
1

2
(x+K−1J −K−1J,K(x+K−1J −K−1J)) + (J, x)
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=
1

2
(x+K−1J,K(x+K−1J))−

1

2
(J,K−1J) . (103)

In writing this, we must remember that we are in a real vector space and
that K is a real (in the limit ε→ 0) symmetric matrix. As a result, K−1

is also a real symmetric matrix, i.e. K−1 = [K−1]T and, for example,

(K
−1
J,Kx) ≡ (K

−1
J)
T
KX = J

T
[K
−1

]
T
KX = J

T
K
−1
Kx = J

T
x ≡ (J, x) (104)

(K
−1
J,KK

−1
J) ≡ (K

−1
J)
T
J = J

T
[K
−1

]
T
J = J

T
K
−1
J ≡ (J,K

−1
J) . (105)

We shift variables to x̄ = x+K−1J .

The original integral then reduces to

exp

{
−i

1

2
(J,K−1J)

}(
1

ε4

)n ∫
dnx̄ei

1
2(x̄,Kx̄) (106)

To evaluate we recall that∫
e−ay

2/2dy =

(
2π

a

)1/2

, (107)
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which implies that

∫
exp

(
−

1

2

n∑
i=1

aiy
2
i

)
dy1 . . . dyn =

(2π)n/2∏n
i=1 a

1/2
i

. (108)

Now, let A be a diagonal matrix with elements a1, . . . an, and let y be
an n-vector (y1, . . . , yn). Then, the exponent is the inner product:

n∑
i=1

aiy
2
i = (y,Ay) (109)

and the determinant of A is

detA =

n∏
i=1

ai. (110)

With this identification, we can rewrite Eq. (108) as∫
e−(y,Ay)/2(dny) = (2π)n/2 (detA)

−1/2
. (111)
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Since this holds for any diagonal matrix, it also holds for any real
symmetric, positive, non-singular matrix, since one can always rotate to
a diagonal basis without changing the inner product.

Finally, we must include the i factor. Assuming the presence of an
appropriate convergence factor, Eq. (111) can be rewritten by defining
~y =
√
−i~x to obtain∫

ei(x,Ax)/2(dn
√
−ix) = (2π)n/2 (detA)

−1/2
, (112)

or ∫
ei(x,Ax)/2(dnx) = (2πi)

n/2
(detA)

−1/2
. (113)

At this point, in our earlier expression we identify A with K, x with x̄,
and n with the number of cells labeled by α to obtain

exp

{
−i

1

2
(J,K−1J)

}(
1

ε4

)n ∫
dnx̄ei

1
2(x̄,Kx̄)

= exp

{
−i

1

2
(J,K−1J)

}(∏
α

√
2πi

ε8

)
(detKαβ)

−1/2
. (114)
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In this way, we obtain Eq. (101), i.e.

Z0[J ] = lim
ε→0

1√
detKαβ

∏
α

√
2πi

ε8
exp

−1

2
i
∑
α

ε4
∑
β

ε4Jα
(K−1)αβ

ε8
Jβ

 ,

(115)
which we evaluated and found

Z0[J ] = exp

{
−

1

2
i

∫
d4x

∫
d4yJ(x)∆F (x− y)J(y)

}
, (116)

when the normalization is chosen so that Z0[J = 0] = 1.

• We are now ready to introduce interactions. Our starting point is,
assuming the simple form of the Hamiltonian,

Z[J ] =

∫
[dφ] exp

{
i

∫
d4x[L0(φ(x)) + LI(φ(x)) + J(x)φ(x)]

}
.

(117)
We evaluate this using a power expansion technique:

Z[J ] =

∫
[dφ] exp

{
i

∫
d

4
x[L0(φ(x)) + LI(φ(x)) + J(x)φ(x)]

}
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=

∫
[dφ]

∑
n

1

n!

[
i

∫
LI(φ(z))d

4
z

]n
exp

{
i

∫
d

4
x[L0(φ(x)) + J(x)φ(x)]

}

=

∫
[dφ]

∑
n

1

n!

[
i

∫
LI
(

δ

iδJ(z)

)
d

4
z

]n
exp

{
i

∫
d

4
x[L0(φ(x)) + J(x)φ(x)]

}

= exp

[
i

∫
LI
(

δ

iδJ(z)

)
d

4
z

] ∫
[dφ] exp

{
i

∫
d

4
x[L0(φ(x)) + J(x)φ(x)]

}

=
exp

[
i
∫
LI
(

δ
iδJ(z)

)
d4z

]
exp

{
−1

2i
∫
d4xd4yJ(x)∆F (x− y)J(y)

}
(

exp
[
i
∫
LI
(

δ
iδJ(z)

)
d4z

]
exp

{
−1

2i
∫
d4xd4yJ(x)∆F (x− y)J(y)

})
J=0

, (118)

where in the last line I have introduced the normalization factor required
for Z[J = 0] = 1.

Obviously, the expansion in the second line above actually defines the
perturbation theory expansion in powers of LI.

Some higher order expansion in the free-field case.

• Before setting J = 0, we had (shifting x1 → x2 and x2 → x3, and
shortening d4z to dz etc.)

1

i

δ

δJ(x2)

1

i

δ

δJ(x3)
Z0[J ] = i∆F (x2 − x3) exp

(
−
i

2

∫
J∆FJ

)
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+

∫
∆F (x2 − x

′
)J(x
′
)dx
′
∫

∆F (x3 − y
′
)J(y
′
)dy
′

exp

(
−
i

2

∫
J∆FJ

)
.

(119)

Further differentiation then gives

1

i

δ

δJ(x1)

1

i

δ

δJ(x2)

1

i

δ

δJ(x3)
Z0[J ] =

−i∆F (x2 − x3)

∫
∆F (x1 − x

′
)J(x
′
)dx
′

exp

(
−
i

2

∫
J∆FJ

)

−i∆F (x2 − x1)

∫
∆F (x3 − y

′
)J(y
′
)dy
′

exp

(
−
i

2

∫
J∆FJ

)

−i∆F (x3 − x1)

∫
∆F (x2 − x

′
)J(x
′
)dx
′

exp

(
−
i

2

∫
J∆FJ

)

−
∫

∆F (x2 − x
′
)J(x
′
)dx
′
∫

∆F (x3 − y
′
)J(y
′
)dy
′
∫

∆F (x1 − z
′
)J(z
′
)dz
′

exp

(
−
i

2

∫
J∆FJ

)
.

(120)

In the J = 0 limit, this gives 0, implying that

〈0|T{φ(x1)φ(x2)φ(x3)}|0〉 = 0 . (121)

Going to the next level of differentiation, we get

1

i

δ

δJ(x1)

1

i

δ

δJ(x2)

1

i

δ

δJ(x3)

1

i

δ

δJ(x4)
Z0[J ] =
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−∆F (x2 − x3)∆F (x1 − x4) exp

(
−
i

2

∫
J∆FJ

)
−∆F (x2 − x1)∆F (x3 − x4) exp

(
−
i

2

∫
J∆FJ

)
−∆F (x3 − x1)∆F (x2 − x4) exp

(
−
i

2

∫
J∆FJ

)
+(terms which vanish when J = 0) . (122)

As a result, we have (using −1 = i2)

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉

=
[
i∆F (x2 − x3)i∆F (x1 − x4)

+i∆F (x2 − x1)i∆F (x3 − x4)

+i∆F (x3 − x1)i∆F (x2 − x4)
]
, (123)

which is precisely the statement of Wick’s theorem in the non-interacting
case.

• Let us now consider the interacting case, using the example of LI =
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−λ
4!
φ4, and keeping only the first order term in the expansion:

exp

[
i

∫
LI
(

1

i

δ

δJ(z)

)
dz

]
Z0[J ]

=

[
1−

iλ

4!

∫ (
1

i

δ

δJ(z)

)4

dz +O(λ
2
)

]
exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
.(124)

To order λ0, we just have the free-particle generating function and the
free particle results just discussed. Let us look, therefore, at the order λ1

term. We have:

1

i

δ

δJ(z)
exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
= −

∫
∆F (z − x′)J(x

′
)dx
′
exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
(125)

(
1

i

δ

δJ(z)

)2

exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)

=

{
i∆F (0) +

[∫
∆F (z − x′)J(x

′
)dx
′
]2
}

exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
(126)

(
1

i

δ

δJ(z)

)3

exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
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=

{
3[−i∆F (0)]

∫
∆F (z − x′)J(x

′
)dx
′ −

[∫
∆F (z − x′)J(x

′
)dx
′
]3
}
×

exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
(127)

(
1

i

δ

δJ(z)

)4

exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)

=

{
−3[∆F (0)]

2
+ 6i∆F (0)

[∫
∆F (z − x′)J(x

′
)dx
′
]2

+

[∫
∆F (z − x′)J(x

′
)dx
′
]4
}
×

exp

(
−
i

2

∫
J(x)∆F (x− y)J(y)dxdy

)
(128)

+ +
+

+

+

+
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Figure 1: Graphical representation of the φ4 interaction; +’s indicate J
attachments and closed circle = ∆F (0).

J. Gunion 230B, 2nd Quarter of Field Theory 55



Altogether, Z[J ], including the λ0 and λ1 terms and normalizing to
Z[J = 0] = 1 is Z[J ] =

[
1− iλ

4!

∫
dz

{
−3[∆F (0)]2 + 6i∆F (0)

[∫
∆F (z − x)J(x′)dx′

]2
+
[∫

∆F (z − x′)J(x′)dx′
]4}]

exp
(
− i2

∫
J∆FJ

)
[
1− iλ

4!

∫
dz
{
−3[∆F (0)]2

}]
∼
[

1−
iλ

4!

∫
dz

{
6i∆F (0)

[∫
∆F (z − x′)J(x

′
)dx
′
]2

+

[∫
∆F (z − x′)J(x

′
)dx
′
]4}]

exp

(
−
i

2

∫
J∆FJ

)
, (129)

where, in the last line, I have dropped extra O(λ2) terms from the
denominator expansion.

• We must now use this expression for Z[J ] to derive expressions for the
time-ordered products of fields in the presence of the interactions. This
means we must do further functional derivatives.

Let us begin with the 2-point function

〈0|T{φ(x1)φ(x2)}|0〉 =
1

i2
δ2Z[J ]

δJ(x2)δJ(x1)

∣∣∣∣
J=0

. (130)

From the above expression for Z[J ], we observe that the [1 . . .] term
simply gives the free particle propagator. The interesting piece is the
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correction coming from the λ1 terms. Of the two terms of this order,

the
[∫

∆F (z − x′)J(x′)dx′
]4

term can give no contribution after setting
J = 0 since the J derivatives can remove at most two of the J ’s. Thus,
the only term of interest in the J = 0 limit will be the double derivative
of

λ

4
∆F (0)

∫
dx′dy′dz∆F (z−x′)J(x′)∆F (z−y′)J(y′) exp

(
−
i

2

∫
J∆FJ

)
(131)

The only term that will survive for J = 0 after the double differentiation is
that in which the two J derivatives both act on the external multiplicative
factor. This term takes the form:

1

i

δ

δJ(x2)

1

i

δ

δJ(x1)
(. . .)

∣∣∣∣
J=0

= −
λ

4
∆F (0)2

∫
dz∆F (z − x1)∆F (z − x2) . (132)

Combining with the λ0 term, we obtain

〈0|T{φ(x1)φ(x2)}|0〉 = i∆F (x1 − x2)−
λ

2
∆F (0)

∫
dz∆F (z − x1)∆F (z − x2)

= i x1 x2 −
λ

2
x1

©
z x2 +O(λ

2
) .

(133)

As discussed in Ryder, this causes a shift in the mass-squared of the
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particle away from the tree-level value of µ2. Naively, this shift is infinite,
but in fact the integrals are cut off at some scale (perhaps the Planck
scale or some lower new-physics scale). I will not dwell further on this
since it is the subject of renormalization.

Instead, I want to turn to the tree-level expression for the 4-point
interaction.

• The 4-point vertex function

We want

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 =
1

i4
δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

(134)

• Starting from the master form for Z[J ] of Eq. (129), the 1 term in
[1 . . .] simply gives us the free-particle 4-point function that we discussed
earlier.

• The next term is

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

λ

4

{
∆F (0)

∫
dx
′
dy
′
dz∆F (x

′ − z)∆F (y
′ − z)J(y

′
)J(x
′
)

}
exp

(
−
i

2

∫
J∆FJ

)∣∣∣∣∣
J=0
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= −i
λ

2
∆F (0)

∫
dz
[
∆F (z − x1)∆F (z − x2)∆F (x3 − x4) + 5 more terms from permutations

]
. (135)

The terms in the last line above are obtained when two of the δ/δJ ’s
act on the external factor (which yields an extra factor of 2 since the
two δ/δJ ’s that act on the external factor can act on either of the
J ’s appearing in the external factor yielding identical final result), the
3rd δ/δJ acts on the exponential, and the final δ/δJ acts on the term
brought down from the exponential by the action of the 3rd one above.

The structure of the above is (referring to the 1st term written explicitly)
a free propagator from x3 to x4 times a bubble correction to the
propagator from x1 to x2.

Note that these terms have a “disconnected” form in which one particle
just passes straight to the final state without interaction.

Diagrammatically, the first term can be represented as

−i
λ

2

[
x1

©
z x2 x3 x4

]
, (136)

and there are 5 more terms with the roles of the x1,2,3,4 permuted to
give distinct structures.
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• It is the last term that is most interesting as it gives the Feynman vertex
in which 4 particles interact. We have (dropping all the prime notation
which is getting cumbersome)

[
δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
×

[
−iλ

4!

{∫
dzdxdydsdt∆F (x− z)J(x)∆F (y − z)J(y)∆F (s− z)J(s)∆F (t− z)J(t)

}
exp

(
− i2

∫
J∆FJ

)] ]
J=0

= −iλ
∫
dz∆F (z − x1)∆F (z − x2)∆F (z − x3)∆F (z − x4) . (137)

Note that the 4! in the denominator was canceled by the 4! ways of
doing the derivatives, all of which give the same answer.

This term clearly has a connected form in which all the external particles
come together and interact at point z.

−iλ
[
x1

x2
×z x3

x4

]
(138)

The above is the same result as we had in our other approach. It simply
contains the external propagators that connect the external coordinate
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locations to the central vertex point at z. The basic vertex Feynman
rule is encoded in the −iλ that multiplies these connecting free-particle
propagators.

• It is worth noting that we can automatically avoid generating the
disconnected diagrams if we define

W [J ] = −i lnZ[J ] (139)

and take functional derivatives of W [J ]. This is discussed in Ryder, but
I will not go into the details in these notes.

What you want to “take home” is the means we employed for getting
the basic Feynman rule for the vertex of the perturbation theory.
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Functional Methods for Fermions

• Clearly, we are going to have to somehow incorporate the idea of Fermi
statistics when generalizing our functional techniques to fermions.

The generalization is based upon Grassmann algebra, which is the algebra
and mathematics of anti-commuting c-numbers.

• This algebra begins with introducing a set of generators Ci of an n-
dimensional Grassmann algebra obeying

{Ci, Cj} ≡ CiCj + CjCi = 0 , (140)

where i, j = 1, . . . , n. In particular, C2
i = 0. The expansion of a

function as a Taylor series in these new “coordinates” terminates; for
example, for n = 2, we have

f(C1, C2) = a0 +a1C1 +a2C2 +a3C1C2 = a0 +a1C1 +a2C2−a3C2C1

(141)
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where the ai might or might not be ordinary c-numbers (possibly functions
of the regular coordinates x). There are no terms such as C2

1C2, etc.
If the function f is to be a true c-number itself, i.e. not some kind of
mixed part-Grassmann and part non-Grassmann, then a1 and a2 should
also be Grassmann objects.

• We now need to define differentiation and integration in the Grassmann
coordinates. Left differentiation will differ from right differentiation. The
appropriate definitions are (assuming for the moment that all the ai are
simple c-numbers):

∂f

∂C1

=
∂Lf

∂C1

= a1 + a3C2 ,
∂f

∂C2

=
∂Lf

∂C2

= a2 − a3C1 . (142)

Consistency of the above then requires that the derivative with respect
to one coordinate anti-commutes with the other coordinate since from the
1st and 2nd equations we get

∂

∂C2

(
∂f

∂C1

)
= a3 ,

∂

∂C1

(
∂f

∂C2

)
= −a3 , (143)
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respectively, so that by summing we find[
∂

∂C2

∂

∂C1

+
∂

∂C1

∂

∂C2

]
f = 0 , (144)

for the most general function f .

Of course, the more trivial case of double differentiation with respect to
the same Ci gives zero for the most general f . For instance,

∂

∂C1

∂f

∂C1

=
∂

∂C1

(a1 + a3C2) = 0 (145)

by virtue of the fact that the 2nd ∂
∂C1

has no C1 on which to act.

Note that it is also possible to define right differentiation

∂Rf

∂C1

= a1 − a3C2 , (146)

but we will stick to the L differentiation definition, and will not explicitly
write the L.
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• Note that

C1
∂f

∂C1
= a1C1 + a3C1C2 , C1f = a0C1 + a2C1C2 ,

∂

∂C1
(C1f) = a0 + a2C2 , (147)

implying that

(
C1

∂

∂C1

+
∂

∂C1

C1

)
f = f , or C1

∂

∂C1

+
∂

∂C1

C1 = 1 (148)

as an operator identity.

• Similarly,

C2
∂f

∂C1
= a1C2 , C2f = a0C2 + a1C2C1 ,

∂

∂C1
(C2f) = −a1C2 , (149)

implying that

(
C2

∂

∂C1

+
∂

∂C1

C2

)
f = 0 , or C2

∂

∂C1

+
∂

∂C1

C2 = 0 (150)

as an operator identity.
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• Summarizing, we have in general{
Ci,

∂

∂Cj

}
= δij ,

{
∂

∂Ci
,
∂

∂Cj

}
= 0. (151)

(Ryder has corrected the small error in the first case present in earlier editions.)

• So much for differentiation; what about integration.

Clearly the integration differential dCi also needs to be a Grassmann
quantity, and so we take

{dCi, dCj} = 0 . (152)

For i 6= j, we will also have {Ci, dCj} = 0, but we must be more careful
for this latter when i = j. Multiple integrals are interpreted as iterated;
for example,

∫
dC1dC2f(C1, C2) ≡

∫
dC1

[∫
dC2f(C1, C2)

]
. (153)
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But, what about
∫
dC1 and

∫
dC1C1? We have

(∫
dC1

)2
=

∫
dC1

∫
dC2 =

∫ ∫
dC1dC2 = −

∫ ∫
dC2dC1 = −

(∫
dC1

)2
(154)

where the first equality follows from the standard use of a dummy
integration variable and the other equalities follow from the previous

identities. The result is that we must have
(∫
dC1

)2
= 0 or

∫
dC1 = 0.

Obviously, then ∫
dC1dC2 =

∫
dC1

∫
dC2 = 0 (155)

since the two integrals are individually 0. As for the non-zero result of
integration, we must be content with a formal definition,∫

dC1C1 = 1 (156)

and so forth. This is because integration cannot be defined simply as the

inverse of differentiation due to the fact that
{

∂
∂C1

, ∂
∂C1

}
= 0.

Note that Eq. (156) implies that integration and differentiation give the
same result!
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The advantages of these definitions are that they preserve some important
properties of integrals. In particular, suppose F = a + bC1 is a pure
c-number, implying that b is Grassmann. Our definitions imply that∫
dC1F = −b (we had to pass dC1 past b). Now, if we translate C1 by

C2, we find∫
dC1F (C1 + C2) =

∫
dC1(a+ bC1 + bC2) = −b (157)

so that the integral is translation invariant. This property is critical when
it comes to fermionic path integrals where we will want to complete a
square and then shift integration variables. Without this property, the
shifting would not be possible.

Under a multiplicative change of variables, however, something unusual
happens. Suppose we take C1 → C̃1 = a+ bC1, where a is Grassmann
and b is a regular c-number. Normally in the non-Grassmann context we
would find ∫

dx̃f(x̃) =

∫
dx

(
dx̃

dx

)
f(x̃(x)) . (158)

However, in the Grassmann case, let us consider a function P (C1) =
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p0 + p1C1, where p0 = regular, p1 = Grassmann. We have

∫
dC̃1(p0 + p1C̃1) =

d

dC̃1

(p0 + p1C̃1) = −p1 (159)

and ∫
dC1(p0 + p1C̃1) =

∫
dC1p1bC1 = −p1b (160)

(recalling that b is a regular number). As a result, we have

∫
dC̃1P (C̃1) =

∫
dC1P (C̃1(C1))

1

b
=

∫
dC1

(
dC̃1

dC1

)−1

P (C̃1(C1)) ,

(161)
i.e. we get the opposite of the commuting result; the Jacobian is the
reverse of what we might have expected.

• We can generalize this to a case in which we have a bunch of Ci
and redefine variables via C̃i = bijCj. One then finds with p(Ci) =
p1C1C2 . . . Cn (only such a term will matter, other lesser products giving
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zero)

∫
dC̃n . . . dC̃1p(C̃i) =

∫
dCn . . . dC1

[
det

dC̃

dC

]−1

p(C̃(C)) . (162)

To prove this, write C̃1 . . . C̃n = b1i1 . . . bninCi1 . . . Cin, where the right-
hand side is only non-zero if the i1 . . . in are all different, in which case
we have

C̃1 . . . C̃n = b1i1 . . . bninCi1 . . . Cin

= b1i1 . . . bninεi1...inC1 . . . Cn

= det b C1 . . . Cn (163)

implying that∫
dC̃n . . . dC̃1p(C̃i) = (det b)−1

∫
dCn . . . dC1p(C̃(C)) . (164)

On the other hand, C̃i = bijCj implies that dC̃i
dCj

= bij, which is to say
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that det dC̃i
dCj

= det bij.

• The next generalization is to consider c and c to be two independent
complex Grassmann quantities. They are independent in the sense that
one can think of c = 1√

2
(C1 + iC2) while c = 1√

2
(C1 − iC2), where C1

and C2 are two Grassmann numbers of the type we have been discussing
that are independent of one another. In other words, to fully specify c or
c you must specify C1 and C2.

We will define a Grassmann algebra for them using procedures like those
we have discussed. The Grassmann algebra is the following:

cc+ cc = 0 , c2 = 0 , c2 = 0 , (165)

as consistent with the C1,2 breakup.

Of course, we also assume (consistent with the C1,2 breakup) that

{dc, dc} = {dc, dc} = {dc, dc} = 0 . (166)

When it comes to integration, Itzykson and Zuber p. 440 write the
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following: ∫
dc c = 1 ,

∫
dc c = 1 ,

∫
dc =

∫
dc = 0 . (167)

But these rules are not completely consistent with the C1,2 breakup.
Rather, for consistency one should write∫

dc c = 1 ,

∫
dc c = 1 ,

∫
dc =

∫
dc = 0 . (168)

However, all that matters in the end are that whatever rules we decide
upon for integration be applied consistently. Following IZ and others, I
will employ the IZ definitions for integration in what follows.

• Now define a (non-Grassmann) c-number function

p(c, c) = p0 + p1c+ p1c+ p12cc (169)

where p1 and p1 are Grassmann and p0 and p12 are regular c-numbers.
Then, ∫

dcp(c, c) = −p1 − p12c = ∂p (170)
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etc. Again, integration is equivalent to differentiation.

• Next, we have the result (A is a c-number)∫
dcdc exp [−cAc] =

∫
dcdc [1− cAc+ 0] = 0 +A = A (171)

as contrasted to the usual pure c-number case where we would have
gotten something proportional to 1/A, assuming integration from −∞
to +∞. However, if we now include an additional factor of cc, one gets∫

dcdccc exp [−cAc] =

∫
dcdccc [1− cAc+ 0] = 1 + 0 =

1

A
A .

(172)
The extra 1

A
is what you would have anticipated in analogy with regular

integration by rescaling c→
√
Ac and c→

√
Ac.

• Now generalize this to a matrix situation:

∫ n∏
k=1

dckdck exp

[
−
∑
kl

ckAklcl

]
. (173)
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We expand the exponential and consider what happens. I hope it is
apparent that the only terms which survive are those which are precisely
linear in each of the ck’s and cl’s. What do we get from these terms?

Consider the case of just n = 2.∫
dc1dc1dc2dc2 exp [−c1A11c1 − c1A12c2 − c2A21c1 − c2A22c2] .

(174)
The linear term in the expansion of the exponential is at most bilinear in
the ci and/or ci. Thus, for each term in this linear term there will always
be two integrals which are zero.

Terms higher than 2nd order vanish by virtue of their always containing
the square of one or more of the ci or ci.

The only surviving terms from the expansion of the exponential come
from the 2nd order term of the exponential expansion:

exp(. . .) ∼
1

2!
[−c1A11c1 − c1A12c2 − c2A21c1 − c2A22c2]

2

3
1

2!
[2c1A11c1c2A22c2 + 2c1A12c2c2A21c1 + . . .] (175)
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where the . . . terms are actually 0 by virtue of the fact some ci and/or
ci is squared.

Thus, we have, keeping careful track of − signs as we bring the dci or
dci next to its companion,∫

dc1dc1dc2dc2 [c1A11c1c2A22c2 + c1A12c2c2A21c1]
2

2!

= A11A22 −A12A21 = detA . (176)

This generalizes; one always gets detA. For a fairly complete proof, see
Cheng and Li, p. 26 and following.

Another useful result is obtained in our example case by throwing in an
extra factor of, for example, c1c2.∫

dc1dc1dc2dc2 c1c2 exp [−c1A11c1 − c1A12c2 − c2A21c1 − c2A22c2]

=

∫
dc1dc1dc2dc2 c1c2 [−c1A12c2 + . . .] = −A12 = detAA−1

12 . (177)
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This, of course, generalizes to

∫ n∏
k=1

dckdckcicj exp

[
−
∑
kl

ckAklcl

]
= detA A−1

ij . (178)

• In fact, it will be useful to consider the infinite dimensional version of
these Grassmann games (that will be important when considering the
infinite cell number limit of a cell division of space-time).

Let us suppose that there is some matrix Mij that depends upon the
different space-time cells i, j in some non-trivial way, and that we need
to have a convenient expression for detM in the continuum limit. Then,
the generalization of the above is

detM =

∫
[dc][dc] exp

[
−
∫
d4xd4yc(x)M(x, y)c(y)

]
(179)

This notation is completely consistent with our functional notation. We
are simply integrating over all possible choices for c and c at all space
time locations (i.e. in all cells).
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We can equally well rewrite the above with a phase (noting that
convergence issues are not relevant in the case of the Grassmann
integration definitions) in the form

det(−iM) =

∫
[dc][dc] exp

[
i

∫
d4xd4yc(x)M(x, y)c(y)

]
. (180)

where we note that det(−iM) = (−i)number of cells detM . The large
power of i will not be important in the applications.
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Fermi Field Theory

• To make the transition to field theory, we generalize the Grassmann
algebra to a large number of Grassmann objects each corresponding to a
different cell of space-time. We then take the continuum limit and define
Grassmann functions that we might denote by C(x). They will obey

{C(x), C(y)} = 0 ,

∂C(x)

∂C(y)
= δ4(x− y) ,∫

dC(x) = 0 ,∫
dC(x)C(y) = δ4(x− y) , (181)

where the latter is consistent with integration being the same as
differentiation. In the above, something like

∫
dC(x) means to integrate

over all possible values of C(x) at a given space time location x. That
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is, in each of the last two expressions, x is fixed. A full mathematical
justification for all these formulae and the procedures we will follow
employing them has not been given, but you will see that everything
works perfectly in the usual physicist’s sense.

• We will now proceed in analogy with the scalar field case, but using the
Grassmann quantities.

We begin with the standard

L = iψ(x)γµ∂µψ(x)−mψ(x)ψ(x) , (182)

and see what happens if we define our generating functional for free
Dirac fields as

Z0(η, η) =
1

N

∫
[dψ][dψ] exp

{
i

∫
d

4
x
[
ψ(x)(iγ · ∂ −m)ψ(x) + η(x)ψ(x) + ψ(x)η(x)

]}
, (183)

where η(x) is a 4-component Grassmann source term for the 4-
component Grassmann ψ(x) in that ψ(x) can be generated by 1

i
δ

δη(x)
,

and η(x) is a 4-component source term for the 4-component ψ(x) in
the sense that ψ(x) is generated by 1

−i
δ

δη(x)
. The extra minus sign in
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this last expression is because δ
δη(x)

anticommutes with ψ(x) before it

can act on η(x) in the form ψ(x)η(x).

Of course, N is given by the numerator expression with η = η = 0.

Note: ψ and ψ are independent Grassmann objects completely analogous
to the c and c that we have discussed previously. This is in the spirit
that there are two degrees of freedom in ψ and ψ related to two
“real” Grassmann degrees of freedom. In the 2nd quantization via
anticommutation game, this corresponds to the fact that the c and d
operators are completely independent of one another.

• Let us write∫
d4xψ(x)(iγ · ∂ −m)ψ(x) =

∫
d4xd4yψ(x)O(x, y)ψ(y) (184)

with

O(x, y) = (iγ · ∂x −m)δ4(x− y) (185)

which results in the structure for the stuff under the integral in the
exponential above of the form (not writing all the integrals in x, y and
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other temporary integrations – it is better to think of dividing up space
time into cells anyway for this manipulation)

[ψOψ + ηψ + ψη + ηO−1
η]− ηO−1

η

= (ψ + ηO−1
)O(ψ +O−1

η)− ηO−1
η . (186)

We will shift to ψ′ = ψ+O−1η and ψ
′
= ψ+ηO−1 (it is here that our

definition of Grassmann integration to preserve this shift property enters
in a key way) so that we end up with

Z0(η, η) =
1

N

∫
[dψ
′
][dψ
′
] exp

{
i

∫
d

4
xd

4
y
[
ψ
′
(x)O(x− y)ψ

′
(y)− η(x)O−1

(x− y)η(y)
]}

=
1

N
det(−iO) exp

{
−i
∫
d

4
xd

4
yη(x)O−1

(x− y)η(y)

}
, (187)

where we have converted to a notation that separates x and y as would
be the case if we discretized space time, just as in the scalar field work.

Note that det(−iO) is the determinant of an infinite matrix with rows
and columns labeled by the space-time cell index (when we discretize
space-time into cells to define everything).

We could have derived this same result employing discretized space-
time by expanding the exponential and proceeding in a systematic
straightforward manner. I give the example for just two space time
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cells.

∫
dψ1dψ1dψ2dψ2 exp

{
i

[
ψ1O11ψ1 + ψ2O21ψ1 + ψ1O12ψ2 + ψ2O22ψ2

+η1ψ1 + η2ψ2 + ψ1η1 + ψ2η2

]}

=

∫
dψ1dψ1dψ2dψ2

[
1

2!
i
2
2
(
ψ1O11ψ1ψ2O22ψ2 + ψ1O12ψ2ψ2O21ψ1

)
+

1

3!
i
3
6
(
ψ1O11ψ1η2ψ2ψ2η2 + ψ2O21ψ1η2ψ2ψ1η1 + ψ1O12ψ2η1ψ1ψ2η2 + ψ2O22ψ2η1ψ1ψ1η1

)

+
1

4!
i
4
24
(
η1ψ1η2ψ2ψ1η1ψ2η2

)
+ terms that give 0

]
= − detO + (iη2O11η2 − iη2O21η1 − iη1O12η2 + iη1O22η1)− η1η2η1η2

= − detO
(

1− iη2

[ O11
detO

]
η2 − iη2

[−O21
detO

]
η1 − iη1

[−O12
detO

]
η2 − iη1

[ O22
detO

]
η1 +

η1η2η1η2
detO

)
= det(−iO)

(
1− iη2O

−1
22 η2 − iη2O

−1
21 η1 − iη1O

−1
12 η2 − iη1O

−1
11 η1 + η1η2η1η2(O−1

22 O
−1
11 −O

−1
21 O

−1
12 )

)
= det(−iO) exp

(
−iη2O

−1
22 η2 − iη2O

−1
21 η1 − iη1O

−1
12 η2 − iη1O

−1
11 η1

)

= det(−iO) exp

−i∑
kl

ηkO
−1
kl
ηl

 (188)

where we used (a + b + c)3 3 6abc, (a + b + c + d)4 3 24abcd,
1

detO = det(O−1) and, e.g., η1η2η1η2O−1
22 O

−1
11 = −η2O

−1
22 η2η1O

−1
11 η1.
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The continuum limit of this is the result stated earlier using Grassmann
variable shifting techniques.

• Since O = (i∂/ x −m)δ4(x− y) it is clear that O−1 should satisfy∫
d

4
z(i∂/ x −m)δ

4
(x− z)O−1

(z − y) = (i∂/ x −m)O−1
(x− y) = δ

4
(x− y) (189)

which means that

O−1(x− y) = SF (x− y) = −i〈0|T{ψ(x), ψ(y)}|0〉 . (190)

• We now note that O has no field dependence and that N = det(−iO),
so that we end up with

Z0(η, η) = exp

[
−i
∫
d4xd4yη(x)SF (x− y)η(y)

]
. (191)

• So, the above result is a purely algebraic result. Now we wish to compute
〈0|T

{
ψ(w), ψ(z)

}
|0〉.
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According to the analogy with scalar field theory, we should have

〈0|T{ψ(w), ψ(z)}|0〉 =

[
1

i

δ

δη(w)

] [
1

−i
δ

δη(z)

]
Z0(η, η)

∣∣∣∣
η=η=0

,(192)

using the generating function identities discussed earlier. (Note that
Ryder is quite careless here and his expressions are not really correct.)

To compute the above, we first do the δ
δη(z)

. We note that it must pass

through the η(x) in the expression for Z0, which causes a − sign. Thus,
1

−i
δ

δη(z)
Z0 =

1

−i
δ

δη(z)
exp

[
−i
∫
d4xd4yη(x)SF (x− y)η(y)

]
= −

∫
d4xη(x)SF (x− z)Z0 . (193)

We then have

〈0|T{ψ(w), ψ(z)}|0〉 =

[
1

i

δ

δη(w)

] [
1

−i
δ

δη(z)

]
Z0

∣∣∣∣
η=η=0

=

[
1

i

δ

δη(w)

]
(−)

∫
d4xη(x)SF (x− z)Z0

∣∣∣∣
η=η=0

= iSF (w − z) (194)
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as is indeed correct.

• Overall, you could say that we have replaced one “arbitrary” (except that
causality, . . . seems to require it) assumption of the {ψ(x), ψ(y)} anti-
commutation condition with another assumption — namely, Grassmann
variable integration for fermionic degrees of freedom.

Both are equivalent, as we have seen in the simple case above, and will,
among other things, lead to a causal theory.

• One final note: we will employ this same formalism eventually to rewrite
a determinant, that will arise during gauge theory 2nd quantization (as
part of the gauge fixing process), in terms of an integral over (fictitious,
but very useful) spinless, anticommuting scalar Grassmann objects c and
c.
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Gauge Theory 2nd Quantization via
Path Integrals

• In the path integral approach to gauge theory quantization, we implement
gauge fixing by restricting in some manner or other the path integral over
gauge fields

∫
[dAµ].

In other words we will write instead∫
[dAµ]δ(some gauge fixing condition)ei

∫
d4xL(Aµ) (195)

• Let us see how the need for the gauge fixing condition arises in the path
integral context.

Naively, we might start with L = −1
4
FµνF

µν where Fµν = ∂µAν−∂νAµ
as usual, and employ∫

[dAµ] exp

{
i

∫
d4x(L(Aµ) + JµA

µ)

}
(196)
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as the generating function for the vacuum expectation values of time
ordered products of the Aµ fields. Note that Jµ should be conserved
(∂µJµ = 0) in order for the full expression L(Aµ) + JµA

µ to be gauge
invariant under the integral sign when Aµ→ Aµ + ∂µΛ.

• Lets examine what happens more closely. We rewrite, using the usual
partial integration technique and the antisymmetry of Fµν,∫

d4xL(Aµ) = +
1

2

∫
d4xAµ(x)

(
gµν∂2 − ∂µ∂ν

)
Aν(x) . (197)

Let us define
Kµν = gµν∂2 − ∂µ∂ν . (198)

As in the scalar field case, we would like to perform the
∫

[dAµ] by
completing the square using (Kµν)−1.

The problem is that (Kµν)−1 does not exist. We have already discussed
this, but let’s just quickly review.

There are 4 different ways of checking that the inverse does not exist.

1. First, we can show that KµνK
ν
λ = 2Kµλ∂

2 which means that Kµν is
a projection operator. A projection operator has no inverse.
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Proof: Projection operator is defined (dropping indices for simplicity)
by P 2 = P . Suppose that P−1 exists. Then PP−1 = 1. Multiply this
equation by P from the left to obtain P 2P−1 = P . But then, since
P 2 = P , this means PP−1 = P or 1 = P . i.e. the only projection
operator with an inverse is the trivial P = 1. Our K operator is not
trivial and thus has no inverse.

2. We would define K−1 through the equation∫
d4z(gνµ∂

2
x− ∂xµ∂

ν
x)δ4(x− z)K−1

να(z − y) = δ4(x− y)gµα . (199)

If we take the Fourier transform of the above, we obtain

−(gνµk
2 − kµkν)K−1

να(k) = gµα . (200)

The most general form of K−1
να(k) is

K−1
να(k) = a(k2)kνkα + b(k2)gνα . (201)

Substituting this into the above equation gives no requirement on
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a(k2) but the b(k2) terms must obey

−k2b(k2)gµα + kµkαb(k
2) = gµα (202)

which has no solution.
3. Since K is a projection operator, detK = 0 and K cannot have an

inverse. This follows since

det(KK) = detK, ⇒
(detK)2 = detK (203)

which has only the two solutions detK = 0 or detK = 1. The latter
holds only for the trivial K = 1 choice.

4. Finally, that detK = 0 can be also seen by noting that K has a zero
eigenvalue for the trivial (gauge transform) function ∂µΛ(x):

(gµν∂
2 − ∂µ∂ν)∂νΛ = ∂µ∂

2Λ− ∂µ∂2Λ = 0 . (204)

Thus, in trying to complete the square, we would not be able to define
an inverse and the 1/

√
detK that might have emerged when we did this

would be infinite!
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• This is a true infinity related to the redundancy of being able to make
gauge transforms without changing the physics. We must specify the
gauge in some way that will get rid of this ∞.

The language that will go with this is the phrase “gauge orbits”. If we
have a given physical choice for Aµ, there are many physically equivalent
choices obtained by gauge transforms. The full set of all these equivalent
Aµ choices is called the “gauge orbit” that corresponds to the given
physical choice. The volume of the gauge orbit is infinite and since L
is invariant on the gauge orbit the

∫
[dAµ] exp

{∫
d4xL(Aµ)

}
has an

infinity buried in it.

• The simplest way to get around this is to impose the gauge condition by
hand in L. If, for example, we impose ∂µAµ = 0 directly we have∫

d4xL =

∫
d4x

1

2
Aµ(∂2gµν − ∂µ∂ν)Aν

→
∫
d4x

1

2
Aµ∂

2gµνAν . (205)

The new kernel ∂2gµν (the 1
2

is always kept as a standard external factor)
does have an inverse. The required equation in Fourier space takes the
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form:
−k2gµνK−1

να(k) = gµα (206)

with solution
K−1
µν (k) = −

gµν

k2
, (207)

which we recognize as the usual propagator form in Lorentz gauge.

• As we have seen this is equivalent to writing

L = −1
4
FµνF

µν −
1

2
(∂µAµ)2 (208)

since when we integrate and use parts integration we have∫
d4x

[
−1

4
FµνF

µν
]

=
1

2

∫
Aµ(∂2gµν − ∂µ∂ν)Aν , and∫

d4x

[
−

1

2
(∂µAµ)(∂νAν)

]
=

1

2

∫
d4xAµ∂

µ∂νAν (209)

so that the gauge condition term cancels the offending part of the original
stuff, leaving us with the simple form employed in the previous discussion.
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• We can generalize to a more general gauge condition by using

L = −1
4
FµνF

µν −
1

2α
(∂µAµ)2

′′ =′′
1

2
Aµ

[
∂2gµν +

(
1

α
− 1

)
∂µ∂ν

]
Aν , (210)

where ′′ =′′ means under
∫
d4xL.

Then, the kernel in question is (in Fourier transform space)

Kµν(k) = −k2gµν −
(

1

α
− 1

)
kµkν (211)

whose inverse (defined by Kα
µ (k)K−1

αν (k) = gµν) is

K−1
µν (k) ≡ Dµν(k) = −

1

k2

[
gµν + (α− 1)

kµkν

k2

]
. (212)

In the α → 1 case, we reduce back to the Feynman choice for the
Lorentz gauge that we have discussed above.
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Another often useful choice is α = 0, the so-called “Landau” gauge.

• Having defined some appropriate kernel with an inverse, we go through
the square completion process and end up with

Z0[J ] = exp

{
−
i

2

∫
d4zd4wJρ(z)Dρσ(z − w)Jσ(w)

}
, (213)

where Dρσ(z − w) is the inverse Fourier transform of one of the above
inverse kernels. As always, in the above, we have normalized so that
Z0[J = 0] = 1.

In obtaining the above, it is important that the determinant detK that
is generated when performing the

∫
[dAµ] functional integration does not

itself have any Aµ dependence.

We will see that this is not the case when we come to non-Abelian gauge
theories.

• Just to review the square completion process, let us refer to our starting
form Eq. (196), with L being the L after including gauge fixing. We
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would need to compute∫
[dAµ] exp

{
i

∫
d4x [L(Aµ(x)) + Jµ(x)Aµ(x)]

}
(214)

where we have seen above that∫
d4xL(Aµ(x)) =

∫
d4xd4y

1

2
Aµ(x)Kµν(x, y)Aν(y) (215)

where Kµν is invertible for the given gauge choice.

We would divide space-time up into cells with labels α for x and β for y.
We would also have the Lorentz labels µ for the x-cell α and the label ν
for the y-cell β. Putting the indices together, we could write a matrix in
n = (α, µ) and m = (β, ν) space. The resulting conversion is:∫

d4xd4y

[
1

2
Aµ(x)Kµν(x, y)Aν(y) + Jµ(x)δ4(x− y)Aµ(y)

]
→

∑
n

ε4
∑
m

ε4

[
1

2
AnKnmAm + Jn

δnm

ε4
Am

]
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=
∑
n

ε4
∑
m

ε4

[
1

2
(A+

K−1

ε4
J)nKnm(A+

K−1

ε4
J)m −

1

2
Jn
K−1
nm

ε8
Jm

]

=
∑
n

ε4
∑
m

ε4

[
1

2
A′nKnmA

′
m −

1

2
Jn
K−1
nm

ε8
Jm

]
(216)

where we used, for example,

(K−1J)nKnmAm = K−1
nl JlKnmAm

= JlK
−1
ln KnmAm by symmetry of K−1

= JlδlmAm (217)

and

(K−1J)nKnm(K−1J)m = K−1
nl JlKnmAmK

−1
mpJp

= JlK
−1
ln KnmK

−1
mpJp by symmetry of K−1

= JlδlmK
−1
mpJp

= JmK
−1
mpJp . (218)
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We then compute (shifting from dAp to dA′p)

∫ ∏
p

[dA′p] exp

{
i
∑
n

ε4
∑
m

ε4

[
1

2
A′nKnmA

′
m

]}

=
1

√
detKnm

∏
p

√
2πi

ε8
, (219)

so that we are left with

Z0[J ] ∝ exp

{
−i

1

2

∑
n

ε4
∑
m

ε4

[
Jn
K−1
nm

ε8
Jm

]}
. (220)

Like in the earlier scalar field case, K−1 is defined by

∑
p

ε4Knp

K−1
pm

ε8
=
δnm

ε4
(221)
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which in the continuum limit becomes∫
d4zKλ

µ(x− z)Dλν(z − y) = δ4(x− y)gµν , (222)

so that Z0[J ] takes the continuum limit form

Z0[J ] ∝ exp

{
−i

1

2

∫
d4xd4yJµ(x)Dµν(x− y)Jν(y)

}
. (223)

• For the α = 1 gauge choice, for example, we have

Kλ
µ(x− z) = ∂2

xδ
4(x− z)gλµ (224)

and Eq. (222) takes the form

∂2
xg
λ
µDλν(x− y) = δ4(x− y)gµν (225)
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the solution to which is

Dµν(x− y) =

∫
d4k

(2π)4
eik·(x−y)

[−gµν
k2

]
, (226)

a result we recognize from the previous quarter.

• In the generating function technique in the free-field case we would then
compute

〈0|T{Aµ(x)Aν(y)}|0〉 =
1

i

δ

δJµ(x)

1

i

δ

δJν(y)
exp

{
−
i

2

∫
d

4
zd

4
wJ

ρ
(z)Dρσ(z − w)J

σ
(w)

}∣∣∣∣
J=0

= iDµν(x− y) , (227)

where Dµν(x−y) is the result that we obtained for the gauge propagator
(see above example) using the commutator 2nd quantization techniques.
Note that we have obtained the correct sign and there is no factor of
1
2

because each of the δ
δJ

derivatives can see either of the J ’s in the
exponential.

• It is useful to give a heuristic derivation of this result that will be useful
for understanding how to deal with non-Abelian gauge theories.
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First, in the integral
∫

[dAµ] over all field configurations, we write each
Aµ as

Aµ(x) ∼ Aµ(x),Λ(x) (228)

where Aµ(x) is some choice on a given gauge orbit and all the different
choices of Λ(x) generate all the other forms of Aµ on that same gauge
orbit.

Then, we would have

Z ∝
∫

[dAµ]eiS(Aµ) =

∫
[dAµ]eiS(Aµ)

∫
[dΛ] (229)

where we have used the fact that S(Aµ) = S(Aµ) on a given gauge
orbit. The latter factor is the infinity that gives us the problem. We
modify it by instead writing∫

[dΛ]→
∫

[dΛ]e
−i
2α(f(Aµ))2

. (230)

For an appropriate choice of f(Aµ) (e.g. f(Aµ) = ∂µAµ) the integral
would now converge but, as written, the result would be gauge dependent,
i.e. it would depend upon how f depends upon Aµ = (Aµ,Λ).
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So, instead, let us try the replacement∫
[dΛ]→

∫
[df ]e

−i
2αf

2
=

∫
[dΛ] det

(
∂f

∂Λ

)
e
−i
2αf

2
. (231)

By integrating over all possible values for the given function f at each
space-time point, we have obviously eliminated any sensitivity to the
value of f for a given field configuration Aµ.

You may ask what kind of determinant it is that appears above? Well, to
understand you must recall that these functional integrations are really
defined by dividing space-time up into cells. Since f typically contains
a derivative, it is actually sensitive to differences between neighboring
cells. Thus, what we really have is ∂fi

∂Λj
where the i, j indicate the cells

considered. This creates a matrix that we shall call Mij that records how
fi in cell i responds to a gauge transform in cell j. We will return to this
M shortly.

For the moment, let us note that if we do the above, we obtain

Z[J ] ∝
∫

[dAµ]

∫
[dΛ] exp

[
i

∫
d4x

(
L+ JA−

1

2α
f2

)]
det

(
∂f

∂Λ

)
,

(232)
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where we have made explicit the J source terms (JA is shorthand for
JµA

µ) which are invariant under all the above manipulations so long as
they are gauge invariant. In QED, for example, the Jµ should correspond
to conserved currents ∂µJµ = 0.

The above form is exactly what we wanted except for the addition of the
det multiplicative factor.

In QED, this det factor does not depend upon the field Aµ (see below)
and so can be simply discarded as part of the Z[J = 0] = 1 normalization
process.

However, in the non-Abelian case we will instead proceed as follows.
First, it is sufficient to compute ∂f

∂Λ
by using a small gauge transformation

under which f → f +MΛ so that ∂f
∂Λ

= M . In general M can be very
complicated and can, in particular, depend upon the field Aµ. But it does
not in QED. To see this, let us take f = ∂µAµ and let Aµ→ Aµ− 1

e
∂µΛ.

Then f(x)→ f(x)− 1
e
∂2
xΛ(x) and

M(x, y) =
∂f(x)

∂Λ(y)
= −

1

e

∂

∂Λ(y)
(∂2
xΛ(x)) = −

1

e
∂2
xδ

4(x− y) .(233)

Clearly there is no Aµ dependence of this result. This should also clarify
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the fact that M is really a matrix in the sense that had we divided
space-time up into little cells, as we implicitly must do in order to define
these path integrals, then, in this case, the determinant of the resulting
“gauge response function” is diagonal in the cell index.

We now use the trick discussed earlier, Eq. (180), to write

detM ∝
∫

[dc][dc] exp

[
i

∫
d4xd4yc(x)M(x− y)c(y)

]
(234)

where the c and c are the spinless anticommuting fields mentioned
previously and are usually called Faddeev-Popov “ghost” fields.

The bottom-line result will then be

Z[J ] ∝
∫

[dAµ][dc][dc] exp

[
i

∫ (
L+ JA−

1

2α
f2 + cMc

)]
, (235)

where we have used
∫

[dAµ][dΛ] ≡
∫

[dAµ]. Thus, the net effect is to
replace L by

Leff = L+ LGF + LFPG , (236)

where GF refers to gauge-fixing and FPG to Faddeev-Popov ghosts.
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In general, the implication of the above form is that we may compute
a physical transition amplitude using a particular gauge choice for the
vector field propagator only if we compensate for unphysical degrees of
propagation by also including ghost fields that cancel (since they anti-
commute, i.e. are fermionic — this will become clearer later, but for
now think of the − sign associated with a fermion loop) these unphysical
propagations.

The ghost fields will enter into the Feynman rules as internal (never
external since they do not correspond to a real degree of freedom) virtual
objects having propagators and vertices (with other fields). We can
effectively implement our gauge fixing in all generality in this convenient
way.
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Non-Abelian Gauge Theory (Yang-Mills)

I will employ a treatment that differs somewhat from Ryder’s section 3,
which focuses rather specifically on the case of SU(2). Of course, SU(2)
is a very useful special case.

• An example of a non-Abelian group is SU(2) (for example, the SU(2)
of isospin used in nuclear physics).

The extra indices associated with the non-Abelian group have nothing
to do with anything like spin or normal charge, they act on an internal
intrinsic index associated with a given particle or field.

Gauge invariance of the 1st kind (global GI)

• Let us recall that for every conserved quantum number one can construct
a transformation on the fields which leaves L invariant. The simple case
we have dealt with so far is charge. Let us review.

If we say that φi has charge qi, this means that under the U(1) group
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transformation
φi(x)→ e−iqiθφi(x) . (237)

A term in L in which a number of these fields are multiplied together
transforms as

φ1 . . . φn→ e−i(q1+...+qn)θφ1 . . . φn . (238)

If L is invariant under the transformation, then
∑
i qi = 0 is required,

which is to say that the product is “neutral”.

If θ does not depend upon x, then each of the kinetic energy terms
∂µφ

†
i∂
µφi is also invariant.

The corresponding infinitesimal transformation with θ = ε� 1 is

δφi = −iεqiφi (239)

Noether’s theorem then says that
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δL = 0

=
∑
j

∂L
∂φj

δφj +
∂L

∂(∂µφj)
δ(∂µφj)

=
∑
j

[
∂µ

∂L
∂(∂µφj)

]
δφj +

∂L
∂(∂µφj)

δ(∂µφj) by e.o.m.

= −iε
∑
j

∂µ

[
∂L

∂(∂µφj)
qjφj

]
, (240)

i.e.

∂µJ
µ = 0 , with Jµ =

∑
j

i
∂L

∂(∂µφj)
qjφj . (241)

Further, Q =
∫
d3xJ0 is a conserved charge operator, which generates

the transformation: i.e.

δφi = −iε[Q,φi] (242)

by virtue of canonical commutation relations, or equivalently the operator
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forms of Q and φ. The canonical commutation proof is as follows.

First, for the standard type of L,

∂L
∂(∂0φj)

= ∂0φj (243)

implying

Q =
∑
j

∫
d3x i∂0φj(x)qjφj(x) . (244)

Then,

[Q,φi(y)] =
∑
j

∫
d3xqjφj(x)[∂0φj(x), φi(y)]

=
∑
j

∫
d3xiqjφj(x)[−iδijδ3(x− y)]

= qiφi(y) , (245)

implying
δφi(y) = −iε[Q,φi(y)] = −iεqiφi(y) (246)
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as claimed. Equivalently, one can use the operator form of Q:

Q =
∑
j

∫
dp̃qja

†
j(~p)aj(~p) (247)

where dp̃ is the invariant measure for the particular conventions chosen,
along with the operator form of φi to prove the same thing.

• A more complicated case is the non-Abelian case of “isospin”.

The fields come in multiplets representing SU(2) in the sense that under
a transformation

φ→ e−i
~L·~θφ (248)

where we should think of φ as a column vector and each ~L as a matrix
of the same dimension.

For example, in the “doublet” φ representation φ is a two-component
column vector and ~L is the 2 × 2 matrix ~L = 1

2
~τ (~τ = Pauli matrices).

(The 1
2

is just a conventional normalization choice.)

For the “triplet” representation, φ is a three-component column vector
and the matrices Li=1,2,3 are defined by Lijk = −iεijk.
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The SU(2) group is defined by the commutation relations of its
generators:

[T i, T j] = iεijkT k (249)

and the above matrix sets have thus been chosen to satisfy these same
defining SU(2) commutation relations

[Li, Lj] = iεijkLk . (250)

Infinitesimally, we would have

δφ = −
i

2
~τ · ~εφ doublet , δφi = εijkεjφk triplet . (251)

Another example of a gauge group is SU(3). There, the group structure
is defined by

[T a, T b] = icabcT c (252)

where a, b, c run over 1, 2, . . . 8. Ryder uses the notation cabc = fabc

for the SU(3) case. The fabc are given by:

f123 = 1 ,
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f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
. (253)

The most fundamental representation of SU(3) is the “triplet” representation
in which there are 3 φi components where i = r, g, b (red, green, blue)
or r, w, b, depending upon the book. In the triplet representation, the
T a are represented by a set of 8 matrices

T a =
λa

2
(254)

where the λa are given in Eq. (3.180) of Ryder.

Gauge Invariance of the 2nd kind

• The U(1) example is already familiar:

φi(x)→ φ′i(x) = e−iqiθ(x)φi(x) , δφi(x) = −iqiθ(x)φi(x) (255)
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but

∂µφi(x)→ e−iqiθ(x)∂µφi(x)− iqi∂µθ(x)e−iqiθ(x)φi(x) . (256)

Because of the 2nd term, δL 6= 0 for KE terms of L.

We must introduce the Aµ fields and generalize to

Dµφi = (∂µ + ieqiAµ)φi (257)

and choose the Aµ transformation property such that

(∂µ + ieqiA
′
µ)φ′i(x) = e−iqiθ(x)(∂µ + ieqiAµ)φi(x) (258)

in order to get δL = 0. Working this out, one finds the requirement

−∂µθ(x) + eA′µ(x) = eAµ(x) (259)

independent of qi, i.e.

δAµ =
1

e
∂µθ(x) . (260)
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And, of course, we must introduce appropriate L for the Aµ fields of

LA = −1
4
FµνF

µν , Fµν = ∂µAν − ∂νAµ (261)

where Fµν is invariant under (260).

• Lie Group Basics

We now wish to generalize what we have done to the non-Abelian group
situation. Before proceeding, let’s do a few group basics. (see Georgi’s
book or Cahn’s book — much of the following is from the Peskin chapt
15 summary.)

The groups that have arisen so far in particle theory are all compact Lie
groups. A Lie group is a group in which the elements are labeled by
a set of continuous parameters with a multiplication law that depends
smoothly on the parameters.

Basically, for application to gauge theories, the local symmetry is
normally a unitary transformation of a finite set of fields. Thus, we
are primarily interested in Lie algebras that have finite-dimensional
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Hermitian representations, where the finite number of fields, which
you can view as being arranged in a column vector for example, form the
“representation” of the group. Also, the groups of interest have a finite
number of generators. Such Lie algebras are called “compact” because
these conditions imply that the Lie group is a finite-dimensional compact
manifold, where “compact” refers to the global property of the group
that the volume of the parameter space for the group is finite.

In other words, any representation of a compact Lie group is equivalent
to a representation by unitary operators generated by a finite number of
generators. A group element is obtainable from the identity by continuous
changes and can be written as e−iθ

aLa, where the θa are real parameters
(a = 1, . . . , N) and the La are linearly independent hermitian operators.
The set of all linear combinations θaLa is a vector space, and the La are
a basis in the space.

The term “group generator” refers (interchangeably) to an arbitrary
element of the vector space or specifically to the basis vectors La.

Do not confuse the space of the group generators (N dimensional) with
the space on which the generators act, which is some as yet unspecified
Hilbert space of a set of fields (arranged in a column vector for example).
To repeat, for the compact Lie groups, we can always take the space
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on which the generators act to be finite dimensional, so that you can
think of the La as finite hermitian matrices. There are different possible
hermitian matrix sets acting on different possible Hilbert spaces that can
be used to “represent” the Lie group.

Note

(a) Generators can be multiplied by numbers and added to obtain other
generators.

(b) Generators satisfy simple commutation relations which determine the
full structure of the group for group elements that can be continuously
connected to the identity. (Large global transformations, such as
reflection fall outside this class. For example, SU(2) and O(3) have
the same commutation relations but different global structure since O(3)
includes the reflection operation.)

Consider the product

e−iλL
b
e−iλL

a
eiλL

b
eiλL

a
= 1 + λ2[La, Lb] + . . . (262)

Because of the group property, the product of group elements is another
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group element and can be written as eiβ
cLc. As λ→ 0, we must have

λ2[La, Lb]→ iβcLc ⇒ βc = λ2cabc ⇒ [La, Lb] = icabcLc . (263)

The cabc are called the “structure constants” of the group. You might
worry that [La, Lb] = icabcLc would not be sufficient to guarantee the
matching to still higher orders in λ. But, in fact, it is all you need.

By the definition and the expansion process above, the cabc are antisymmetric
in the first two indices. Further, they are real if the La are hermitian.
Reality of the cabc follows from [La, Lb] = icabcLc and the hermiticity
of the La’s by taking the hermitian conjugate of this relation:

([La, Lb] = icabcLc)† ⇒ [Lb, La] = −i(cabc)∗Lc

⇒ icbacLc = −i(cabc)∗Lc ⇒ cbac = −cabc = −(cabc)∗ . (264)

As you see, the cabc are determined by the group multiplication law.
They also determine the multiplication law as follows:

e−iα
aLae−iβ

bLb ≡ e−iδ
cLc (265)
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with δc given by

δc = αc + βc +
1

2
cabcαaβb + . . . . (266)

This illustrates the remarkable fact that [La, Lb] = icabcLc allows us
to obtain δc to any desired order. (In proving the above lowest order,
not to mention still higher orders, you must very carefully expand the
exponentials keeping the orderings straight.)

In words, [La, Lb] = icabcLc is equivalent to saying that the set of
generators La must span the space of infinitesimal group transformations,
and so the commutator of two La generators must be a linear combination
of generators.

The generators also satisfy the following identity, called the Jacobi
identity:

[La, [Lb, Lc]] + cyclic permutations = 0 . (267)

It is obvious for a representation, since then the La are just linear
operators. But, in fact it is true for the abstract group generators. In
terms of the structure constants, the above equation becomes

cbcdcade + cabdccde + ccadcbde = 0 . (268)
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• Classification of Lie algebras

If one of the La commutes with all others, it generates an independent
continuous Abelian group which, as we have learned, has the structure
of the group of phase rotations, eiα, that we have been calling a U(1)
group.

If the algebra contains no such commuting elements, i.e. no U(1) factors,
then we call the algebra “semi-simple”. If, in addition, the Lie algebra
cannot be divided into two mutually commuting sets of generators, the
algebra is “simple”.

A general Lie algebra is the direct sum of non-Abelian simple components
and additional Abelian generators.

The basic conditions that a Lie algebra be compact and simple turn
out to be extremely restrictive. In the 19th century Killing and Cartan
classified all possible compact simple Lie algebras. Almost all of these
algebras belong to one of three infinite families, with only five exceptions.

The three infinite families are the algebras corresponding to the so-called
“classical groups”, whose structures are most conveniently defined in
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terms of particular matrix representations.

The definitions of the 3 families of classical groups are as follows:

1. Unitary transformations of N -dimensional vectors.

If ξ and η are complexN -vectors, then the general linear transformation
is

ηa→ Uabηb , ξa→ Uabξb (269)

and this is a unitary transformation if it preserves the inner product
η∗aξa. The pure phase transformations ξa → eiαξa form a U(1)
subgroup which commutes with all other unitary transformations. We
therefore remove this subgroup to form a simple Lie group, called
SU(N) which consists of all N ×N unitary transformations satisfying
det(U) = 1. The generators of SU(N) are represented by the N×N
Hermitian matrices ta with Tr(ta) = 0 (so that they are orthogonal
to the phase transformation) defining the U(1). There are N2 − 1
traceless hermitian matrices.

2. Orthogonal transformations of N -dimensional vectors.

This is the subgroup of unitary N ×N transformations that preserves
the symmetric inner product ηaEabξb with Eab = δab. This is the
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usual vector product and you know that this group is the rotation group
SO(N). There is an independent rotation corresponding to each plane
in N dimensions and so SO(N) has N(N − 1)/2 generators.
Adding the reflection transformation to SO(N) gives the group O(N).

3. Symplectic transformations of N -dimensional vectors

This is the sub-group of unitary N × N transformations, for N
even, that preserves the antisymmetric inner produce ηaEabξb with

Eab =

(
0 1
−1 0

)
where the elements of the matrix are N/2×N/2

blocks. This group is called Sp(N) and has N(N + 1)/2 generators.

Beyond these 3 families, there are the five more “exceptional” Lie
algebras, denoted as G2, F4, E6, E7 and E8. Of these, E6 and E8 have
been employed as local symmetry groups in interesting unified models of
the fundamental interactions and often emerge in the low-energy effective
theories derived from string theory.

• Representations

So, we have learned that the generators and their commutation relations
define the “Lie algebra” associated with the Lie group.
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Typically, there is a set of fields that define a particular “representation”
of the Lie algebra.

The generators in the representation, when exponentiated, give the
operators of the group representation.

The “dimension” of a representation is the dimension of the vector space
on which it acts (which is just simply the number of fields in our column
vector of fields).

An arbitrary representation can generally be decomposed by finding
a basis in which all representation matrices are simultaneously block-
diagonal. Each block then forms an “irreducible” representation and the
general representation is then said to be the direct sum of its irreducible
component representations. We will implicitly discuss from now on only
irreducible representations.

If we define a set of matrices T a by T abc ≡ −icabc then Eq. (268) (the
Jacobi identity in terms of the cabc) becomes

[T a, T b] = icabcT c , (270)

which is to say that the structure constants themselves generate a
representation of the group algebra. This representation is called the
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“adjoint” representation. Note that it is automatically hermitian if the
cabc structure constants are antisymmetric in their last two indices (as
we will shortly demonstrate is the case in an appropriately defined basis):

(T a †)bc = (T a ∗)cb = (−icacb)∗ = icacb = −icabc = T abc . (271)

clearly, the dimension of the adjoint representation is just the number of
generators, which is the same as the number of real parameters necessary
to describe a group element.

Of course, the structure constants depend on what basis we choose in
the vector space of the generators. In general we can write

Tr(LaLb) ≡ Dab. (272)

D is a real (since the La’s are hermitian) symmetric (from the cyclic
property of the trace) matrix, so we can diagonalize it by choosing
appropriate real linear combinations of the La’s.

In more detail, and using subscripts to simplify my typing, let us write
L′a = MabLb. Then

Tr(L′aL
′
b) = MacMbdTr(LcLd) = MacDcd(M

T )db (273)
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and since Dcd is real and symmetric it can be diagonalized by an
appropriate choice of M .

Suppose we have done this so that we obtain

Tr(LaLb) = kaδab no sum on a . (274)

In addition, since the La are hermitian (for the compact Lie groups of
interest to us), all the ka’s are positive.1 This is most simply seen
by noting that any hermitian matrix can be diagonalized and that the
diagonal will then contain real eigenvalues, λi (i = 1, . . . , n). In the
diagonal form for a given La, not all the λi can be zero (otherwise it
would be equivalent to the 0 matrix) and we thus have

LaLa = diag(λ2
1, . . . , λ

2
n)⇒ Tr(LaLa) =

∑
i=1,...,n

λ2
i = ka > 0 . (275)

We still have the freedom to rescale the generators, so the conventional
1Algebras in which some of the ka’s are negative have no nontrivial finite dimensional unitary representations (i.e.

they are not compact). This does not mean they are not interesting. The Lorentz group is one such case. But, here
we restrict ourselves to finite dimensional compact groups.
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choice is to define the La basis so that all the ka are equal, i.e. we
define the basis so that Dab is proportional to the unit matrix.

Once this is done for one irreducible representation, one can show that it
is true for all irreducible representations.

In this basis, we then have

Tr(LaLb) ≡ C(r)δab , (276)

where C(r) is a possibly representation (r) dependent constant. Our
conventions are such that we have C(r) = 1

2
for all representations.

It is in the above basis that the structure constants are completely
antisymmetric, because we can write (for C(r) = 1

2
)

cabc = −2iTr([La, Lb]Lc) , (277)

which is completely antisymmetric because of the cyclic property of the
trace.

Recall our earlier demonstration that in this basis, the generators in the
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adjoint representation are hermitian matrices.

Conjugate representation

For each irreducible representation r of the general group G, there is an
associated “conjugate” representation r. If we write for representation r

φ→ (1− iθaLar)φ (278)

the complex conjugate of this equation is

φ∗→ (1 + iθa(Lar)
∗)φ∗ (279)

implying that the object inside (. . .) must be the infinitesimal element
of a representation of G, with representation vectors defined by the
φ∗ vectors. The conjugate representation to r then has representation
matrices given by Lar = −(Lar)

∗ = −(Lar)
T (using hermiticity).

Since φ∗φ is invariant under unitary transformations, it is clearly possible
to combine fields transforming in the representations r and r so as to
form a group invariant.
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It is possible that the representation r is equivalent to r. This is the
case if there is a unitary U such that Lar = ULarU

†. In this case, the
representation r is real and there is a matrix Gab such that, if η and
ξ belong to the representation r, then the combination Gabηaξb is an
invariant.

It is sometimes useful to distinguish the case in which Gab is symmetric
from that in which Gab is antisymmetric. In the former case, the
representation is strictly real; in the latter case, it is pseudoreal. Both
cases occur even in SU(2): the invariant combination of two vectors is
vawa, so the vector is a real representation; the invariant combination of
two spinors is εαβηαξβ, so the spinor is a pseudoreal representation.

In SU(N), the basic irreducible representation (often called the fundamental
representation) is the N -dimensional complex vector. For N > 2,
this representation is complex, so there is a second, inequivalent,
representation N . In SO(N), the basic N -dimensional representation is
a strictly real representation. In Sp(N), the N -dimensional vector is a
pseudoreal representation.

Returning to the adjoint representation, since the structure constants are
real and antisymmetric, T a = −(T a)∗, which means that the adjoint
representation is always a real representation.
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• With this background, we can proceed to generalize global and local
gauge invariance to the non-Abelian case.

We use general group definition of (here, I switch from a, b, c to i, j, k)

[T i, T j] = icijkT k . (280)

As before,

φ(x)→ φ′(x) = e−i
~L·~θφ(x) ∼ (1− i~L · ~θ(x))φ(x) , (281)

where φ is n-component column vector and each ~L is n×n. Assume that
we have constructed a L that is invariant under the global transformation,
i.e. for θ =constant.

The question is the following: if we allow θ(x), then what gauge fields
with what transformation properties must be introduced in order to get
local invariance of L.

The trick is to define

Dµ = ∂µ − ig~L · ~Aµ(x) (282)
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(note one Aiµ for each Li) such that

D′µφ
′(x) = (1− i~L · ~θ(x))Dµφ(x) . (283)

Let’s work out this requirement. We have

D′µφ
′ = (∂µ − igA′µ

j
Lj)(1− i~L · ~θ)φ

= (1− i~L · ~θ)∂µφ− i~L ·
(
∂µ~θ

)
φ− igA′µ

j
Lj(1− i~L · ~θ)φ

= (1− i~L · ~θ)(∂µ − igAjµL
j)φ (284)

which, after canceling common terms on the two sides of the equation
becomes (since it must hold for arbitrary φ)

−i~L · ∂µ~θ − igA′µ
j
Lj(1− i~L · ~θ) = −igAjµ(1− i~L · ~θ)Lj . (285)

We may verify that the solution is

A′µ
j

= Ajµ −
1

g
∂µθ

j + cjklθkAlµ . (286)
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Let us substitute and check. We require

−iLj∂µθj−ig(Ajµ−
1

g
∂µθ

j+cjklθkAlµ)Lj(1−iLnθn)
?
=−igAjµ(1−iLnθn)Lj .

(287)
Neglecting terms of order θ2 in the infinitesimal limit, this reduces to

−iLj∂µθj − igAjµ(1− iLnθn)L
j − igAjµ[L

j
,−iLnθn] + i∂µθ

j
L
j − igcjklθkAlµL

j

?
=− igAjµ(1− iLnθn)L

j
(288)

where our main manipulation was to commute two L’s past one another
on the left hand side. Canceling common terms, the above reduces to

−igAjµ[Lj,−iLnθn]− igcjnlθnAlµL
j ?
=0 . (289)

But, we know that [Lj, Ln] = icjnlLl and the above reduces to

−igAjµ(−iθnicjnlLl)− igcjnlθnAlµL
j ?
=0 , (290)

or, since we want this to hold for any θn choices,

cjnlAjµL
l + cjnlAlµL

j ?
=0 . (291)
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Since j and l are dummy summation indices, we may switch them in the
first term and the above becomes

clnjAlµL
j + cjnlAlµL

j ?
=0 , (292)

and we see that the requirement is

clnj + cjnl = 0 , (293)

which is a relation that is always satisfied by the structure constants of a
non-Abelian Lie algebra.

Proof: from [T i, T j] = icijkT k and the “orthogonality” property of
Tr{TmTn} = 1

2
δmn we find

icijk = 2Tr{T k[T i, T j]} = 2Tr{T kT iT j − T kT jT i}
= 2Tr{T iT jT k − T iT kT j} by cyclic property

= −2Tr{T iT kT j − T iT jT k} = −2Tr{T i[T k, T j]}
= −ickji . (294)

J. Gunion 230B, 2nd Quarter of Field Theory 129



• It is important to note that the required transformation from Ajµ to A′µ
j

depends only on these cijk’s and not on any particular φ representation
employed above.

• So, we must now construct an appropriate kinetic energy L for the
non-Abelian ~Aµ fields.

To do so, it is most convenient to use a little “trick”.

So far, we have shown that

D′µφ
′ = (1− i~L · ~θ)Dµφ , (295)

which is to say that φ̂ = Dµφ transforms just like φ, implying that

DνDµφ→ (1− i~L · ~θ)DνDµφ , (296)

and
DµDνφ→ (1− i~L · ~θ)DµDνφ . (297)

Then, if we define

(DµDν −DνDµ)φ ≡ −igLjF jµνφ (298)
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then
LjF ′µν

j
φ′ = (1− i~L · ~θ)LjF jµνφ (299)

which can be written as

LjF ′µν
j
(1− i~L · ~θ)φ = (1− i~L · ~θ)LjF jµνφ (300)

which in turn implies that (assuming above must hold for arbitrary φ)

LjF ′µν
j

= (1− i~L · ~θ)LjF jµν(1 + i~L · ~θ) = U(θ)~L · ~FµνU−1(θ) (301)

(dropping terms of order θ2 and defining ~L · ~Fµν ≡ LjF jµν). Using this,
we can show that

Tr
[
(~L · ~Fµν)(~L · ~Fµν)

]
=

1

2
F jµνF

j µν (302)

is invariant under gauge transformations.

Proof:

1

2
F ′ jµνF

′ j µν = Tr
[
(~L · ~F ′µν)(~L · ~F

′µν)
]
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= Tr
[
U(~L · ~Fµν)U−1U(~L · ~Fµν)U−1

]
= Tr

[
(~L · ~Fµν)(~L · ~Fµν)

]
=

1

2
F jµνF

j µν (303)

using U−1U = 1 and the cyclic property of the trace.

• Returning to

LjF ′µν
j

= (1− i~L · ~θ)LjF jµν(1 + i~L · ~θ) (304)

we see that

δF jµνL
j = −iθm[Lm, F kµνL

k] = −iθmF kµνic
mkjLj (305)

or
δF jµν = cjmkθmF kµν . (306)

A vector that transforms in this way (i.e. using the group structure
constants) is transforming like a member of an adjoint representation of
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the Lie algebra. Let us check this against our definition of the adjoint
representation discussed earlier, according to which the transformation
matrix is Tmjk = −icmjk. We should have (using the infinitesimal
expansion of U ∼ 1 − iLmθm, but with Lm = Tm in the adjoint
representation)

δF jµν = −iTmjkθ
mF kµν = −i(−icmjk)θmF kµν = −cmjkθmF kµν (307)

which agrees after using cmjk = −cjmk.

• All this can be generalized to the non-infinitesimal case of φ′ = U(θ)φ

where U(θ) = e−i
~L·~θ.

The basic requirement is analogous to that of the infinitesimal transformation
case:

D′µφ
′(x) = U(θ)Dµφ ,⇒ D′µU(θ) = U(θ)Dµ . (308)

Using the form Dµ = ∂µ − ig~L · ~Aµ, this becomes

(∂µ − ig~L · ~A′µ)U = U(∂µ − ig~L · ~Aµ) , (309)
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which is equivalent to

(∂µU) + U∂µ − ig~L · ~A′µU = U∂µ − igU~L · ~Aµ (310)

which we can multiply (from the right) by U−1 to obtain

~L · ~A′µ = U~L · ~AµU−1 −
i

g
(∂µU)U−1 . (311)

Our definition of ~Fµν remains the same as before:

(DµDν −DνDµ)φ = −igFµνφ , (312)

where Fµν = ~L · ~Fµν. Further, we have D′µD
′
νφ
′ = UDµDνφ and

D′νD
′
µφ
′ = UDνDµφ. (Remember the argument? One takes Dνφ = φ̂

and we know that D′µφ̂
′ = UDµφ̂, which is to say that D′µ[D′νφ

′] =
UDµ[Dνφ].) As a result we see that

−igF ′µνφ
′ = (D′µD

′
ν −D

′
νD
′
µ)φ′ = U(DµDν −DνDµ)φ (313)
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reduces to (using on the left φ′ = Uφ)

−igF ′µνUφ = U(−igFµν)φ (314)

or, since this must hold for arbitrary φ,

F ′µν = UFµνU
−1 . (315)

This is what we had in the infinitesimal case before. Following exactly
the earlier proof, we can show that

Tr [FµνF
µν] = Tr

[
(~L · ~Fµν)(~L · ~Fµν)

]
=

1

2
F jµνF

j µν (316)

is invariant under the gauge transformation.

• It is important to note that a L contribution of the form

1

2
m2AjµA

µj = Tr[m2(~L · ~Aµ)(~L · ~Aµ)] (317)
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would not be invariant under the transform of ~L · ~Aµ given in Eq. (311)

because of the extra term that is not simply U~L · ~AµU−1.

As a result, we cannot explicitly give a mass to the gauge fields without
violating the fundamental gauge invariance. The consequence of violating
the fundamental gauge invariance would be that the theory would be
non-renormalizable.

Thus, if we want a massive gauge field in the non-Abelian context, we
must find an alternative mechanism to explicit mass introduction. This
alternative mechanism is spontaneous symmetry breaking. We will not
pursue this in detail here; it is the topic of 245B. However, I will make
some additional qualitative remarks.

Nature has chosen non-Abelian gauge groups for the Standard Model.
One of them corresponds to an unbroken gauge theory. This is QCD
(Quantum Chromodynamics), the gauge group of the strong interactions
which is the non-Abelian group SU(3). Sometimes it is referred to
as the “color” group. Here, the particles corresponding to the gauge
field are called gluons and they are massless since the “color” group
remains a good symmetry that is not even spontaneously broken. The
unbroken nature of the color group, combined with its being SU(3), will,
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we shall discover in the renormalization course, imply that interactions
become very strong (leading to quark confinement) at long distances,
while becoming weaker at short distances (higher energy scales).

There is another aspect of the masslessness of the gluons that is
important. This is the fact that a massless vector particle can have
only two (transverse) polarization states (just like the photon). If one
computes gluon-gluon scattering for just transverse polarizations (which
we will discuss at the end of this quarter) one discovers that the amplitude
is well-behaved in that it does not grow with s. This means that the
theory a) is renormalizable, in that loop diagrams are sufficiently under
control and b) does not violate unitarity. Unitarity (the analogue of the
optical theorem in non-relativistic quantum mechanics) is a statement of
probability conservation. One requirement from unitarity is that if one
decomposes the scattering amplitude into partial wave amplitudes aJ of
given J , then, for example,

|Rea0| <
1

2
(318)

is required. This is satisfied by QCD since the amplitudes do not grow
with s, and instead approach a constant value.
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The structure of the rest of the SM is not so simple. In particular, we
know experimentally that there are three massive gauge bosons, W+,
W− and Z. That there were W± gauge bosons with large mass was
known long before their actual discovery; they are required to make sense
of the weak interactions, in which, for example, we have decays like

u→ de+νe . (319)

You will learn, or perhaps have already learned, that at low energies
such interactions are well-described by the Fermi-theory in which the
Lagrangian for the above interaction is written as

Lweak =
GF√

2
ψdγµPLψuψνγ

µPLψe , (320)

where GF ∼ 10−5 GeV−2 is a dimensionful coupling constant. If one
computes scattering of fermions using the Feynman rule deriving from
Lweak, then one finds violation of unitarity. This goes hand-in-hand with
the fact that 1-loop and higher order graphs are not “renormalizable”
because of the nature of the divergences. The “fix” proposed was the
existence of the W± gauge bosons so that at high energy the correct
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picture is
u→ dW+∗ with W+∗→ e+νe , (321)

where the ∗ implies that the W is being exchanged as a virtual particle.
Because the W+ propagator behaves as 1

q2−m2
W

(assuming the W is

massive) the high q (large momentum) behavior of fermionic scattering
processes is controlled while at low q the propagator simply behaves as a

multiplicative factor giving GF ∝
g2
W

−m2
W

, where gW is the strength of the

udW and Weν interaction vertices. Thus, by assuming the existence
of a massive W we can simultaneously have the Fermi theory of weak
interactions at low energy while avoiding bad high energy behavior for
fermionic scattering.

Along the way, there was a choice of weak interaction theories. One
theory that could have been correct had no Z boson in addition to
the W±. Another, chosen by nature, had an additional massive Z.
Experiment told us that the 2nd theory was the correct one (implying
the SU(2) × U(1) group structure of the weak and electromagnetic
interactions in the SM). The first experimental evidence for the Z was
the discovery of “neutral currents” in deep-inelastic scattering that could
only be explained by exchange of a virtual massive neutral gauge boson.
And, of course, eventually at LEP and SLD the Z was produced directly
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and its properties checked against the predictions of the SM.

However, the massiveness of the W and Z gauge bosons presents new
problems. How do they acquire mass? We have argued above that
gauge invariance of the 2nd kind is violated by simply introducing mass
“by hand” in the Lagrangian. Instead, one should turn to spontaneous
symmetry breaking, which in the SM is associated with the existence of
a Higgs boson. In fact, all of this is again related to bad high energy
behavior, unitarity, and renormalizability. Very roughly, the argument
goes as follows.

– If we introduce mass by hand, the W , in particular, acquires a
longitudinal (WL) polarizaton state in addition to the two transverse
polarizations that it would have if massless.

– If one simply computes WLWL → WLWL scattering (there are a
bunch of diagrams involving W and Z exchanges in various channels),
one discovers that it violates unitarity for energies above ∼ 1 TeV.

This bad high energy behavior would also imply that the mass-by-hand
theory would be non-renormalizable (uncontrolled loop corrections).

– If there is a Higgs boson (coming from not giving mass by hand, but
rather by spontaneous symmetry breaking), then there are additional
diagrams involving exchange of the Higgs, h. These cancel the bad
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high energy behavior of the gauge-boson exchange diagrams and this
cancellation occurs early enough to avoid unitarity violation provided
mh <∼ 1 TeV.

It is the fact that WLWL → WLWL scattering violates unitarity at
(center-of-mass) energies above ∼ 1 TeV and that the Higgs boson that
can potentially cure this problem must have mass below ∼ 1 TeV in order
to actually do so that motivates the design of the LHC.

– In order to reach cm energy of 1 TeV in the colliding WLWL cms, one
must have much higher energy for the colliding protons.
This is because one cannot construct WL beams. One must start
with protons, each of which can then “radiate” a WL from one of its
constituent quarks.
Each quark has lower energy than its parent proton and the radiated
WL will have only a fraction of the quark’s momentum.

– Some detailed work shows that only if the protons each have ∼ 7 TeV
will there be adequate probability for there to be two WL’s with roughly
0.5 TeV each that can collide.
In fact, not only do you need large proton cms energies, you also need
many colliding protons in order to have an adequate number of WLWL

collisions. This determines the required “luminosity” for the colliding
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protons at the LHC.
– This is not to say that other signals of physics beyond the SM cannot

emerge at lower energies and lower luminosities, e.g. a light Higgs
boson, extra dimensions, ...., all of which provide a cure to the WLWL

unitarity problem.
It is just that if you want to be certain to see how the fundamental
WLWL unitarity problem is cured, you need to probe WLWL scattering
itself with a sufficiently high event rate at sufficiently high energy.

– If a light Higgs is present, WLWL scattering at 1 TeV will be perfectly
well-behaved, e.g. obey unitarity and be perturbative in nature.
This is the SM vision and also the vision of supersymmetric models.

– But, maybe this vision wrong and we will see “strong” interactions
(just barely obeying unitarity) in the WLWL sector.

– The possibilities are endless and are only limited by the number of
theorists and the time they have to develop new ideas before the LHC
turns on.

– We expect that the LHC data will very quickly narrow the possibilities
along a fairly well-defined path. We just don’t know ahead of time
what this path will be. This is what makes the next few years so very
exciting for both theorists and experimentalists in high energy.
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Summary

• For correct normalization (like the L = −1
4
FµνF

µν of QED) for each of
the Ajµ fields we write

LA = −1
4
F jµνF

µν j = −
1

2
Tr[~L · ~Fµν~L · ~Fµν] = −

1

2
Tr[FµνF

µν]

(322)

where Fµν = ~L · ~Fµν = LjF jµν was defined by

Fµν ≡
i

g
[Dµ, Dν] =

i

g
[∂µ − igAµ, ∂ν − igAν] , (323)

which yields
Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν] (324)

where Aν = ~L · ~Aν.
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Obviously, it is useful to write out Fµν in component form. From
Eq. (324), we have (using [Lj, Lk] = icjkiLi)

LiF iµν = Li(∂µA
i
ν − ∂νA

i
µ)− ig[LjAjµ, L

kAkν]

= Li
(
∂µA

i
ν − ∂νA

i
µ + gcjkiAjµA

k
ν

)
, (325)

which implies [using cjki = −cikj, as derived earlier, see Eq. (294)]

F iµν = ∂µA
i
ν − ∂νA

i
µ − gc

ikjAjµA
k
ν . (326)

Note: Even though we used a specific representation (imagined a matrix
set, Li) to derive the form of F iµν, the final form of F iµν depends only

on the Aiµ fields and the fundamental group structure constants cijk.

In fact, the above form for F iµν is antisymmetric in µ ↔ ν by virtue of

the fact that cikj = −cijk, which also implies that we may write

F iµν = ∂µA
i
ν − ∂νA

i
µ + gcijkAjµA

k
ν . (327)

To prove cijk = −cikj we note that cijk = −ckji = cjki = −cikj,
where the first equality is the Eq. (294) antisymmetry used above, the

J. Gunion 230B, 2nd Quarter of Field Theory 144



2nd equality follows from cijk = −cjik (as required by the definition
[T i, T j] = icijkT k and the antisymmetry of the commutator), and the
last equality is a repeat of the Eq. (294) antisymmetry. (Clearly, the
net result is that cijk is antisymmetric under interchange of any pair of
indices.)

• Equations of motion

The equations of motion are easily obtained from LA above. It is easiest
to start from first principles and consider

0 = δ

∫
d4xTr[FµνF

µν]

= 2

∫
d4xTr [Fµν(∂

µδAν − ∂νδAµ − ig[δAµ, Aν]− ig[Aµ, δAν])]

= 4

∫
d4xTr [Fµν(−∂νδAµ − igδAµAν + igAνδAµ)] . (328)

We now use the cyclic properties of the trace to write

Tr[FµνδA
µAν] = Tr[δAµAνFµν]
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Tr[FµνA
νδAµ] = Tr[δAµFµνA

ν] (329)

and also do parts integration on the ∂µ to write∫
d4xTr[Fµν(−∂νδAµ)] =

∫
d4xTr[(∂νFµν)δA

µ] (330)

so that we can extract the coefficient of δAµ and set it equal to zero.
The result is simply

∂νFµν − ig[Aν, Fµν] = −[Dν, Fνµ] = 0 . (331)

Note that these are a set of highly non-linear equations.

Also note that if Aµ is a solution of this equation so is any of its
gauge transforms, since under any gauge transform we know that D′µ =

UDµU
−1 and F ′µν = UFµνU

−1, implying that we get

[Dν ′, F ′νµ] = U [Dν, Fνµ]U−1 = 0 . (332)

• There are many interesting things to explore about a non-Abelian gauge
theory. We will have time for only a few.
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First, an important theorem is:

Fµν = ~L · ~Fµν = 0 ⇔ there exists a U such that ~L · ~Aµ(x) =
− i
g
(∂µU)U−1

Proof: Direction 1

One direction is easy. We show that Fµν = 0 if ~L · ~Aµ(x) =
− i
g
(∂µU)U−1.

For this, we need to first return to our definition of Fµν in terms of

Dµ = ∂µ − ig~L · ~Aµ:

−igFµνφ = (DµDν −DνDµ)φ . (333)

Writing this out and removing the arbitrary φ, we get

−igFµν = ∂µ(−ig~L · ~Aν)− ∂ν(−ig~L · ~Aµ)− g2[~L · ~Aµ, ~L · ~Aν] (334)

which we rewrite as

Fµν = ∂µ(~L · ~Aν)− ∂ν(~L · ~Aµ)− ig[~L · ~Aµ, ~L · ~Aν] . (335)
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Into this, we substitute the ansatz ~L · ~Aµ(x) = − i
g
(∂µU)U−1 to obtain

Fµν = ∂µ[−
i

g
(∂νU)U

−1
]− ∂ν [−

i

g
(∂µU)U

−1
]

−ig
(−i
g

)2 [
(∂µU)U

−1
(∂νU)U

−1 − (∂νU)U
−1

(∂µU)U
−1
]

= −
i

g

[
(∂νU)(∂µU

−1
)− (∂µU)(∂νU

−1
)− (∂µU)(−∂νU−1

) + (∂νU)(−∂µU−1
)
]

= 0 .(336)

In order to get the form after the 2nd =, we used two identities for the
last two terms of the first form. For example, from

0 = ∂ν(1) = ∂ν(UU
−1) = (∂νU)U−1 + U(∂νU

−1) , (337)

implying
(∂νU)U−1 = −U(∂νU

−1) (338)

which in turn implies

(∂µU)U−1(∂νU)U−1 = (∂µU)U−1[−U(∂νU
−1)] = −(∂µU)(∂νU

−1) .
(339)

Proof: Direction 2
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In a certain sense, the proof of the theorem in the opposite direction is
simple. One simply takes the Aµ ≡ ~L · ~Aµ that gives Fµν = 0 and writes

U(x) = P exp

[
ig

∫
C

dyµAµ(y)

]
(340)

where C is a space-time path from, say, the origin at y = 0 to the
location y = x and P is the “path ordering” instruction (sort of like time
ordering) that in the expansion of the exponential one always orders the
Aµ(y) values appearing in this expansion in the order they appear along
the path with the Aµ nearest the origin being furthest to the right.

From this form, we compute

−
i

g
(∂µU)U

−1
= −

i

g

(
igAµ(x)P exp

[
ig

∫
C
dy
µ
Aµ(y)

])(
P exp

[
ig

∫
C
dy
µ
Aµ(y)

])−1

= Aµ .

(341)

But, obviously, this would work for any Aµ. The point is that the
above definition, Eq. (340), only gives a unique result for U (i.e. one
independent of path) if Fµν = 0. The requirement for this to be true is
clearly that

U ′ = P exp

[
ig

∫
C′
dyµAµ(y)

]
= 1 (342)
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where C′ is the closed contour that is formed by the two different paths
that we require to give the same answer for U . To explore this, it is
sufficient to assume a very small path for the moment and expand U ′ to
2nd order in the form

U ′ = 1 + ig

∫
C′
dyµAµ(y) +

(ig)2

2

∫
C′

∫
C′
P [dyµAµ(y)dzνAν(z)]

= 1 + ig

∫
C′
dyµAµ(y) + (ig)2

∫
C′

∫
C′

[dyµAµ(y)dzνAν(z)]y>z ,(343)

where y > z means y is further along the curve C′ than z. Well, there
is still work to do to show that the analogue of Stoke’s theorem gives∫

C′
dyµAµ(y) =

∫
S′
dyλ ∧ dyα(∂yλAα(y)− ∂yαAλ(y)) , (344)

where S′ is a surface spanned by the closed curve C′. This is fairly easy to
understand since Stoke’s theorem in 3-d says

∫
C′ d~x· ~M =

∫
S′
~∇× ~M · ~dA.

In 4-d, ~∇× ~M → εµνλα∂λMα, while ~dA→ dyδdyβεδβµν . Using

εδβµνε
µνλα = 2(gλδ g

α
β − g

λ
βg
α
δ ) (345)
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the 3-d result converts to (with M → A)∫
C′
dyµAµ = 2

∫
S′

[dyλdyα − dyαdyλ]∂λAα

=

∫
S′

[dyλdyα − dyαdyλ](∂λAα − ∂αAλ) . (346)

Meanwhile, the form∫
C′

∫
C′

[dyµAµ(y)dzνAν(z)]y>z (347)

can be developed by thinking of it in the form∫
C′
dyµAµ(y)

(∫ y

0

dzνAν(z)

)
=

∫
C′
dyµBµ(y) . (348)

We then apply the above Stoke’s technique to convert this to∫
S′

[dyλdyα − dyαdyλ](∂λBα − ∂αBλ)
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∼
∫
S′

[dyλdyα − dyαdyλ](AαAλ −AλAα) , (349)

dropping terms that are of order (area)2. In short, the quadratic term
reduces to

−
∫
S′
dyλ ∧ dyα(Aλ(y)Aα(y)−Aα(y)Aλ(y)) (350)

As a result, we find

U ′ ∼ 1 + ig

∫
S′
dyλ ∧ dyαFλα(y) , (351)

where
Fλα = ∂λAα − ∂αAλ − ig[Aλ, Aα] (352)

is the usual definition of F as given in Eq. (335). Since we have assumed
Fλα = 0 (throughout all of space), U ′ ∼ 1.

The difference between two longer paths can be realized by the difference
between many smaller paths, or equivalently the surface filling in the
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closed contour C′ can be subdivided into many little surfaces, and the
proof can be applied to each little surface.

This type of Aµ that can be written as

Aµ(x) = −
i

g
(∂µU)U−1 (353)

is referred to as a “pure gauge” form of Aµ.
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Connection Between Local Gauge Invariance and
Geometry

I will employ a treatment that is a bit different than found in Ryder, Sec.
3.6. Presumably by looking at both you will learn the most.

• In a curved space, to compare a vector field at two different space time
points, Vµ(x′) vs. Vµ(x), you must first parallel transport Vµ(x) from
x to x′, and then reference both of them to a given coordinate system
defined at x′. The result will take the form

Vµ(x′) = (Vµ(x) + δVµ) +DVµ (354)

where δVµ would be the result of simply parallel transporting the original
vector, and DVµ accounts for the rest of the difference. In a curved
space-time, it is DVµ that is the only appropriate definition of the ’true’
differential change in Vµ, since the only way of comparing a vector at
one point with a vector at a different point in the curved space-time
is by using parallel transport along the natural geodesics of the curved
space-time.
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(By parallel transport, we mean, for instance in a two-dimensional picture,
keeping Vµ at a fixed angle to the tangent to the trajectory.)

Writing Vµ(x′)− Vµ(x) = dVµ we have

DVµ = dVµ − δVµ . (355)

This is illustrated in Fig. 2.
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Figure 2: Comparing two vectors in a curved space.
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• In general, we write

δV µ = −ΓµνλV
νdxλ , δVµ = +ΓνµλVνdx

λ , (356)

where Γµνλ is the Affine connection or Christoffel symbol familiar from
general relativity. Since

V µ(x′)− V µ(x) = dV µ = ∂λV
µdxλ , (357)

we have

DV µ = (∂λV
µ + ΓµνλV

ν)dxλ (358)

The signs and conventions of Eq. (356) are chosen so that

0 = δ(VµV
µ) = VµδV

µ + δVµV
µ

= Vµ(−ΓµνλV
νdxλ) + (ΓνµλVνdx

λ)V µ

= VµV
νdxλ(−Γµνλ + Γµνλ) (359)

is obeyed (when dVµ = 0).
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• Another concept in curved space is the curvature tensor. Consider a
parallelogram in curved space, defined by 4 points P , P1, P2 and P3.
We go from point P to point P2 via two alternate paths along this
parallelogram.
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Figure 3: Parallelogram for curvature computation.

First, we go from P to P1 via bβ and then from P1 to P2 via aα + δaα.

Second, we go from point P to point P3 by a small aα and then from P3

to point P2 via bβ + δbβ.

Now consider the round trip, P → P1 → P2 → P3 → P . The net
change in a vector due just to parallel transport is

∆Vµ = δV PP1P2
µ − δV PP3P2

µ . (360)

Let’s write this out.
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We have

δV PP1P2
µ = (ΓνµβVν)Pb

β + (ΓνµαVν)P1(a
α + δaα)

δV PP3P2
µ = (ΓνµαVν)Pa

α + (ΓνµβVν)P3(b
β + δbβ) . (361)

Now we need to expand around the P1 and P3 points.

(ΓνµαVν)P1 = (Γνµα + ∂βΓνµαb
β)P (Vν + ΓσνβVσb

β)P

(ΓνµβVν)P3 = (Γνµβ + ∂αΓνµβa
α)P (Vν + ΓσναVσa

α)P . (362)

From now on, the P subscript is omitted for quantities evaluated at point
P . We also use

(aα + δaα) = aα − Γατηa
τbη

bβ + δbβ = bβ − Γβτηb
τaη . (363)

We obtain

∆Vµ = aαbβVν

(
∂βΓνµα + ΓλµαΓνλβ − ∂αΓνµβ − ΓλµβΓνλα

)
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≡ aαbβVνR
ν
µαβ , (364)

where the contributions from the δaα and δbβ terms in Eq. (363) ended
up canceling by virtue of the symmetry Γστη = Γσητ .

In general relativity Rνµαβ would be called the Riemann-Christoffel
curvature tensor. The idea is that if the transport around the closed path
ends up producing a change in Vµ then the space-time truly is curved
and the non-zero value of Rνµαβ signals the presence of true curvature.

In particular, it is possible for the connection Γλµα to have a non-zero
value even if there is no true curvature.

• Now let us establish the manner in which gauge theory is analogous to
the above structures. Here, the curvature tensor and connections will
largely involve some internal index space rather than real space-time, but
a very close analogy can be constructed.

We begin by comparing the covariant derivative

DV µ = (∂λV
µ + ΓµνλV

ν)dxλ (365)
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to the non-Abelian gauge theory covariant derivative expression

Dµφ
j = ∂µφ

j − ig(~L)jk · ~Aµφ
k . (366)

From this comparison we see that the gauge group connection is

Γjkµ = −ig(~L)jk · ~Aµ = −ig(Aµ)jk (367)

in the internal charge space, i.e. nothing to do with space-time for the first
two indices. Thus, it is as if the gauge fields establish a curved system
of internal coordinates that must be used in computing how an internal
space vector changes as one moves in real space-time. The gauge field
provides the instruction as to how to compensate for the change of the
local internal index ’frame’ in going between different space-time points
and

δφj = −Γjkµφ
kdxµ = ig(~L)jk · ~Aµdx

µ (368)

under parallel transport. With this identification, the curvature tensor
becomes

Rjkαβ = −
(
∂αΓjkβ − ∂βΓjkα + ΓlkβΓjlα − ΓlkαΓjlβ

)
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= +ig(∂αAβ − ∂βAα − ig[Aα, Aβ])jk

= ig(Fαβ)jk . (369)

We conclude that the gauge theory analogue of the curvature tensor is
non-zero only if the gauge field is not a pure gauge, i.e. only if there is a
non-zero Fµν. The presence of a physically non-trivial field configuration
“distorts” the relation between the internal space of the gauge group
indices and the Lorentz index of real space-time. The ’coordinate axes’ for
the internal indices are changing as one moves about in real space-time,
and these changes are truly physical if the Fµν is non-zero.

• We can gain further intuition regarding the gauge transformation as
follows.

Consider at each x a gauge transform by θ(x) of some matter field
representation φ(x):

φ(x) → φ′(x) = U(θ(x))φ(x)

φ(x′) → φ′(x′) = U(θ(x′))φ(x′) . (370)
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Now, under parallel transport (Dφ = 0), define

φj(x) → φj(x+ dx)

= φj(x) + δφj(x) = φj(x) + ig(~L)jk · ~Aµdx
µφk(x)

≡ P jk(x+ dx, x)φk(x) . (371)

For a finite interval, the expression for the parallel transport matrix P
becomes

P (x′, x) = P exp

{
ig

∫ x′

x

~L · ~Aµ(y)dyµ

}
. (372)

We further note that we can write (φ is the matrix hermitian conjugate,
a row vector, of the column vector φ)

φ(x+ dx)φ(x+ dx) = φ(x+ dx)P (x+ dx, x)φ(x) (373)

under parallel transport. In order to keep φ(z)φ(z) invariant under gauge
transform, this then means that we must keep the product
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φ(x + dx)P (x + dx, x)φ(x) invariant under a gauge transform. Thus,
we require

φ
′
(x + dx)φ

′
(x + dx) ∼ φ

′
(x + dx)P

′
(x + dx, x)φ

′
(x)

= φ(x + dx)U
−1

(x + dx)P
′
(x + dx, x)U(x)φ(x)

= φ(x + dx)P (x + dx, x)φ(x)

= φ(x + dx)φ(x + dx) , (374)

where the line-2 equality follows from φ
′
= φU† = φU−1 as a result of

the unitarity of U . This implies the requirement

P
′
(x + dx, x) = U(x + dx)P (x + dx, x)U

−1
(x) , (375)

or, using the standard notation Aµ = ~L · ~Aµ,

(1 + igA′µdx
µ) = (U(x) + ∂µU(x)dxµ)(1 + igAµdx

µ)U−1(x) . (376)

Isolating the coefficient of dxµ this becomes

igA′µ = (∂µU)U−1 + U(igAµ)U−1 , (377)

our usual gauge transformation equation for Aµ! In short, gauge
invariance of the concept of parallel transport for a matter field determines
the gauge transformation for the vector field.
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• Finally, we note without proof (see Ryder for details) that the non-Abelian
group Jacobi identity

[[T i, T j], T k] + [[T j, T k], T i] + [[T k, T i], T j] = 0 (378)

(which follows simply from the definition of the commutator and leads to
the structure constant relation cijmcmkl + cjkmcmil + ckimcmjl = 0) is
equivalent to

[Dρ, [Dµ, Dν]] + [Dµ, [Dν, Dρ]] + [Dν, [Dρ, Dµ]] = 0 (379)

which in turn has the general relativity analogue

DρR
κ
λµν +DµR

κ
λνρ +DνR

κ
λρµ = 0 (380)

known as the Bianci identity. To see the analogy of course requires
remembering that [Dµ, Dν] ∝ Fµν and that (Fµν)

i
k is the analogue of

Rκλµν.
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Path Integral 2nd Quantization for Non-Abelian
Gauge Theory

Illustrative analogue example of gauge fixing on gauge orbit

• Consider

Z =

∫
dxdyeiS(x,y) =

∫
d~reiS(~r) . (381)

• Suppose S(~r) = S(~rφ), where ~r = (r, θ) and ~rφ = (r, θ + φ).

For example, S = S(r).

• In this case, it is clear that there is a factoring “volume” factor
∫
dθ = 2π.

We will divide out this factor in a fancy way that will be closely analogous
to what we do in the gauge theory.

1. Write 1 =
∫
dφδ(θ − φ).

2. Insert this into Z:

Z =

∫
dφ

∫
d~reiS(~r)δ(θ − φ) =

∫
dφZφ , (382)
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where

Zφ =

∫
d~rδ(θ − φ)eiS(~r) . (383)

3. Now, Zφ = Zφ′ due to invariance of S(~r) so that

Z =

∫
dφZφ = Zφ

∫
dφ = 2πZφ . (384)

4. More generally, a more complicated constraint can be chosen: g(~r) = 0
with function g such that g(~r) intersects each orbit of constant r only
once.

��������	��
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Figure 4: Illustration of gauge orbit 2-d analogue.

Define

[∆g(~r)]
−1 =

∫
dφδ[g(~rφ)] =

[
∂g(~r)

∂θ

∣∣∣∣
g=0

]−1

. (385)
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Note that this can be rewritten as

1 = ∆g(~r)

∫
dφδ[g(~rφ)] . (386)

5. ∆ is invariant since

[∆g(~rφ′)]
−1 =

∫
dφδ[g(~rφ+φ′)]

=

∫
dφ′′δ[g(~rφ′′)]

= [∆g(~r)]
−1 (387)

where we simply shifted integration variables to φ′′ = φ+ φ′.
6. Continuing on, we write

Z =

∫
dφZφ , with Zφ =

∫
d~reiS(~r)∆g(~r)δ[g(~rφ)](388)

where we have inserted “1” using Eq. (386).
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7. As before, Zφ is rotationally invariant.

To prove this, let us define ~rφ′ = (r, θ + φ′), with φ 6= φ′. We then
have, from the defining equation for Zφ above,

Zφ′ =

∫
d~reiS(~r)∆g(~r)δ[g(~rφ′)]

=

∫
d~r′eiS(~r′)∆g(~r

′)δ[g(~r′φ)]

= Zφ since ~r′ is a dummy integration variable , (389)

where ~r′ = (r, θ + φ′ − φ) and ~r′φ = (r, θ + φ′) = ~rφ′, and we used
the S(~r′) = S(~r) and ∆g(~r

′) = ∆g(~r) invariances, and the invariance
of the integration measure

∫
d~r =

∫
d~r′.

• So, the net result is that we can write

Z =

∫
dφZφ = (2π)Zφ , (390)
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where

Zφ =

∫
d~reiS(~r)∆g(~r)δ[g(~rφ)] (391)

can be defined with any choice of φ we like.

• The final very crucial point is that Zφ is not only independent of φ, but
it is also independent of the form of g (so long as g(~rφ) = 0 defines a
unique point on each orbit).

The proof begins with the definition

1 = ∆g(~r)

∫
dφδ[g(~rφ)] = ∆g(~r)

[
∂g(~rφ)

∂φ

]−1

g=0

(392)

which obviously implies that

∆g(~r) =

[
∂g(~rφ)

∂φ

]
g=0

. (393)

To proceed, we use (i) d~r = r drdθ, (ii) S(~r) = S(r), (iii)
∫
dθ =∫

d(θ + φ) and (iv)
[
∂g(r,θ+φ)

∂φ

]
g=0

=
[
∂g(r,θ+φ)
∂(θ+φ)

]
g=0

— all that matters
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is the g = 0 instruction for where to evaluate the derivative — to obtain

Zφ =

∫
r drdθeiS(~r)

[
∂g(~rφ)

∂φ

]
g=0

δ[g(~rφ)]

=

∫
r drd(θ + φ)eiS(r)

[
∂g(r, θ + φ)

∂(θ + φ)

]
g=0

δ[g(r, θ + φ)]

=

∫
r dreiS(r) (394)

where the last equality simply follows from the chain rule∫
d(θ + φ)

[
∂g(r, θ + φ)

∂(θ + φ)

]
g=0

δ[g(r, θ + φ)] =

∫
dgδ[g] = 1 . (395)

Thus, Zφ is clearly independent of the form of g. The only requirement

in all the above manipulations was that
[
∂g(r,θ+φ)

∂φ

]
g=0
6= 0, i.e. that the

g curve of the figure never be parallel to the orbit at constant r.
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Back to Gauge Theory

• We have an action that is gauge invariant: that is, it is constant on the

orbit of the gauge group formed out of all the A
~θ
µ, where ~θ is the set of

gauge parameters specifying the gauge transformation U(θ) = e−i
~L·~θ,

obtained starting with some fixed Aµ and allowing ~θ to vary over all
elements of the group.

In what follows, we temporarily assume the SU(2) group with 3 Aaµ
(a = 1, 2, 3) denoted by ~Aµ and three gauge parameters denoted by ~θ,
where both objects are three component vectors.

We must restrict the path integral to a hypersurface which intersects
each orbit only once.

For example, we could try to define an appropriate hypersurface using
the equations (3 equations are required for the SU(2) group since there
are 3 gauge parameters specifying a gauge transformation)

fa( ~Aµ(x)) = 0 , a = 1, 2, 3 for SU(2) group . (396)
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Then, the set of equations

fa( ~A
~θ
µ(x)) = 0 , a = 1, 2, 3 (397)

must have a unique solution, ~θ, for any given starting ~Aµ at every space-time
point x.

• To use the formalism developed in our simple example, we also need
to define the integration measure over the group space. We do this by
referencing to the infinitesimal form

U(θ) = 1− i~L · ~θ +O(θ2) (398)

and defining

dθ =

3∏
a=1

dθa . (399)

This exhibits an important invariance, namely

d(θθ′) = dθ′ (400)
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since

d(θθ′) =

3∏
a=1

d(θa + θ′a) =

3∏
a=1

dθ′a , (401)

as required for consistency with U(θθ′) = U(θ)U(θ′) and the exponential
expansion

U(θ)U(θ′) ∼ 1− i~L · (~θ + ~θ′) + . . . . (402)

• Now, we must remember that ~θ = ~θ(x) in the local gauge transformation
case. So the appropriate definition of the ∆ factor in the gauge theory
case is

∆−1
f [ ~Aµ] =

∫
[d~θ(x)]

∏
a,x

δ[fa( ~A
~θ
µ(x))] , (403)

which is to say that we must integrate over all gauge transformations
as a function of x (which means we have something very much in the
nature of a functional integral) and fix all these with enough δ functions.
So, Ryder calls the above a “delta functional” since it is really a product
of δ functions with one δ function for each group generator a and each
space-time point x (or in the case where we divide space-time up into
cells, there is a δ function for each space-time cell).

It is conventional to write the complicated product of δ functions using
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the shorthand notation:

δ[fa( ~Aµ)] ≡
∏
a,x

δ[fa( ~Aµ(x))] , (404)

where the left-hand side is the notation for the “delta functional”.

The implication of the above formula can perhaps better be appreciated
by writing it in the form

∆f [ ~Aµ] = detMf (405)

where

(Mf)ab(x, y) =
δfa( ~A

~θ
µ(x))

δθb(y)

∣∣∣∣∣∣
fa=0, a=1,2,...

. (406)

The determinant is thus a determinant over all a, b and over all (x, y)
— clearly something that can only be defined by dividing space-time up
into many cells in the usual fashion.

Another phraseology is that Mf is the response of the fa[ ~Aµ] to the

infinitesimal gauge transformation away from fa[ ~Aµ] = 0.
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• To understand better the determinant origin, let us simplify to one space-
time cell and to a two-parameter gauge group. Then, we would have two
fa functions (a = 1, 2) and for an infinitesimal transformation away from
the f1 = 0, f2 = 0 solutions we can write∫

[dθ(x)]
∏
a,x

δ[fa( ~A
~θ
µ(x))]

=

∫
dθ1dθ2δ(M11θ1 +M12θ2)δ(M21θ1 +M22θ2) , (407)

where the first δ function is for fa=1 and the 2nd is for fa=2. We now
perform the θ1 integral using the first δ function to get

=
1

M11

∫
dθ2δ

(
M21

[−M12θ2

M11

]
+M22θ2

)
=

∫
dθ2δ

(
[M22M11 −M21M12]θ2

)
=

1

detM
. (408)

This same simplified example applies equally well to a one-parameter
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gauge group and a division of space-time into two cells.

I hope that it is obvious that it generalizes.

• Let us move on to the example of SU(2).

There, we have (for small θa’s)

Aa θµ = Aaµ + εabcθbAcµ −
1

g
∂µθ

a (409)

and the response function appears in the expansion

fa[ ~A
~θ
µ(x)] = fa[ ~Aµ(x)] +

∫
d4y[Mf(x, y)]abθb(y) +O(θ2) . (410)

The unique solution requirement is equivalent to detMf 6= 0.

• Let us see how this works in a particularly simple case: The Axial Gauge.

1. We choose fa = Aa3 = 0 (a = 1, 2, 3 for SU(2)) to define the gauge.
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2. We write

fa( ~A
~θ
µ(x)) = Aa3(x) + εabcθb(x)Ac3(x)−

1

g
∂3θ

a(x)

= −
1

g
∂3θ

a(x) since ~A3 = 0 . (411)

3. Matching this to the general form of Eq. (410), implies that

[Mf(x, y)]ab = −
1

g
∂x3 δ

4(x− y)δab . (412)

4. The axial gauge picks out a unique element on each gauge trajectory
provided the fields vanish fast enough at ∞.
The logic is as follows.

(a) Gauge transforms, U , which preserve ~A3 = 0 are independent of x3.
(b) If the fields vanish at ∞ then U must keep the fields vanishing at
∞, implying that U → 1 at ∞ in all directions.

(c) If U → 1 at ∞ and U is independent of x3 everywhere, then U = 1
everywhere.
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(d) Thus, any U that attempts to move from the axial gauge to another
version of the axial gauge, while keeping fields vanishing at ∞, is
trivial, implying that the axial gauge defines a unique point on every
gauge orbit.

In any case, that detMf 6= 0 is clear from the explicit diagonal (and
non-zero) form of Eq. (412).

The axial ~A3 = 0 gauge is, in fact, a very useful gauge not only
because detMf 6= 0 but most importantly because Mf is independent
of the gauge field. This makes it a very simple gauge to use in many
applications.

In fact, in this gauge it is possible to show that canonical quantization
and path-integral quantization are completely equivalent.

Then, since physical results are independent of gauge, we conclude
that any canonical quantization will give the same physical results as
any path-integral quantization (with gauge fixing incorporated in both
techniques).

We probably do not have time to go through this proof and so I will skip
it for now. It can be found in Cheng and Li, with a related proof in a
different gauge in Abers and Lee.
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• Let us now return to the general case, and show that ∆f [ ~Aµ] is gauge
invariant. We have:

∆f [ ~Aµ]−1 =

∫
[dθ′(x)]δ[fa( ~A

~θ′

µ (x))] (413)

and

∆f [ ~A
~θ
µ]−1 =

∫
[dθ′(x)]δ[fa( ~A

( ~θ′θ)
µ (x))]

=

∫
d[θ′(x)θ(x)]δ[fa( ~A

( ~θ′θ)
µ (x))]

=

∫
d[θ′′(x)]δ[fa( ~A

( ~θ′′)
µ (x))]

= ∆f [ ~Aµ]−1 , (414)

where we simply shifted to the net gauge transformation specified by ~θ′′ ≡
~θ′θ and used the crucial invariance of the gauge parameter integration

measure emphasized earlier around Eq. (400).

In words, what is happening is the following. In the computation of
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∆f [ ~Aµ]−1 we start at some field value ~Aµ and apply θ′ transforms until

we reach the point where (for every a and every x) fa( ~A
~θ′
µ (x)) = 0. In

the computation of ∆f [ ~A
~θ
µ]−1 we start at ~Aθµ and apply θ′’s until we

reach fa( ~A( ~θ′θ)
µ (x)) = 0. The solution point in vector potential space is the

same, even though we started from different points on the gauge orbit, and
so the Jacobian obtained by examining the response to small deviations about
the solution point does not change!

• We now proceed as in the simple example and substitute “1” into the
path integral using the above and see what happens.

We begin with the general path integral (analogous to earlier Z of simple
example)∫

[d ~Aµ] exp

{
i

∫
d4xL(x)

}
=

∫
[d~θ(x)][d ~Aµ(x)]∆f [ ~Aµ]δ[fa( ~A

~θ
µ)] exp

{
i

∫
d4xL(Aµ(x))

}
=

∫
[d~θ(x)][d ~A

~θ
µ(x)]∆f [ ~A

~θ
µ]δ[fa( ~A

~θ
µ)] exp

{
i

∫
d4xL(Aθµ(x))

}
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=

∫
[d~θ(x)][d ~Aµ(x)]∆f [ ~Aµ]δ[fa( ~Aµ)] exp

{
i

∫
d4xL(Aµ(x))

}
(415)

where in the one step we used the gauge invariance of ∆f , of L and of

the integration measure
∫

[d ~Aµ] 2 and in the next step we simply shifted

to ~A
~θ
µ ≡ ~A′µ and then dropped the prime.

• We can now factor out the infinite quantity
∫

[d~θ(x)], since everything

else has no dependence on ~θ, and define

Zf [J ] =

∫
[d ~Aµ(x)]∆f [ ~Aµ]δ[fa( ~Aµ)] exp

{
i

∫
d4x[L(Aµ(x)) + ~Jµ · ~Aµ]

}
(416)

and it is always useful to keep in mind the equivalences (ignoring indices):

∆f [ ~Aµ] = detMf = det

∣∣∣∣δfδθ
∣∣∣∣
f=0

. (417)

2If we are integrating over all vector field values, that is equivalent to integrating over all vector field values
transforming by some given θ. Either way, the coverage of vector field values is complete.
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Eq. (416) defines the Faddeev-Popov ansatz. Zf [J ] will be finite since
we have removed the gauge invariance infinity.

• The proof of the equivalence of canonical quantization with path-integral
quantization using the FP ansatz in the axial gauge would thus begin
with 3

Zf [J ] =

∫
[d ~Aµ]

∏
a

δ[Aa3 ] exp

{
i

∫
d4x[L(Aµ(x)) + ~Jµ · ~Aµ]

}
(418)

As stated, we do not have time for this proof. I must ask you to assume
that such a proof exists. You can attempt to penetrate the version given
in Cheng and Li and the related one in Abers and Lee. (Proof in my
notes is found in 245B gray notebook, a summary of which appears in an
Appendix which follows this section.)

• Assuming that the equivalence between the 2nd quantization and path-
integral approaches can be established in axial gauge, the only remaining

3In the axial gauge, we can drop ∆f [ ~Aµ] since it is field-independent. As we shall see, in general we cannot

drop this factor since it will depend on ~Aµ. The ability to drop ∆f [ ~Aµ] is the reason why the equivalence between
2nd-quantization and the Faddeev-Popov path-integral procedure is relatively straightforward to establish in axial
gauge.
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item is to show that the path integral approach itself is gauge independent.

If so then the path integral approach is equivalent to 2nd quantization
regardless of the gauge employed for the path integral approach.

We thus wish to show that (dropping the generator indices a for simplicity
in the shorthand notation below)

Zf =

∫
[dAµ]δ[f ] det

∣∣∣∣δfδθ
∣∣∣∣
f=0

eiS[A] (419)

is independent of f .

Proof:

1. Write [dAµ] as follows.
Consider the Aµ which are equivalent by gauge transform (i.e. those
on the same gauge orbit).
Choose a Âµ on each orbit.

Then, all of the Aµ are generated from the collection of Âµ by U(~θ)’s.
This means that

[dAµ] = [dÂµ][d~θ] (420)
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2. Using this decomposition we can write

Zf =

∫
[dÂµ][d~θ]δ[f(Â

~θ
µ)] det

∣∣∣∣δfδθ
∣∣∣∣
f=0

eiS[Â] (421)

where we used the fact that S[Â
~θ
µ] = S[Âµ] by virtue of gauge

invariance of the action. (Keep remembering that we are suppressing all
the group generator labels a, that are actually present in δ[. . .] det[. . .]

and [dÂµ].)
3. Now notice that∫

[d~θ]δ[f(Â
~θ
µ)] det

∣∣∣∣δfδθ
∣∣∣∣
f=0

=

∫
dfδ[f ] = 1 , (422)

i.e. we can simply change variables, which is always possible provided

that det
∣∣∣δfδθ ∣∣∣ 6= 0. This latter is equivalent to the requirement that

f(Â
~θ
µ) = 0 specifies a unique ~θ.

To clarify this really very complicated variable change a little bit more,
let us remember that to define all this we must divide space-time up
into cells, labeled by γ and α in the equation below. And we also
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expose the group indices a. Thus, what the above equation really says
is that

∫ ∏
γ

∏
b

[dθ
b
γ ]
∏
α

∏
a
δ

[(
fa(

~̂
Aµ

~θ
)

)
α

]
det

∣∣∣∣∣∣δf
α
a

δθ
γ
b

∣∣∣∣∣∣
f=0

=
∏
a

∏
α

∫
df
α
a δ[f

α
a ] = 1 , (423)

which I hope you see is clearly true by definition of the δ function.

Thus, regardless of what gauge we employ to set up the path integral,
everything reduces to

Z =

∫
[dÂµ]eiS[Âµ] (424)

which is a finite integral in which we are able to employ the same sample
Âµ from each gauge orbit regardless of what choice we make for the gauge
functions fa(Aµ).

I hope that you recall the simple analogue result that we had in the
2-d circular orbit picture. There we showed that the gauge-fixed “path”
integral specified by a function g was actually independent of the choice
of g (so long as g specified a unique location on each of the circular
orbits) and that for any g one obtained

∫
r dreiS(r) when S(~r) = S(r)

was independent of location on the orbit.
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• Another perspective on the Faddeev-Popov procedure is obtained from
the following mathematical methods type argument.

Consider the integral

G(A) =

∫ ∞
−∞

dx1 . . . dxNe
−xiAijxj (425)

where A is a real symmetric N×N matrix with elements Aij. Obviously,
we can write

xiAijxj = XTAX , with AT = A , (426)

and A can be diagonalized by means of a rotation:

A = RTDR , where RTR = RRT = 1 , (427)

and D is a diagonal matrix with entries d1, . . . , dN . Then,

G(A) =

∫
dx1 . . . dxNe

−XTRTDRX

=

∫
dy1 . . . dyNe

−Y TDY
, with Y = RX (The Jacobian is 1.)
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= π
N/2

(d1 . . . dN)
−1/2 provided all di > 0

= π
N/2

(detA)
−1/2

. (428)

These formulae are valid when the determinant does not vanish. If it
does, it means that one or more of the di are equal to zero, leading to
infinities from integrating over the associated infinite intervals. But, we
can get a sensible answer even if the determinant vanishes. We simply
have to remove the culprit infinite integral(s). Assume there are n zero
eigenvalues. We define the restricted Gaussian integral

Grest(A) =

∫
dy1 . . . dyN−ne

−XT (y)AX(y) , (429)

where we integrate only over the variables corresponding to a non-zero
eigenvalue of A. This definition of Grest is awkward since it depends on
the right system of coordinates y. To make up for this, we invent new
variables yN−n+1, . . . yN (that depend on the x coordinates but are not
necessarily those corresponding to the 0 eigenvalues above) and rewrite
the previous equation in the form:

Grest(A) =

∫
dy1 . . . dyN−ndyN−n+1 . . . dyNδ(yN−n+1) . . . δ(yN)e

−XT (y)AX(y)
.

(430)
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Now change variables from y to x, using the Jacobi formula

dy1 . . . dyN = dx1 . . . dxN det

∣∣∣∣∂y∂x
∣∣∣∣ (431)

to obtain

Grest(A) =

∫ (
N∏
i=1

dxi

)
det

∣∣∣∣∂y∂x
∣∣∣∣ N∏
a=N−n+1

δ(ya(x))e−X
T (y)AX(y) .

(432)
This integral is perfectly well-defined. The ya are arbitrary functions of

the xi, and the extra factors det
∣∣∣∂y∂x∣∣∣ ∏ δ(y) in the measure effectively

restrict the integration from an N -dimensional space to an N − n
dimensional one. As the construction has shown, Grest(A) does not
depend on the specific form of the ya(x) so long as they are sufficiently
cleverly chosen so as to do the job, i.e., restrict the integration region; if

they do not, the Jacobian det
∣∣∣∂y∂x∣∣∣ will be zero.
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Appendix: Equivalence of 2nd Quantization and
Path Integrals in Axial Gauge

This appendix is currently under construction. What follows is still
incomplete.

• We have seen that the path integral generating function in axial gauge
can be written as:

Z[ ~J ] =

∫
[d ~Aµ]δ( ~A3) exp{iS( ~J)}

=

∫
[dA0][dA1][dA2] exp{iS( ~Aµ, ~J)} (433)

with

S( ~Aµ, ~J) = −1
4

∫
d4xF aµνF

µν a + ~Jµ · ~Aµ . (434)

We will shorthand and write S( ~J) for the above in what follows.
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• It is convenient to rewrite this by introducing another integration

Z′[ ~J ] =

∫
[dFµν][dAµ]δ( ~A3) exp{iS′( ~J)} (435)

where

S
′
( ~J) =

∫
d

4
x

[
1
4F

a
µνF

µν a −
1

2
F
µν a

(
∂µA

a
ν − ∂νA

a
µ + gc

abc
A
b
µA

c
ν

)
+ J

a
µA

µa

]
(436)

If we integrate over F aµν using square completion we see that Z′[ ~J ] is

equivalent to Z[ ~J ] (dropping irrelevant constant multiplying factors as
usual).

• We will now work on 2nd quantization to see if it gives the same
Feynman rules as does the generating function Z′ obtained above in the
path integral viewpoint.

We start by doing 2nd quantization of exactly the same S′ (but without
the ~J stuff for the moment) and show that this is equivalent, and then
later verify that 2nd quantization of S′ is the same as 2nd quantization
of the original S (always in axial gauge).
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• To proceed, let us first rewrite L′ (defined by S′(J) =
∫
d4xL′(x)) in a

convenient way assuming ~A3 = 0 axial gauge. We have

L′ = 1
4F
a
µνF

µν a −
1

2
F
ij a

(
∂iA

a
j − ∂jA

a
i + gc

abc
A
b
iA
c
j

)
−

1

2
F

0i a
(
∂0A

a
i − ∂iA

a
0 + gc

abc
A
b
0A
c
i

)
− Fi3 a(−∂3A

a
i ) + F

03 a
(−∂3A

a
0 )

(437)

where i, j = 1, 2!

• The Euler Lagrange equations

∂λ
δL′

δ(∂λF aµν)
=

δL′

δF aµν
, ∂λ

δL′

δ(∂λAaµ)
=
δL′

δAaµ
(438)

give rise to the following constraint equations (i.e. ones with no time
derivatives):

F aij = ∂iA
a
j − ∂jA

a
i + gcabcAbiA

c
j (439)

F ai3 = −∂3A
a
i (440)
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F a03 = −∂3A
a
0 (441)

∂iF a0i − ∂
3F a03 = −gcabcF b0iA

i c (442)

and the dynamical equations (containing time derivatives)

F a0i = ∂0A
a
i − ∂iA

a
0 + gcabcAb0A

c
i (443)

∂µF aµi = −gcabc
(
F bijA

j c + F b0iA
0 c
)
. (444)

Then, all the F ’s other than F a0i (i.e. F aij, F
a
i3 and F a03) have no

time derivatives and neither does Aa0 . Thus, under the rules of 2nd
quantization, we are instructed to use the above constraint equations to
eliminate these non-dynamical variables from S′ to obtain S′′(Aai , F

a
0i)

(i = 1, 2). The appropriate generating functional for the canonical 2nd
quantization procedure is then

Z′′[ ~J ] =

∫
[dF01][dF02][dA1][dA2] exp{iS′′( ~J)} (445)

as we shall verify later. For now, we wish to first show that this result is
equivalent to Z′[ ~J ] obtained earlier from the path integral point of view
and defined in Eq. (435)
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• For this we need a Lemma: If (and here we are talking about the path
integral approach) a non-dynamical variable (Fij,03,i3 and A0 in our case)
appears at most quadratically (with constant coefficient — A0 requires
special consideration since its coefficient is not constant) in S, then
integrating over the variable is the same as eliminating it from the action
by the Euler-Lagrange equation.

Proof:∫
[dφ] exp[iS(φ)] =

∫
[dφ] exp

{
i

∫
d4x

[
1

2
aφ2(x) + f(x)φ(x)

]}
= exp

{−i
2a

∫
d4x[f(x)]2

}
. (446)

On the other hand, the Euler-Lagrange equation ⇒ aφ(x) + f(x) = 0
and substitution into S gives S = − 1

2a

∫
d4x[f(x)]2, which would yield

exactly the result above.

• So, we now use this Lemma to rewrite our path integral form by using
it for the [dFij], [dF03], [dFi3] and [dA0] integrations appearing in Z′[ ~J ]
defined earlier in Eq. (435). The F integrals are of exactly the form
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assumed for the Lemma. So, it is clear that the path integral over them
just gives a version of Z′[J ] where the 2nd quantization type substitutions
from the equations of motion have been made.

However, the A0 integral requires a bit of discussion since it enters in
the structure F i0(∂iA0− ∂0Ak). So, we must reexamine the Lemma for
the [dA0] integration.

To do so, we rewrite the above structure by doing a partial integration to
move the ∂i onto F i0 and then apply the Lemma to the A0 integral. But,
even before this we must do the [dF03] integral because square completion
of this integral (or substitution ala the Lemma using Eq. (441)) brings in
more A0 dependence. After the F03 integral (or substitution) we have
the structure, contained as part of L′ given in Eq. (437),

L 3 F 0i a
(
∂0A

a
i − ∂iA

a
0 + gcabcAb0A

c
i

)
−

1

2
(∂3A

a
0)2 (447)

where it is the last term that comes from the F 03 integral (equivalently
Lemma substitution of F a03 = −∂3A

a
0 ). So now we must do (after doing

the previously mentioned parts integrations to get ∂iF 0i a and also doing
a parts integration to get ∂3A

a
0∂3A

a
0 → −Aa0∂2

3A
a
0 ) the following path
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integral:

∫
[dA0] exp

{
i

∫
d4x

[
1

2
Aa0∂

2
3A

a
0 +

(
∂iF

0i aδab + gF 0i acabcAci
)
Ab0

]}
≡

∫
[dA0] exp

{
i

∫
d4x

[
1

2
Aa0Oδ

abAb0 + JbAb0

]}
⇒ exp

{
−i

1

2

∫
dx′dx′′Ja(x′)O−1

ab (x′ − x′′)Jb(x′′)
}
, (448)

where O = ∂2
3, Jb = ∂iF

0i aδab + gF 0i acabcAci and O−1 is defined by
∂2

3O−1 = δ4(x− y).

This is exactly the form you would have gotten by eliminating A0 in the
starting form Eq. (447) using the constraint equation, Eq. (442),

∂iF a0i − ∂
3(F a03) = ∂iF a0i − ∂

3(−∂3A
a
0) = −gcabcF b0iA

i c . (449)

To see this, rewrite Eq. (447) in the form one obtains after the above
partial integrations (and a switch of the dummy summation indices
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a↔ b)

L 3 (∂iF
0i a + gF 0i bcbacAci)A

a
0 +

1

2
Aa0∂

2
3δ
abAb0

≡ JaAa0 +
1

2
Aa0∂

2
3A

a
0 (same Ja as defined previously) (450)

and then substitute the constraint equation in the form

∂2
3A

a
0 = −

(
∂iF a0i + gcbacF b0iA

i c
)

= −Ja (451)

to obtain∫
d4xL 3

∫
d4x

1

2
Ja(x)Aa0(x) =

∫
d4xd4y

[
−

1

2
Ja(x)O−1

ab (x− y)Jb(y)

]
(452)

where we used Aa0(x) = −
∫
d4yO−1

ab (x − y)Jb(y) as follows from the
constraint equation written in the form Eq. (451) when solved for A0 in
integral equation form. The above result is that obtained by path integral
techniques as displayed in Eq. (448).
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So, at this point, we have reduced the path integral generating function
Z′[J ] of Eq. (435) to the path integral defining Z′′[J ] in Eq. (445)
where S′′(J) is obtained from S′(J) by making 2nd quantization-like
substitutions for all but F0i and Ai (i = 1, 2) and only path integrals
over these variables need to be done.

• The final element of the proof is to work more on the 2nd quantization
form. In particular, recall that the Hamiltonian formulation of 2nd
quantization is equivalent to the Hamiltonian Path Integral formalism
when we have independent fields and their canonically conjugate momenta.

In the simplest scalar case this was the statement that using

Z[J ] ∝
∫

[dφdπ] exp

{
i

∫
d4x[πφ̇−H(π, φ) + Jφ]

}
(453)

to develop Wick’s theorem results was the same as using 2nd quantization
to obtain the Wick’s theorem contractions.

In the present case this is like using the [dF01dA1][dF02dA2] form
Eq. (445), where F01 and F02 are, indeed, the appropriate canonical
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momenta associated with the transverse A1 and A2 field components ,
i.e. they are given by δL

δȦ1
and δL

δȦ2
.

• Of course, we never explicitly showed this in the case of a vector field,
but we could. The sequence of steps (that I will not go through in
detail) is the following. (We employ abelian field notation, but the A1

and A2 gauge field components act independently for each superscript
gauge index, which index I will suppress in the ensuing discussion.)

1. Write the starting L = −1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) in detail

with the input A3 = 0 gauge condition put in.
2. Check that the only time derivatives present are Ȧ1 and Ȧ2 and that

the conjugate momenta are

πi = −(∂0Ai − ∂iA0) = −F 0i for i = 1, 2. (454)

Construct the Hamiltonian form

Heff = πiφ̇i − L = −F 0i∂0Ai − L (455)

where all occurrences of ∂0Ai are to be eliminated using the definition
of πi in the form ∂0Ai = F0i + ∂iA0.
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3. At this point, you will find that the effective Lagrangian is (implied
summation over i, j = 1, 2)

Leff(x) = π
i
Ȧi −H(π

i
, A

i
)

= −1
4(∂iAj − ∂jAi)(∂

i
A
j − ∂jAi

)

−
1

2
∂3Ai∂

3
A
i −

1

2
F0iF

0i −
1

2
∂3A

0
∂

3
A

0
(456)

and we know that the canonical procedure is equivalent to doing the
path integral of this canonical form∫

[dF01][dA1][dF02][dA2] exp

{
i

∫
d4xLeff(x)

}
, (457)

with Leff as given above.
We need now only verify that the above Leff is the same as that
appearing in our earlier Z′′[J ] of Eq. (445). Recall that S′′[J ] is
obtained by substituting the constraint equations into the form L′
given in Eq. (437). If you carry this out, you will find that

L′(after constraint substitutions) = Leff . (458)
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This completes the final element needed in our proof that path integral
quantization and canonical quantization are equivalent in axial gauge.

• Perhaps a very concise summary of what was done will help.

In the canonical procedure

1. We derived 4 constraint equations and 2 dynamical equations.
2. The constraint equations were used to eliminate F aij, F

a
i3, F a03 and Aa0

so as to obtain from our starting general Lagrangian −1
4
FµνF

µν the
appropriate S′′ = S′′(Aai , F

a
0i) (where only i = 1, 2 are relevant in the

axial gauge as dynamical degrees of freedom).
3. We verified that the F a0i are the conjugate momenta for the Aai .

This implied (using the usual 2nd quantization ↔ path integral
equivalence a la scalar fields) that a good generating function was
(dropping gauge indices)

Z′′[J ] =

∫
[dF01][dA1][dF02][dA2] exp{iS′′(J)} . (459)

In the path integral approach

J. Gunion 230B, 2nd Quarter of Field Theory 200



1. We converted

Z[ ~J ] =

∫
[d ~Aµ]δ( ~A3) exp{iS( ~J)} =

∫
[dA0][dA1][dA2] exp{iS( ~Aµ, ~J)}

(460)

to a seemingly more complicated form Z′[ ~J ] by introducing the Fµν
quantities. At this time S converted to S′ which involved these
auxiliary quantities.

2. We thus had

Z′[J ] =

∫
[dFµν][dAµ]δ( ~A3) exp{iS′(J)} . (461)

3. We established a Lemma that integrating over [dFij], [dF03], and
[dFi3], all of which appeared quadratically with a constant coefficient
in S′(J), is equivalent to substituting for them using their equation of
motion (the constraint equations).

4. This almost gave us the form S′′(J), the only difference being that we
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were left with

Z′[J ]→
∫

[dF01][dA1][dF02][dA2][dA0] exp{iS′(J,with F ’s substituted)} .
(462)

5. But, we were able to show that performing the
∫

[dA0] converted
S′(J,with F ’s substituted) into S′′(J). Equivalently, we showed that
substituting for the Aa0 using the Aa0 constraint equations, but very
carefully treated (we had to use O−1 to complete the substitution),
gave us S′′(J).
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QCD Path Integral Quantization

Possibly useful references beyond Ryder for the material presented here
are:

1. Cheng and Li p. 248 and following;

2. Ramond Chapter VIII;

3. Itzykson and Zuber Chapter 12.

I will not actually follow any of these exactly. There are small differences
between the references and now conventional notations. Cheng and Li are
the closest but there are a few factors of i mislaid.

• We begin with an extension of our gauge condition by generalizing the
fa( ~Aµ) = 0 gauge condition to fa( ~Aµ) = Ca(x). For example, the
Lorentz gauge would be generalized to ∂µAaµ(x) = Ca(x). (There is no
significance to up vs. down location of the index a.)

At the end of the last section, we showed that the path integral result
after implementing FP gauge fixing is independent of the choice of the
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gauge fixing function fa, so using f ′a(
~Aµ) = fa( ~Aµ) − Ca(x) does not

alter the result for the path integral.

In order to complete our procedure, we will want to change our expression
for Zf [J ] in Eq. (416) which reads

Zf [J ] =

∫
[d ~Aµ(x)]∆f [ ~Aµ]δ[fa( ~Aµ)] exp

{
i

∫
d4x[L(x) + ~Jµ · ~Aµ]

}
(463)

to

Zf [J ] =

∫
[d ~Aµ(x)]∆f [ ~Aµ]δ[fa( ~Aµ)− Ca(x)] exp

{
i

∫
d

4
x[L(x) + ~Jµ · ~Aµ]

}
(464)

where you will notice that I did not change ∆f [ ~Aµ]. That is, the above
change assumes that the response function Mf is independent of this
shift of the gauge condition. In fact, what is important is that the form
of ∆f [ ~Aµ] as a function of ~Aµ is independent of the shift of the gauge
condition.

For the particular change of the gauge-fixing condition we are discussing
here this is indeed the case — since Ca(x) is independent of ~Aµ this

shift generalization does not affect the ~Aµ dependence of the operator
Mf , which is the local response of the gauge condition to a small gauge
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transformation. This local response is obtained by expanding using a
small ~θ gauge transformation and this local response does not change as
a function of ~Aµ just because you add a ~Aµ-independent piece Ca(x) to
the gauge condition.

Still, you might worry that the local response Mf somehow depends upon
the point on the gauge orbit at which you compute it, which is being
shifted by the Ca(x) addition to the gauge fixing condition. However,
this possibility is taken into account automatically when we write ∆f [ ~Aµ]
inside the integral — it will automatically then be evaluated at the location
in ~Aµ space where the generalized gauge condition is satisfied.

• So, now I hope you are convinced that we can write

Zf [J ] =

∫
[d ~Aµ(x)]∆f [ ~Aµ]δ[fa( ~Aµ)− Ca(x)] exp

{
i

∫
d

4
x[L(Aµ(x)) + ~Jµ · ~Aµ]

}
(465)

with ∆f [ ~Aµ] as defined just above. We now go one step further.

We know that Z can be multiplied by any overall ( ~Aµ-independent)
factor without consequence (provided we eventually normalize so that
Z[J = 0] = 1). Let us multiply by exp

[
−i 1

2α

∑
a

∫
d4xC2

a(x)
]
.

Now, we have shown above that the path integral is completely
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independent of the choice of Ca(x), so long as ~Jµ corresponds to a
conserved current, or equivalently so long as we compute a functional
derivative combination corresponding to a physical and therefore gauge
invariant observable. In this case, we can equally well consider integrating
over a series of gauge choices specified by different Ca choices, using the
above exponential weight.

The net result is to replace, inside the expression for Z[J ],

∏
x,a

δ[fa( ~Aµ(x))− Ca(x)] →
∫ ∏

d

[dCd] exp

[
−i

1

2α

∫
d

4
x
∑
a

C
2
a(x)

]∏
x,a

δ[fa( ~Aµ(x))− Ca(x)]

= exp

[
−i

1

2α

∫
d

4
x
∑
a

f
2
a( ~Aµ(x))

]
, (466)

yielding

Z[J ] =

∫ ∏
d

[dA
d
µ] detMf [ ~Aµ] exp

{
i

∫
d

4
x

[
L(Aµ(x)) +

∑
a

J
aµ
A
a
µ −

1

2α

∑
a

f
2
a( ~Aµ)

]}
.

(467)

where I have made explicit the (possible) ~Aµ dependence of detMf .

• The next manipulation is to use our trick for writing detMf , see
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Eq. (180):

detMf [ ~Aµ] ∝
∫ ∏

d

(
[dc

d
][dc

d
]
)

exp

i
∫
d

4
x

∫
d

4
y
∑
ab

c
a

(x)(Mf)ab(x, y)c
b
(y)

 ,

(468)

where

(Mf)ab(x, y) =
δfa( ~A

~θ
µ(x))

δθb(y)
. (469)

Note that we do not specify a particular location (e.g. fa = 0) at which
to evaluate the Mf . As stated a few pages ago, what is important is the

form of Mf as a function of ~Aµ and we are integrating this form over all

choices of ~Aµ(x).

The result is that we obtain

Z[J ] =

∫ ∏
d

(
[dA

d
µ][dc

d
][dc

d
]
)

exp

{
i

∫
d

4
x

[
L(Aµ(x)) +

∑
a

J
aµ
A
a
µ −

1

2α

∑
a

f
2
a( ~Aµ)

]

+i

∫
d

4
x

∫
d

4
y
∑
ab

c
a

(x)(Mf)ab(x, y)c
b
(y)

}
. (470)

• Eventually we will want to introduce some source currents for the ghost
fields ca and ca, and use generating function techniques for them. But,
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first let us construct Mf for some important standard gauge choices.

The first very important choice is the covariant (Lorentz) gauge which is
defined by taking

fa( ~Aµ) = ∂µAaµ , a = 1, . . . , N . (471)

Note: We don’t take ∂µAaµ = 0 since we are using the integration over
the Ca functions with ∂µAaµ = Ca.

For small θa’s, we have (using the notation fabc for the group structure
constants)

Aa θµ (x) = Aaµ(x) + fabcθb(x)Acµ(x)−
1

g
∂µθ

a(x) (472)

so that

∂µAa θµ = ∂µAaµ + ∂µ
[
fabcθb(x)Acµ(x)−

1

g
∂µθ

a

]
. (473)
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We now identify the response function from the expansion

fa[ ~A
~θ
µ(x)] = fa[ ~Aµ(x)] +

∫
d4y[Mf(x, y)]abθb(y) +O(θ2) . (474)

Comparing, we find that

Mf(x, y)ab = −
1

g
∂µ
{[
δab∂µ − gfabcAcµ

]
δ4(x− y)

}
. (475)

Before proceeding, let us note that this response function has a form (as
a function of ~Aµ) that is in fact independent of the value of ∂µAaµ from
which one starts as promised by our general proofs.

• Substituting this into Eq. (470), we obtain

Z[J ] =

∫ ∏
d

(
[dA

d
µ][dc

d
][dc

d
]
)

exp

{
i

∫
d

4
x

[
L(Aµ(x)) +

∑
a

J
aµ
A
a
µ −

1

2α

∑
a

f
2
a( ~Aµ)

−
1

g

∑
ab

c
a

(x)∂
µ
{[
δ
ab
∂µ − gfabcAcµ

]
c
b
(x)
}]}

. (476)
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• However, there is one more little simplification: we can rescale the ca

and ca to absorb the 1/g factor in the exponential above. (Note that
both terms in the ghost Lagrangian contain one ca field and one ca field.
Rescaling is also possible for the A fields stuff but the tri-linear and
quartic terms do not scale like the quadratic terms, implying that such
rescaling is not necessarily helpful.) This changes Z[J ] by some factor
of many powers of g, but as usual we don’t care. We simply have to
make sure in the end that Z[sources = 0] = 1. With such a rescaling,
and introducing sources ξ

a
and ξa for the ca and ca ghost functions, we

obtain

Z[J, ξ, ξ] =

∫ ∏
d

(
[dAdµ][dcd][dcd]

)
exp

{
i

∫
d4xL(x)

}
(477)

with

L(x) = −1
4
F aµνF aµν −

1

2α

(
∂µAaµ

)2

−ca∂µ
{[
δab∂µ − gfabcAcµ

]
cb
}
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+
∑
a

(
JµaAaµ + ξ

a
ca + caξa

)
(478)

where
F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (479)

In the above, everything is a function of x and repeated indices a, b, c
and µ, ν in the L expression are summed over.

Of course, this is for the pure gauge theory only. Fermions and other
particles are brought in as needed.

• In the above, the ghost fields are fully parallel in function to the gauge
fields. The Feynman rules must include propagators and vertices involving
the ghost fields as well as the gauge fields.

We will derive the relevant Feynman rules using the functional techniques,
but at this point they can equally well be read off of the Lagrangian
using “naive” procedures where we imagine all the gauge and ghost fields
to be 2nd quantized operators. In other words, we can use the path-
integral technique to develop the required additional ghost fields and the
associated Lagrangian form and then treat all fields as 2nd quantized
operator fields.
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The QCD Feynman Rules

• We begin by separating the full L given above into the free-particle and
the interaction components.

We then compute the Z0[J, ξ, ξ] for the free-particle components and
then bring in the interactions via the perturbative expansion.

• We have

Z0[J, ξ, ξ] = Z0[J ]Z0[ξ, ξ]

=

∫ ∏
b

[dA
b
µ] exp

{
i

∫
d

4
x

[
−1

4(∂µA
a
ν − ∂νA

a
µ)

2 −
1

2α
(∂
µ
A
a
µ)

2
+ J

µa
A
a
µ

]}

×
∫ ∏

b

[dc
b
][dc

b
] exp

{
−i
∫
d

4
x
[
c
a
∂

2
c
a − caξa − ξaca

]}
. (480)

• The interactions will come from

exp

[
iSI

(
δ

iδJµa
,

δ

−iδξa
,
δ

iδξ
a

)]
(481)
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where

SI

(
Aaµ, c

a, ca
)

=

∫
d4x

[
−

1

2
(∂µA

a
ν − ∂νA

a
µ)gcabcAµ bAν c

−1
4
g2cabccadeAbµA

c
νA

µdAν e

+cagcabc∂µ(Acµc
b)
]

(482)

We will return to the interaction SI once we have given the expression
for Z0.

• The free particle Z0’s

• To compute Z0, we can separately perform the square completion process for
the Abµ fields and the cb, cb fields.

For the former, we just have the addition of a group index to carry around
with our cell and Lorentz indices. The full collection is α, µ, a, where α
is the cell label.

However, you can see that the quadratic part of L is completely diagonal
in the group index a. Thus, it should not surprise you that we get the
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same old result for the inverse Kernel with the addition of a multiplying
δ function in the group generator indices.

More explicitly, we do the usual partial integration stuff and we are then
left with the computation of

Z0[J ] =

∫ ∏
d

[dA
d
µ] exp

{
i

∫
d

4
x

[
1

2
A
a
µ

(
g
µν
∂

2 − ∂µ∂ν
(

1−
1

α

))
δabA

b
ν + J

a
µA

µa
]}

≡
∫ ∏

d

[dA
d
µ] exp

{∫
d

4
xd

4
y

[
1

2
A
a
µ(x)K

µν
ab

(x− y)A
b
ν(y) + J

a
µ(x)δ

4
(x− y)A

µa
(y)

]}

= exp

{
−
i

2

∫
d

4
x
′
d

4
y
′
J
a′
µ′(x

′
)D

µ′ν′
a′b′ (x

′ − y′)Jb
′
ν′(y
′
)

}
, (483)

where

K
µν
ab

(x− y) =

[
g
µν
∂

2
x −

(
1−

1

α

)
∂
µ
x∂

ν
x

]
δ

4
(x− y)δab (484)

has the inverse D
µν
ab

defined by∫
d

4
zK

µλ
ab

(x− z)D
bc
λν(z − y) = g

µ
ν δ
c
aδ

4
(x− y) (485)

with solution

D
µν
ab

(x− y) = δab

∫
d4k

(2π)4
e
−ik·(x−y)

[
−
gµν

k2
+
kµkν

k4
(1− α)

]
. (486)
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Perhaps it is useful to explicitly check the above claim.

∫
d

4
zK

µλ
ab

(x− z)D
bc
λν(z − y) = g

µ
ν δ
c
aδ

4
(x− y)

=

∫
d

4
z

[
g
µλ
∂

2
x −

(
1−

1

α

)
∂
µ
x∂
λ
x

]
δ
4
(x− z)δabδbc

∫
d4k

(2π)4
e
−ik·(z−y)

[
−
gλν

k2
+
kλkν

k4
(1− α)

]

= δac

∫
d4k

(2π)4

[
g
µλ
∂

2
x −

(
1−

1

α

)
∂
µ
x∂
λ
x

]
e
−ik·(x−y)

[
−
gλν

k2
+
kλkν

k4
(1− α)

]

= δac

∫
d4k

(2π)4
e
−ik·(x−y)

[
−k2

g
µλ

+

(
1−

1

α

)
k
µ
k
λ
] [
−
gλν

k2
+
kλkν

k4
(1− α)

]

= δac

∫
d4k

(2π)4
e
−ik·(x−y)

[
g
µ
ν −

kµkν

k2
(1− α)−

kµkν

k2

(
1−

1

α

)
+
kµkν

k2
(1− α)

(
1−

1

α

)]

= δac

∫
d4k

(2π)4
e
−ik·(x−y)

[
g
µ
ν − 0

]
= δacg

µ
ν δ

4
(x− y) , (487)

as hoped.

Going to momentum space, the above form of Z0[J ] generates the
Feynman rule

〈0|T
{
Aaµ(x)Abν(y)

}
|0〉 =

{
δ

iδJµa(x)

δ

iδJν b(y)
Z0[J ]

}
J=0

J. Gunion 230B, 2nd Quarter of Field Theory 215



= iDab
µν(x− y) (488)

with momentum space Feynman rule

iDab
µν(k) = iδab

1

k2 + iε

[
−gµν +

kµkν

k2
(1− α)

]
. (489)

• We will now work on the ca and ca. We want

Z0[ξ, ξ] =

∫ ∏
b

[dc
b
][dc

b
] exp

{
−i
∫
d

4
x
[
c
a
∂

2
c
a − caξa − ξaca

]}
. (490)

Referring back to Eqs. (183) and (191), we had (for the case of
G = i∂/ −m, but the result is clearly general)

Z0(η, η) =
1

N

∫
[dψ][dψ] exp

{
i

∫
d

4
x
[
ψ(x)Gψ(x) + η(x)ψ(x) + ψ(x)η(x)

]}

= exp

[
−i
∫
d

4
x
′
d

4
y
′
η(x
′
)G−1

(x
′ − y′)η(y

′
)

]
. (491)

Here, we replace ψ by cb and ψ by ca, i.e. we have to bring in the
group indices, and our G is simply −∂2δab (note that the − sign must
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be included in this for consistency with the above general structure). We
then obtain (with the conversion η → ξ

c
and η → ξd)

Z0[ξ, ξ] = exp

[
−i
∫
d4x′d4y′ξ

c
(x′)∆cd(x′ − y′)ξd(y′)

]
, (492)

where
−∂2δac∆cb(x− y) = δabδ4(x− y) , (493)

the solution to which is

∆ab(x− y) =

∫
d4k

(2π)4

e−ik·(x−y)

k2 + iε
δab . (494)

We can now compute the associated propagator as

〈0|T{ca(x)cb(y)}|0〉 =

(
1

i

δ

δξ
a

(x)

)(
1

−i
δ

δξb(y)

)
Z0[ξ, ξ]

∣∣∣∣∣
ξ=ξ=0

=

[(
1

i

δ

δξ
a

(x)

)(
1

−i

)
(−)

(
−i
∫
d

4
x
′′
ξ
c′

(x
′′

)∆
c′b

(x
′′ − y)

)

× exp

[
−i
∫
d

4
x
′
d

4
y
′
ξ
c
(x
′
)∆
cd

(x
′ − y′)ξd(y

′
)

]]
ξ=ξ=0
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= i∆
ab

(x− y) , (495)

where the explicit− sign after the 2nd equality comes from anticommuting
the δ

δξb(y)
past the ξ

c
in taking the derivative of the exponential argument.

The above leads to the Feynman rule for the ghost field propagator in
momentum space:

i∆ab(k) =
i

k2 + iε
δab . (496)

Note that the sign of this propagator is different in some treatments
but it is actually physically irrelevant so long as the relative sign of
the propagator and the ghost ghost gluon vertex remains unchanged.
This is because any Feynman graph computation will always contain one
propagator for every ghost-ghost-gluon vertex. The propagator sign and
the ghost-ghost-gluon vertex sign are simultaneously changed by changing
the (irrelevant) sign of the response function Mab

f .

• So now we come to the Interactions

exp

[
iSI

(
δ

iδJµa
,

δ

−iδξa
,
δ

iδξ
a

)]
(497)
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where

SI

(
Aaµ, c

a, ca
)

=

∫
d4x

[
−

1

2
(∂µA

a
ν − ∂νA

a
µ)gcabcAµ bAν c

−1
4
g2cabccadeAbµA

c
νA

µdAν e

+cagcabc∂µ(Acµc
b)
]

(498)

We want to develop the Feynman rules associated with these interactions
using the lowest order expansion of SI.

Higher orders will be built up by using the lowest order interactions within
higher-order Feynman graphs. That is the perturbative approach.

So, we will write
exp [iSI] ≈ 1 + iSI (499)

In SI we see:

1. a 3-gluon (here I use the QCD language) interaction;
2. a 4-gluon interaction;
3. a gluon-ghost-antighost interaction.
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1. The 3-gluon interaction
We rewrite iS3−gluon

I using the antisymmetry of the structure constant
cabc and relabeling the dummy summations to d, e, f :

−i
∫
d

4
x

1

2
(∂µA

a
ν−∂νA

a
µ)gc

abc
A
µ b
A
ν c

= −ig
∫
d

4
x
(
∂
x
µA

d
ν(x)

)
c
def

A
µ e

(x)A
ν f

(x) .

(500)

This means that Z[J ] = exp[iSI(
δ
iδJ

)]Z0[J ] ' [1 + iSI(
δ
iδJ

)]Z0[J ]
contains a term that looks like

iSIZ0[J ] =

[
−ig

∫
d4x

(
∂xµ

δ

iδJν d(x)

)
cdef

(
δ

iδJeµ(x)

)(
δ

iδJfν (x)

)]

× exp

[
−
i

2

∫
d4y1d

4y2J
s
ρ(y1)D

ρλ
st (y1 − y2)J

t
λ(y2)

]
. (501)

We need to figure out what term we need to keep in the resulting
expression. For this we need to recall what we are after.
As I shall explain later, to compute the vertex, we want to compute

〈0|T{Aαa(y)A
β b

(z)A
γ c

(w)}|0〉 =

( δ

iδJaα(y)

) δ

iδJb
β

(z)

( δ

iδJcγ(w)

) (
iSIZ0[J ]

)
J=0

. (502)

Since we set J = 0 at the end, this means that each of the δ
δJ
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derivatives must have something to act on and that all the multiplicative
J dependence must then be gone so that when we set J = 0 all that
happens is that the exponential argument → 0.
What this means is that in iSIZ0[J ] we let each of the δ

δJ
’s act on

the exponential and bring down the usual one-sided J integral. Then
at the 2nd stage of Eq. (502) we let each one of the δ

δJ
’s associated

with the “external” A fields act on one of the J ’s in the one-sided J
integrals that we developed in the iSIZ0[J ] expression.
Thus, the relevant portion of iSIZ0[J ] is (where we used −i

i3
= +1)

iSIZ0[J ] ∼
∫
d

4
xgc

def
(
−i
∫
d

4
y2∂

x
µD

λ
ν dt(x− y2)J

t
λ(y2)

)(
−i
∫
d

4
y
′
2D
µλ′
et′ (x− y′2)J

t′
λ′(y
′
2)

)

×
(
−i
∫
d

4
y
′′
2D

νλ′′
ft′′ (x− y′′2 )J

t′′
λ′′(y

′′
2 )

)
exp

[
. . .

]
. (503)

We now follow with the operation of Eq. (502). There are 3! = 6 ways
of performing the three final δ

δJ
’s. We examine in detail one of the

terms and develop the others by symmetry. We focus on the term in

J. Gunion 230B, 2nd Quarter of Field Theory 221



which the derivatives operate as follows:

α, a, y → λ, t, y2 ; β, b, z → λ′, t′, y′2 ; γ, c, w → λ′′, t′′, y′′2 .
(504)

This yields the result

〈0|T{Aαa(y)A
β b

(z)A
γ c

(w)}|0〉 3
∫
d

4
xgc

def
(
−
∫
d

4
y2∂

x
µD

λ
ν dt(x− y2)δ

4
(y2 − y)δ

at
g
α
λ

)

×
(
−
∫
d

4
y
′
2D
µλ′
et′ (x− y′2)δ

4
(y
′
2 − z)δ

bt′
g
β
λ′

)

×
(
−
∫
d

4
y
′′
2D

νλ′′
ft′′ (x− y′′2 )δ

4
(y
′′
2 − w)δ

ct′′
g
γ
λ′′

)
= −gcdef

∫
d

4
x
(
∂
x
µD

α
ν da(x− y)

)
D
µβ
eb

(x− z)D
νγ
fc

(x− w) .(505)

We now write the Fourier transforms of the D’s.

D
α
ν da(x− y) =

∫
d

4
p̃e
ip·(x−y)

(−i)
[
iD
α
ν da(p)

]
D
µβ
eb

(x− z) =

∫
d

4
q̃e
iq·(x−z)

(−i)
[
iD
µβ
eb

(q)
]

D
νγ
fc

(x− w) =

∫
d

4
r̃e
ir·(x−w)

(−i)
[
iD
νγ
fc

(r)
]
, (506)

where the p, q, r are the momenta associated with the 3 gluons in an

outgoing sense, and we have used the notation
∫
d4p̃ ≡

∫
d4p

(2π)4.
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We can now perform the
∫
d4x to obtain

〈0|T{Aαa(y)A
β b

(z)A
γ c

(w)}|0〉

3 (2π)
4
δ
4
(p + q + r)(−gcdef )(−i)3(+ipµ)

[
iD
α
ν da(p)

] [
iD
µβ
eb

(q)
] [
iD
νγ
fc

(r)
]

≡ [iD
αα′
ad (p)][iD

ββ′
be

(q)][iD
γγ′
cf

(r)]Γ
def
α′β′γ′(p, q, r). (507)

from which we find the required form of Γ for the particular one of
the 6 terms on which we are focusing.

Γdefα′β′γ′(p, q, r) = gcdef(2π)4δ4(p+ q + r)gγ′α′pβ′ . (508)

The other terms will be generated by symmetry considerations as we
shall describe.
Pictorially, we can display this process as in Fig. 5.

J. Gunion 230B, 2nd Quarter of Field Theory 223



�����
�

���	�

��
 �

�

������������� ���


������ �� � �"! �
#�%$&$ �'"()� �*�

+ � � (� � � � $ � � �,� ! �-�*�

!
. �	/

. 

0�	


1

�	
 � 1
�2 �30 1��4 . 45�	476�8:9	;<9>=@?

�A
B���
�

!DC EGF �H0 1JI E �	4 . 4 67=LK ;M? ��4ON E �A4P�	4 6�8QK =@? . 4ON E . 4R�A4 6�;LK 8%? �	4RS
. 
R�	0

Figure 5: The 3-gluon vertex diagram and answer to be obtained.
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In extracting the above Γ, we left behind a variety of things:∫
d4p̃e−ip·y

∫
d4q̃e−iq·z

∫
d4r̃e−ir·w[iDαα′

ad (p)][iDββ′

be (q)][iDγγ′

cf (r)] .

(509)
These factors disappear in relating

〈0|T{Aαa(y)Aβ b(z)Aγ c(w)}|0〉 (510)

to the actual physical probability amplitude connecting the vacuum
state to the state of three outgoing gluons

〈p, a, s; q, b, s′; r, c, s′′|0〉 (511)

using the reduction formalism that we did not go through. Removing
the items that we did corresponds to going from the fields of the
time ordered product to just the creation and annihilation operators
contained in those fields that are used to define the 3-gluon state in
the equation just above.
Thus, it is conventional to redefine the labels to go with the original
external α, a, β, b and γ, c so that we write for the vertex (without
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external propagators)

Γabcαβγ(p, q, r) = gcabc(2π)4δ4(p+ q + r)gγαpβ . (512)

If external gluons are attached to this vertex, one would simply multiply
by the appropriate εα(p), . . ..
Next, let me return for a moment as to why I said that p was the
outgoing momentum associated with the a, α field. This is because
of the way I defined Dα

ν da(x − y) in terms of eip·(x−y). The e+ip·x

goes with an a†(p) in the standard 2nd-quantized field expansion,
corresponding to creation (i.e. which means outgoing) particle at the
interaction vertex location defined by x.
Now, we must generate the other 5 terms that I said we could get by
symmetry.

(a) First, we note that every term must be proportional to cabc (or some
permutation thereof that we can always write as cabc).
The group indices can only appear here. This cabc will be multiplied
by some expression involving the momenta and Lorentz indices of
the gauge particles.

(b) Next, since the gauge bosons are “bosons”, the vertex should be
symmetric under interchange of the gauge bosons (gluons in SU(3)
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color case).
(c) Since cabc is antisymmetric under interchange of any two gluons, that

means that the structure multiplying it must itself be antisymmetric
under the interchange of any two gluons.
The only structure involving momentum and Lorentz indices only
that has the required antisymmetry and is consistent with the one
term that we have derived is:

[gγα(p− r)β + gγβ(r − q)α + gαβ(q − p)γ] . (513)

One can check this structure for the required antisymmetries. For
example, under a, α, p↔ b, β, q, the 1st term turns into − the 2nd
term, and vice versa, while the 3rd term is antisymmetric on its own
when p↔ q.

Thus, our final expression for the three-gluon (or more generally three-
gauge-boson vertex) is

gcabc(2π)4δ4(p+q+r) [gγα(p− r)β + gγβ(r − q)α + gαβ(q − p)γ] ,
(514)

or, after removing the (2π)4δ4(p+ q+ r) in defining theM Feynman
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rule we obtain

Mabc
αβγ(p, q, r) = gcabc [gγα(p− r)β + gγβ(r − q)α + gαβ(q − p)γ] ,

(515)

where the α, β, γ are to be contracted with the εαs (p), εβs′(q), ε
γ
s′′(r)

for the polarization vectors of the helicity states of the outgoing gluons
(indicated by the s, s′, s′′ subscripts on the ε’s), or used internally with
the α, β, γ indices connected to matching Lorentz indices of internal
propagators.
An aside on conventions and comparisons between these notes and
various books:
Some authors (like Ryder and Peskin) define a M′ that is related to
our M by iM′ =M. In Mandl-Shaw box normalization,

〈. . . |S| . . .〉 = 1 +
∏(

1
√

2V E

)1/2

(2π)4δ4(
∑
i

pi)iM′ . (516)

In this convention, our Feynman rules are for iM′. Ryder, Eq. (6.175),
and Peskin, Eq. (4.73), use continuum/covariant normalization, for

J. Gunion 230B, 2nd Quarter of Field Theory 228



which
〈. . . |S| . . .〉 = 1 + (2π)4δ4(

∑
i

pi)iM′ . (517)

After computing using continuum/covariant normalization, the cross
section expressions in terms of |M′|2 are the same as we have obtained
in terms of |M|2. Still, even accounting for these normalization
differences, Ryder’s Eqs. (7.57) and (7.58) have an inconsistent relative
phase, and the factor of 2 in (7.57) is certainly wrong.
My Feynman rules agree with those of Bailin-Love, pp. 127-129,
except that they have chosen the opposite convention for the sign of
g — see their Eq. (9.29) vs. my Eq. (352) — and there is a typo of a
repeated term in their Eq. (10.74).
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2. The reduction formalism
Here, I will justify the claim as to how to relate

〈0|T{Aαa(y)Aβ b(z)Aγ c(w)}|0〉 (518)

to

〈p, a, s; q, b, s′; r, c, s′′|0〉 , (519)

where I have given explicit helicity choices s, s′, s′′ to the outgoing
gauge bosons.
For this, we need to recall some results from last quarter. We write,
with the appropriate trivial generalization to include color,

Aν a(x) = Aν a+(x) +Aν a−(x) (520)

with

Aν a+ =
∑
r~k

(
1

2V ω~k

)1/2

ενr(
~k)aar(

~k)e−ik·x , (521)
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Aν a− =
∑
r~k

(
1

2V ω~k

)1/2

ενr(
~k)a†r

a
(~k)e+ik·x (522)

where k0 = ω~k = |~k| and r = 0, 1, 2, 3 to describe 4 polarization
states. Recall that the ενr are real and obey

εr(~k)·εs(~k) = −ζrδrs , r, s = 0, 1, 2, 3 ,
∑
r

ζrε
µ
r (~k)ενr(

~k) = −gµν ,

(523)
where ζ0 = −1, ζ1,2,3 = +1 and that only the r = 1, 2 states are
physical.
Note: The above applies only in the Feynman version of the Lorentz
gauge for which ∂µAµ = 0, which is our α = 1 choice. Life gets more
complicated in proving the reduction result in a more general gauge.
(But, of course, it still works.) In this gauge, the equation of motion
is simple: ∂2Aµ = 0 (for free fields) and we have for the momentum
space propagator the result

Dab
µν(p) = δab

−gµν
p2

. (524)
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From the above forms of Aν a± and polarization orthogonalities, it is
easy to verify that

aar(
~k) = −ενr(~k)

∫
d3~x√
2V ω~k

eik·xi
↔
∂x0A

a
ν(x)

aar
†(~k) = −ενr(~k)

∫
d3~x√
2V ω~k

e−ik·xi
↔
∂x0A

a
ν(x) , (525)

whereA
↔
∂x0B ≡ A(∂x0B)−(∂x0A)B and the explicit− sign is because

of the εr(~k) · εs(~k) = −δrs for physical (transverse) polarizations.
Armed with the above identities, consider the vertex, including helicity
assignments for the outgoing gluons, and a notation out to remind us
that the annihilation operators appearing are those for outgoing gluons:

〈p, s, a; q, s′, b; r, s′′, c|0〉 = 〈0|[aas(p)]out[abs′(q)]
out[acs′′(r)]

out|0〉
(526)

and focus on just one of the a’s for the moment, say acs′′(r). We write

J. Gunion 230B, 2nd Quarter of Field Theory 232



〈p, s, a; q, s
′
, b; r, s

′′
, c|0〉 = 〈p, s, a; q, s

′
, b|[ac

s′′(r)]
out|0〉

= lim
w0→+∞e−iδ

〈p, s, a; q, s
′
, b|(−)ε

γ
s′′(~r)

∫
d3 ~w√
2V ω~r

e
ir·w

i
↔
∂w0A

c
γ(w)|0〉 ,

(527)

where the
↔
∂w0 is for w0 and where w0 → +∞e−iδ is the appropriate

thing since we have stated all the gluons are in the outgoing state. The
imaginary component is the same one required to isolate the vacuum
at a very late time.
Related to the above time limits, you should be asking yourself why

[acs′′(r)]
out|0〉 6= 0 ? (528)

Well, it is because I have been imprecise and should really be using

|0〉 → |0〉in , and 〈0| →out 〈0| (529)

and it is only ain|0〉in that is 0.
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We now use the simple identity that

lim
t→+∞e−iδ

f(t) = lim
t→−∞e−iδ

f(t) +

∫ +∞e−iδ

−∞e−iδ

df

dt
(530)

to rewrite (including all the appropriate in and out subscripts)

lim
w0→+∞e−iδ

out〈p, s, a; q, s
′
, b|(−)ε

γ
s′′(~r)

∫
d3 ~w√
2V ω~r

e
ir·w

i
↔
∂w0A

c
γ(w)|0〉in

= lim
w0→−∞e−iδ

out〈p, s, a; q, s
′
, b|(−)ε

γ
s′′(~r)

∫
d3 ~w√
2V ω~r

e
ir·w

i
↔
∂w0A

c
γ(w)|0〉in

+ out〈p, s, a; q, s
′
, b|(−)ε

γ
s′′(~r)

∫
d4w√
2V ω~r

d

dw0

[
e
ir·w

i
↔
∂w0A

c
γ(w)

]
|0〉in

= out〈p, s, a; q, s
′
, b|[ac

s′′(r)]
in|0〉in

+ out〈p, s, a; q, s
′
, b|(−)ε

γ
s′′(~r)

∫
d4w√
2V ω~r

i
[
(−∂2

w0
e
ir·w

)A
c
γ(w) + e

ir·w
(∂

2
w0
A
c
γ(w))

]
|0〉in

= 0 + out〈p, s, a; q, s
′
, b|εγ

s′′(~r)

∫
d4w√
2V ω~r

i
[
(~∇2
we
ir·w

)A
c
γ(w)− eir·w(∂

2
w0
A
c
γ(w))

]
|0〉in

= + out〈p, s, a; q, s
′
, b|εγ

s′′(~r)

∫
d4w√
2V ω~r

[
(−i)eir·w[∂

2
w0
− ~∇2

w]A
c
γ(w)

]
|0〉in

= −iεγ
s′′(~r)

∫
d4w√
2V ω~r

e
ir·w

∂
2
w out〈p, s, a; q, s

′
, b|Acγ(w)|0〉in , (531)
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where we used ∂2
w0
eir·w = ~∇2

we
ir·w and then did double partial

integration on ~∇2
w.

Now let us “reduce” in a second final state annihilation operator.

out〈p, s, a; q, s
′
, b|Acγ(w)|0〉in

= out〈p, s, a|[a
b
s′(q)]

out
A
c
γ(w)|0〉in

= lim
z0→+∞e−iδ

out〈p, s, a|(−)ε
β
s′(~q)

∫
d3~z√
2V ω~q

e
iq·z

i
↔
∂z0A

b
β(z)A

c
γ(w)|0〉in

= lim
z0→+∞e−iδ

out〈p, s, a|(−)ε
β
s′(~q)

∫
d3~z√
2V ω~q

e
iq·z

i
↔
∂z0T{A

b
β(z)A

c
γ(w)}|0〉in

= lim
z0→−∞e−iδ

out〈p, s, a|(−)ε
β
s′(~q)

∫
d3~z√
2V ω~q

e
iq·z

i
↔
∂z0T{A

b
β(z)A

c
γ(w)}|0〉in

+ out〈p, s, a|(−)ε
β
s′(~q)

∫
d4z√
2V ω~q

d

dz0

[
e
iq·z

i
↔
∂z0T{A

b
β(z)A

c
γ(w)}

]
|0〉in

= lim
z0→−∞e−iδ

out〈p, s, a|(−)ε
β
s′(~q)

∫
d3~z√
2V ω~q

e
iq·z

i
↔
∂z0A

c
γ(w)A

b
β(z)|0〉in

+ out〈p, s, a|(−)ε
β
s′(~q)

∫
d4z√
2V ω~q

i
[
(−∂2

z0
e
iq·z

)T{Abβ(z)A
c
γ(w)} + e

iq·z (
∂

2
z0
T{Abβ(z)A

c
γ(w)}

)]
|0〉in

= out〈p, s, a|A
c
γ(w)[a

b
s′(q)]

in|0〉in
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+ out〈p, s, a|ε
β
s′(~q)

∫
d4z√
2V ω~q

i
[
(~∇2
ze
iq·z

)T{Abβ(z)A
c
γ(w)} − eiq·z

(
∂

2
z0
T{Abβ(z)A

c
γ(w)}

)]
|0〉in

= 0 + out〈p, s, a|ε
β
s′(~q)

∫
d4z√
2V ω~q

i
[
(−)e

iq·z (
∂

2
z0
− ~∇2

z

)
T{Abβ(z)A

c
γ(w)}

]
|0〉in

= −iεβ
s′(~q)

∫
d4z√
2V ω~q

e
iq·z

∂
2
z out〈p, s, a|T{A

b
β(z)A

c
γ(w)}|0〉in . (532)

The most important new manipulation above was the insertion of the
time-ordered product. This was inserted so that when we converted
from z0 → +∞ to z0 → −∞ the Abβ(z) field moved all the way

over to being next to |0〉in so that in the next step we had [abs′(q)]
in

sitting next to |0〉in giving 0. Without the time ordering instruction
the [abs′(q)]

in operator would have been operating on Acγ(w)|0〉in, and
we could not say that it was annihilating the incoming vacuum.
At this point, we would continue in similar vein to reduce in the
[aas(p)]out operator. Following the same procedure, we would get the
analogous result involving the appropriate projection operator operating
on

out〈0|T{Aaα(y)Abβ(z)Acγ(w)}|0〉in . (533)

Altogether, we get

out〈p, a, s; q, b, s′; r, c, s′′|0〉in
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=

[
−iεγ

s′′(~r)

∫
d4w√
2V ω~r

e
ir·w

∂
2
w

] −iεβ
s′(~q)

∫
d4z√
2V ω~q

e
iq·z

∂
2
z


−iεαs (~p)

∫
d4y√
2V ω~p

e
ip·y

∂
2
y

× out〈0|T{Aaα(y)A
b
β(z)A

c
γ(w)}|0〉in .

(534)
We now insert

〈0|T{Aαa(y)A
β b

(z)A
γ c

(w)}|0〉

=

∫
d4p′

(2π)4
e
−ip′·y

∫
d4q′

(2π)4
e
−iq′·z

∫
d4r′

(2π)4
e
−ir′·w

[iD
αα′
ad (p

′
)][iD

ββ′
be

(q
′
)][iD

γγ′
cf

(r
′
)]Γ
def
α′β′γ′(p

′
, q
′
, r
′
) ,

(535)

where we shifted notation to dummy integration variables, p′, q′, r′.
Let’s look at one of the projection operations. Using iDα′

αad(p
′) =

−igα′α δad/p′
2, one finds−iεαs (~p)

∫
d4y√
2V ω~p

e
ip·y

∂
2
y

 ∫ d4p′

(2π)4
e
−ip′·y

[iD
α′
αad(p

′
)]

=

−iεαs (~p)

∫
d4y√
2V ω~p

e
ip·y

 ∫ d4p′

(2π)4
(−p′2)e

−ip′·y−igα
′

α δad

p′2
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=
1√

2V ω~p

ε
α
s (~p)

∫
d4p′

(2π)4
(2π)

4
δ

4
(p− p′)gα

′
α δad

=
1√

2V ω~p

ε
α
s (~p)g

α′
α δad . (536)

Notice the cancellation of the propagator p′2 from the result of the
∂2
y differentiation of e−ip

′·y. Analogous results apply for the other two
projections, yielding

out〈p, a, s; q, b, s
′
; r, c, s

′′|0〉in ≡
1√

2V ω~p

√
2V ω~q

√
2V ω~r

(2π)
4
δ
4
(p + q + r)M

=

 1√
2V ω~p

ε
α
s (~p)g

α′
α δad


 1√

2V ω~q

ε
β
s′(~q)g

β′
β
δbe


[

1√
2V ω~r

ε
γ
s′′(~r)g

γ′
γ δcf

]
(2π)

4
δ
4
(p + q + r)gc

def
[gγ′α′(p− r)β′ + . . .]

=
1√

2V ω~p

√
2V ω~q

√
2V ω~r

ε
α
s (~p)ε

β
s′(~q)ε

γ
s′′(~r)(2π)

4
δ
4
(p + q + r)gc

abc
[gγα(p− r)β + . . .] (537)

from which we immediately obtain the previously given Feynman rule
for the vertex part of M to be multiplied by the three ε’s:

Mabc
αβγ(p, q, r) = gcabc [gγα(p− r)β + gγβ(r − q)α + gαβ(q − p)γ] .

(538)
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There is one more thing that I have hidden in the above discussion: that is a whole bunch of
√
Z

factors. I mentioned these last quarter but we did not dwell on them. For tree-level computations we
can take Z = 1 since the higher powers of g in the the expansion Z = 1 + O(g2) + . . . lead to
higher order corrections to the tree-level amplitudes.
The
√
Z factors arise as follows. We should more correctly write at the first stage of the reduction

process

[a
a
r(~k)]

out
= −ενr(~k)

∫
d3~x√
2V ω~k

e
ik·x

i
↔
∂x0[A

a
ν(x)]

out

= −ενr(~k) lim
x0→∞e−iδ

∫
d3~x√
2V ω~k

e
ik·x

i
↔
∂x0[A

a
ν(x)](

√
Z)
−1

(539)

where Aaν(x) is the fully interacting A field, whereas [Aaν(x)]out is a free particle-like A field
with full one-particle normalization. The interacting A field in the very late time limit (or very early
time limit) does not have full one-particle normalization content and so we must multiply by a factor
to boost up its normalization. This relative factor is by convention called

√
Z with Z < 1 (after

renormalization or cut off). Another subtlety is that

lim
x0→∞e−iδ

A =
√
ZA

out
(540)

cannot be viewed as a statement about the operators, but only as a statement about the operators
when applied to out〈0|.
In addition to the above (

√
Z)−1 factor for each external particle, there is an additional Z factor for

each external particle, coming from the sum of so-called one-particle reducible diagrams inserted into
the external particle leg.

We have no time to get into all this. You will encounter these issues in a full discussion of the

reduction formalism.
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3. The gluon-ghost-antighost interaction
This is the next simplest case. The quantity we want to compute is

〈0|T
{
c
b
(w)A

αa
(z)c

c
(y)
}
|0〉

=

{1

i

δ

δξ
b
(w)

 [1

i

δ

δJaα(z)

] [
1

−i
δ

δξc(y)

](
exp

[
iSI

(
δ

iδJ
,
δ

−iδξ
,
δ

iδξ

)]
Z0[J ]Z0[ξ, ξ]

)}
J=0,ξ=0,ξ=0

.(541)

Of course, we expand perturbatively and write exp [iSI] ∼ 1+iSI and
focus on the iSI term as being that responsible for the true tree-level
interactions.
The only iSI interaction term contributing at tree-level to the particular
gluon-ghost-antighost vertex being considered at the moment is [see
Eq. (482)]

iSI (A, c, c) = i

∫
d

4
xc
d

(x)gc
def

∂
µ

(A
f
µ(x)c

e
(x))

= −i
∫
d

4
x(∂

µ
c
d

(x))gc
def

A
f
µ(x)c

e
(x)

→ −i
∫
d

4
x

(
∂
µ δ

−iδξd(x)

)
gc
def δ

iδJf µ(x)

δ

iδξ
e

(x)
. (542)

where the form on the 2nd line is obtained by partial integration.
So, as usual, we must consider what terms must be brought down from
the SI derivatives of the exponentials appearing in Z0[J ]Z0[ξ, ξ] in
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order that the further derivatives appearing in Eq. (541) give a result
that does not vanish when the sources are set to 0.
I hope it is clear that one wants to bring down a new term for each of
the three derivatives appearing in iSI.

This yields

exp

[
iSI

(
δ

iδJ
,
δ

−iδξ
,
δ

iδξ

)]
Z0[J ]Z0[ξ, ξ]

= − i
∫
d

4
x

(
∂
µ δ

−iδξd(x)

)
gc
def δ

iδJf µ(x)

δ

iδξ
e

(x)

exp

{
−
i

2

∫
d

4
x
′
d

4
y
′
J
a′
µ′(x
′
)D
µ′ν′
a′b′ (x

′ − y′)Jb
′
ν′(y
′
)

}
exp

[
−i
∫
d

4
x
′
d

4
y
′
ξ
c′

(x
′
)∆
c′d′

(x
′ − y′)ξd

′
(y
′
)

]

3 − i
∫
d

4
x

(
∂
µ δ

−iδξd(x)

)
gc
def δ

iδJf µ(x)

[
−
∫
d

4
y1∆

ed′′
(x− y1)ξ

d′′
(y1)

]

exp

{
−
i

2

∫
d

4
x
′
d

4
y
′
J
a′
µ′(x
′
)D
µ′ν′
a′b′ (x

′ − y′)Jb
′
ν′(y
′
)

}
exp

[
−i
∫
d

4
x
′
d

4
y
′
ξ
c′

(x
′
)∆
c′d′

(x
′ − y′)ξd

′
(y
′
)

]

3 − i
∫
d

4
x

(
∂
µ δ

−iδξd(x)

)
gc
def

{
−
∫
d

4
y2D

µν′′
fb′′ (x− y2)J

b′′
ν′′(y2)

}[
−
∫
d

4
y1∆

ed′′
(x− y1)ξ

d′′
(y1)

]

exp

{
−
i

2

∫
d

4
x
′
d

4
y
′
J
a′
µ′(x
′
)D
µ′ν′
a′b′ (x

′ − y′)Jb
′
ν′(y
′
)

}
exp

[
−i
∫
d

4
x
′
d

4
y
′
ξ
c′

(x
′
)∆
c′d′

(x
′ − y′)ξd

′
(y
′
)

]

3 − i
∫
d

4
x

(
∂
µ
[
−
∫
d

4
x1ξ

c′′
(x1)∆

c′′d
(x1 − x)

])
gc
def

{
−
∫
d

4
y2D

µν′′
fb′′ (x− y2)J

b′′
ν′′(y2)

}
[
−
∫
d

4
y1∆

ed′′
(x− y1)ξ

d′′
(y1)

]
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exp

{
−
i

2

∫
d

4
x
′
d

4
y
′
J
a′
µ′(x
′
)D
µ′ν′
a′b′ (x

′ − y′)Jb
′
ν′(y
′
)

}
exp

[
−i
∫
d

4
x
′
d

4
y
′
ξ
c′

(x
′
)∆
c′d′

(x
′ − y′)ξd

′
(y
′
)

]
(543)

where there was a (−)3 that arose when δ
−iδξd(x)

had to go past

two Grassmann objects to get to the object it acted on and then the
Grassmann quantity brought down from the exponential was moved
back to the left past a single Grassmann object.
So, now we want

[
1

i

δ

δξ
b
(w)

] [
1

i

δ

δJaα(z)

] [
1

−i
δ

δξc(y)

]
(544)

operating on the above and then we set the sources to 0. As we have
said, we don’t want any more operations up in the exponential in order
to get the vertex we want. So, we must compute
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1

i

δ

δξ
b
(w)

 [1

i

δ

δJaα(z)

] [
1

−i
δ

δξc(y)

]
{
−i
∫
d

4
x

(
∂
µ
x

[
−
∫
d

4
x1ξ

c′′
(x1)∆

c′′d
(x1 − x)

])
gc
def

{
−
∫
d

4
y2D

µν′′
fb′′ (x− y2)J

b′′
ν′′(y2)

}
[
−
∫
d

4
y1∆

ed′′
(x− y1)ξ

d′′
(y1)

]}

=

1

i

δ

δξ
b
(w)

 [1

i

δ

δJaα(z)

]{
−i
∫
d

4
x

(
∂
µ
x

[
−
∫
d

4
x1ξ

c′′
(x1)∆

c′′d
(x1 − x)

])

gc
def

{
−
∫
d

4
y2D

µν′′
fb′′ (x− y2)J

b′′
ν′′(y2)

} [
i∆
ec

(x− y)
]}

=

1

i

δ

δξ
b
(w)

{−i ∫ d
4
x

(
∂
µ
x

[
−
∫
d

4
x1ξ

c′′
(x1)∆

c′′d
(x1 − x)

])
gc
def

{
iD
µα
fa

(x− z)
} [
i∆
ec

(x− y)
]}

=

{
−i
∫
d

4
x
(
∂
µ
x

[
i∆
bd

(w − x)
])
gc
def

{
iD
µα
fa

(x− z)
} [
i∆
ec

(x− y)
]}

=

{
−i
∫
d

4
x

(
∂
µ
x

[
i

∫
d

4
p̃e
ip·(x−w)

∆
bd

(p)

])
gc
def

{
i

∫
d

4
k̃e
ik·(x−z)

D
µα
fa

(k)

}
[
i

∫
d

4
q̃e
−iq·(x−y)

∆
ec

(q)

]}
(545)
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where at each stage we have kept careful track of Grassmann (−) signs,
and at the last stage I have chosen conventions in the exponentials so
that p and k are outgoing momenta and q is an incoming momentum.
We now perform the

∫
d4x and are left with the vertex with external

propagators attached in the form:

pµgcdef(2π)4δ4(p+ k − q)
[
i∆bd(p)

] [
iDµα

fa (k)
]

[i∆ec(q)] . (546)

Extracting the external propagators and relabeling to the original
external field indices, gives:

Mabc
α (k, p, q) = gcbcapα = gcabcpα , (547)

where we must remember that p is the momentum of the outgoing
ghost line.

If you compare closely to Ryder, you will see that I think he has the
wrong sign for this vertex. In general, my results agree with those of
Bailin and Love (after accounting for the fact that they adopted the
opposite convention for the sign of g!).
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In fact, as noted earlier, the sign of this vertex and the sign of the ghost
propagator are not separately physically relevant, but their relative sign
is physically relevant since it is fixed by the relative signs of the kinetic
and interaction terms appearing in the response function.

Diagrammatically, there is always one ghost-ghost-gluon vertex for
each ghost propagator and so it is only the product of the two signs
that is important.

The other very crucially important thing is the (−) sign associated
with a closed ghost loop.

Put together with the correct relative sign between ghost-ghost-gluon
vertex and ghost propagator, this loop minus sign guarantees that there
will be a cancellation of the unphysical degrees of freedom associated
with a closed gluon loop by a corresponding ghost loop.
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2nd quantization approach check

Perhaps we should try to check this using the 2nd quantization “killing”
approach. To establish notation, we assume that we write the ghost
fields as

ce(x) =
∑
~l

1
√

2V El

[
be(~l)e−il·x + de†(~l)eil·x

]
cd(x) =

∑
~l ′

1√
2V E~l ′

[
dd(~l ′)e−il

′·x + bd
†
(~l ′)eil

′·x
]

(548)

where the ba and da obey the fermion-like anticommutation relations.
And, of course, we have (in a basis where the ε’s are real)

Afµ(x) =
∑
t,~r

1
√

2V ω~r

[
εtµ(~r)aft (~r)e

−ir·x + εtµ(~r)aft
†
(~r)e+ir·x

]
.

(549)
To compute the Feynman vertex, we compute (s is the gluon helicity
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with polarization vector εαs (k) and we keep only the relevant terms in
the field expansions)

out〈p, b; k, s, a|q, c〉in = 〈p, b; k, s, a|iSI |q, c〉

= 〈0|aas (~k)b
b
(~p)

[
−i
∫
d

4
x(∂

µ
c
d

(x))gc
def

A
f
µ(x)c

e
(x)

]
b
c
(~q)
†|0〉

= −i
∫
d

4
x
∑
~l,~l ′,~r

∑
t

1√
2V E~l

√
2V E~l ′

√
2V ω~r

e
−il·x+il′·x+ir·x

〈0|aas (~k)b
b
(~p)

[
(il
′µ
b
d†

(~l
′
)gc
def

ε
t
µ(~r)a

f
t

†
(~r)b

e
(~l)

]
b
c
(~q)
†|0〉

=

∫
d

4
x
∑
~l,~l ′,~r

∑
t

1√
2V E~l

√
2V E~l ′

√
2V ω~r

e
−il·x+il′·x+ir·x

ε
t
µ(~r)〈0|

[
δstδafδ~r~k

] [
δbdδ~p~l ′l

′µ
] [
δceδ~l~q

]
gc
def |0〉

=
1√

2V E~q

√
2V E~p

√
2V ω~k

(2π)
4
δ
4
(p + k− q)ε

s
µ(~k)gc

bca
p
µ

≡
1√

2V E~q

√
2V E~p

√
2V ω~k

(2π)
4
δ
4
(p + k− q)ε

s
µ(~k)Mµ

abc
(550)

from which we obtain (where c belongs to incoming ghost of momentum
q, b to outgoing ghost of momentum p, and a to outgoing gluon of
momentum k) a result with opposite sign to Ryder (after careful index
mapping):

Mµ
abc = gcabcpµ . (551)
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4. The 4-gluon interaction
Doing this using functional derivative techniques is the homework
assignment. Here, I will do it using the creation/annihilation killing
operations approach.

���������

� �	����
 � �	
��	�
������������� ��
 ����� ��� � �� � � � � � � � � �  "!# ��� � �$��� �$
�� � � � �  � � � � � �  � !# ��� �$� ��� 
 � � � � � �  � � � �% � � � !�& � � �	'

Figure 6: The 4-gluon vertex diagram and answer to be obtained.
We wish to compute the S-matrix

〈p, λ1, a; q, λ2, b; r, λ3, c; s, λ4, d|S|0〉 = ε
λ1 ∗
α (~p)ε

λ2 ∗
β

(~q)ε
λ3 ∗
γ (~r)ε

λ4 ∗
δ

(~s)V
α,a;β,b; γ,c; δ,d

(p, q, r, s)

(552)

where V is the Feynman vertex and S = 1 + i
∫
d4xLint(x) + . . .

implies that we use i
∫
d4xLint(x) for the first non-trivial tree-level

vertex, and the relevant term in the interaction Lagrangian is the
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quartic term from the quartic interaction:

Lint(x) = −
1

4
F eµνF

µν e 3 −
1

4
g2cefgcef

′g′AfµA
g
νA

µ f ′Aν g
′

(553)

with all the A fields evaluated at x. To avoid writing factors that we
clearly understand, I will not include the 1/

√
2V ω factors that are in

the Fourier expansions of the A fields. We have seen earlier that these
are extracted as multipliers when we define the M for the process
— it is M that defines our Feynman rules. I will also only write the
a† parts of the fields in L as we need 4 a†’s to contract (commute)
against the a’s associated with forming the outgoing state. So, what
we have is then

〈p, λ1, a; q, λ2, b; r, λ3, c; s, λ4, d|S|0〉

3 −
i

4
g

2
c
efg
c
ef′g′

∫
d

4
x〈0|aλ1

a (~p)a
λ2
b

(~q)a
λ3
c (~r)a

λ4
d

(~s)
∑

~p′,~q′,~r′,~s′

∑
λ′1,λ
′
2,λ
′
3,λ
′
4[

a
λ′1 †
f

(~p
′
)ε
λ′1 ∗
µ (~p

′
)e
ix·p′

] [
a
λ′2 †
g (~q

′
)ε
λ′2 ∗
ν (~q

′
)e
ix·q′

] [
a
λ′3 †
f′ (~r

′
)ε
λ′3 µ ∗(~r′)eix·r

′]
[
a
λ′4 †
g′ (~s

′
)ε
λ′4 ν ∗(~s′)eix·s

′]
|0〉

(554)

Now, altogether there are 4! = 4 × 6 ways in which we can get a
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non-zero contribution using a particular matching up to obtain four
[a, a†] commutators. Of these, only 6 give different algebraic forms
and each of these 6 algebraic forms is duplicated 4 times; this latter
factor of 4 cancels the 1/4 out in front. Let us display the term which
the notation employed is designed to most easily single out. This is
the one that arises from

[aλ1
a (p), a

λ′1 †
f (p′)] = δλ1 λ

′
1δa fδ~p~p ′ (555)

[aλ2
b (q), aλ

′
2 †
g (q′)] = δλ2 λ

′
2δb gδ~q~q ′ (556)

[aλ3
c (r), a

λ′3 †
f ′ (r′)] = δλ3 λ

′
3δc f

′
δ~r~r ′ (557)

[aλ4
d (s), a

λ′4 †
g′ (s′)] = δλ4 λ

′
4δd g

′
δ~s~s ′ . (558)

We first note that after using the δ...’s to perform the p′, q′, r′, s′

sums, we develop the integral∫
d4xeix·(p+q+r+s) = (2π)4δ4(p+ q + r + s) , (559)

which is the standard momentum conservation function for the 4
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outgoing gluons that we expect to obtain. This same factor emerges
for every one of the ‘contractions’ that we discuss below and so we
shall not continue to write it. It is a common factor to all the vertex
contributions given below. We will denote the term we have discussed
above as the a→ f, b→ g, c→ f ′, d→ g′ contraction, for which we
obtain the result given below:

−
i

4
g2ceabcecdελ1 ∗

µ (~p)ελ3 µ ∗(~r)ελ2 ∗
ν (~q)ελ4 ν ∗(~s)

= −
i

4
g2ceabcecdgαγgβδελ1 ∗

α (~p)ελ2 ∗
β (~q)ελ3 ∗

γ (~r)ελ4 ∗
δ (~s) (560)

As usual, in the 2nd line, I have restated the Lorentz dot products
of the ε’s using the metric tensor. This is always a necessary step in
extracting the vertex function as defined in Eq. (552). Removing the
ε’s, gives the first entry in our list of ‘contraction’ contributions to the
vertex function:

a→ f, b→ g, c→ f ′, d→ g′ : −
i

4
g2ceabcecdgαγgβδ(561)

So, now where do the other 3 contributions that take exactly the same
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algebraic form come from. First, if we interchange (α, a) ↔ (β, b)
and (γ, c) ↔ (δ, d), the metric tensors simply switch places while we
can use cebacedc = (−ceab)(−cecd) = ceabcecd to find that we get the
same result:

a→ g, b→ f, c→ g′, d→ f ′ : −
i

4
g2ceabcecdgαγgβδ .(562)

Next, we can note that we get another two completely equivalent terms
by interchanging the roles of f, g ↔ f ′, g′ — note that this leaves the
AµA

µ contraction unaltered and the AνAν contraction unaltered in
each case:

a→ f ′, b→ g′, c→ f, d→ g : −
i

4
g2ceabcecdgαγgβδ (563)

a→ g′, b→ f ′, c→ g, d→ f : −
i

4
g2ceabcecdgαγgβδ .(564)

So, we have the required 4 identical terms to cancel the 1/4 factor. We
represent these 4 terms by the first sequence of contractions, writing(

a→ f, b→ g, c→ f
′
, d→ g

′
+ equiv.

)
: −ig2

c
eab
c
ecd
g
αγ
g
βδ
. (565)
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Now let us consider an inequivalent contraction that nonetheless gives
the same color factor out front. This is the b → f, a → g, c →
f ′, d→ g′ contraction. This interchanges the roles of (α, a)↔ (β, b)
giving us

b→ f, a→ g, c→ f
′
, d→ g

′
: −

i

4
g

2
c
eba
c
ecd
g
βγ
g
αδ
. (566)

Again, there are 3 more completely equivalent terms so that we have

(b→ f, a→ g, c→ f
′
, d→ g

′
+ equiv.) : −ig2

c
eba
c
ecd
g
βγ
g
αδ
. (567)

Hopefully, the game is clear now and we can write the complete
list without further ado. First, we give the forms obtained by the
permutations of the (α, a), (β, b), (γ, c), (δ, d) directly in the manner
that we have illustrated:(

a→ f, b→ g, c→ f
′
, d→ g

′
+ equiv.

)
: −ig2

c
eab
c
ecd
g
αγ
g
βδ

(568)

(b→ f, a→ g, c→ f
′
, d→ g

′
+ equiv.) : −ig2

c
eba
c
ecd
g
βγ
g
αδ

(569)(
a→ f, c→ g, b→ f

′
, d→ g

′
+ equiv.

)
: −ig2

c
eac
c
ebd
g
αβ
g
γδ

(570)(
a→ f, c→ g, d→ f

′
, b→ g

′
+ equiv.

)
: −ig2

c
eac
c
edb
g
αδ
g
γβ

(571)(
a→ f, d→ g, c→ f

′
, b→ g

′
+ equiv.

)
: −ig2

c
ead

c
ecb
g
αγ
g
βδ

(572)(
a→ f, d→ g, b→ f

′
, c→ g

′
+ equiv.

)
: −ig2

c
ead

c
ebc
g
αβ
g
γδ
. (573)
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Now, we have written these terms in the order such that they
can combined pair-wise using the antisymmetry of the c structure
constants. Thus, for instance, we can combine the 1st and 2nd term
by using ceba = −ceab in the 2nd term, and so forth. In this way, we
obtain the net result:

Mabcd
αβγδ(p, q, r, s) = −ig2

ceabcecd
(
g
αγ
g
βδ − gαδgβγ

)

+ c
eac
c
edb

(
g
αδ
g
γβ − gαβgγδ

)

+ c
ead

c
ebc
(
g
αβ
g
γδ − gαγgβδ

) , (574)

for the Lorentz-indexedM that is contracted with external polarizations
or with Lorentz indices of internal gluon propagators. The overall
momentum conservation factor of (2π)4δ4(p + q + r + s) and the
1/
√

2V ω factors that are present in V α,a;β,b;γ,c;δ,d(p, q, r, s) are
explicit multipliers of M and thus not included above.
Of course, this brute force technique can be avoided by simply starting
with the very 1st term form derived and using the fact that the result
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must be symmetric under interchange of any two gluons. Thus,

−ig2ceabcecdgαγgβδ (575)

under interchange (α, a)↔ (β, b) yields

−ig2cebacecdgβγgαδ = +ig2ceabcecdgβγgαδ , (576)

the second term in Eq. (574). If we interchange (α, a) ↔ (γ, c) we
get

−ig2ceabcecdgαγgβδ → −ig2cecbceadgγαgβδ = +ig2cebcceadgγαgβδ ,
(577)

the last term in Eq. (574), and so forth.
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5. The fermion-antifermion-gluon interaction

For this, we need to introduce the fermion part of the action. Recall that

LF = ψ
A

[iγµ(Dµ)AB −mδAB]ψB ,

with (Dµ)AB = ∂µδAB − igLaABA
a
µ . (578)

(Compare to Bailin-Love (9.15) to again check they have opposite sign of g.) The La matrix is the
matrix representing the group for the particular fermion representation
being considered. Here, A and B denote the “color” indices of the
fermion field. Dirac indices are not explicitly shown above, but are
implicitly present in the usual way.

Going through the usual game of first getting the Z0 we would end up
with the obvious close analogue of the QED result:

Z0(η, η) = exp

[
−i
∫
d4x′d4y′ηCγ (x′)[SF (x′ − y′)]γδδCDηDδ (y′)

]
.

(579)
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from which we would compute

〈0|T{ψBβ (w), ψ
A

α(z)}|0〉 =

(
1

i

δ

δηBβ (w)

)(
1

−i
δ

δηAα (z)

)
Z0(η, η)

∣∣∣∣∣
η=η=0

= [iSF (w − z)]βαδBA (580)

We next express the remaining part of LF using the functional derivative
form:

iSI = i

∫
d

4
x
′
[
−ig

(
1

−i
δ

δηC γ(x′)

)
iγ
ν
γδL

c
CD

(
1

i

δ

δJν c(x′)

)(
1

i

δ

δηD δ(x
′)

)]
. (581)

where I have switched to dummy indices and integration variable.
As usual, we imagine expanding exp[iSI] ∼ 1 + iSI and using the
perturbative approach to evaluating the vertex

〈0|T
{
ψAα(x)A

µa
(y)ψB β(z)

}
|0〉

=

(
1

i

δ

δηAα(x)

)(
1

i

δ

δJaµ(y)

)(
1

−i
δ

δηB β(z)

)
iSIZ0[J ]Z0[ξ, ξ]Z0[η, η] .

(582)

The procedure for getting a non-zero contribution after setting the
sources to 0 is now familiar. The derivatives in SI must each act on

J. Gunion 230B, 2nd Quarter of Field Theory 257



the exponentials in the appropriate Z0 to bring down a pre-multiplier
that has a single remaining source of the corresponding type, and then
the 3 functional derivatives defining the time-ordered product act on the
remaining single sources in the 3 pre-multipliers.

So, we focus first on
iSIZ0[J ]Z0[η, η] = i

∫
d

4
x
′
[
−ig

(
1

−i
δ

δηC γ(x′)

)
iγ
ν
γδL

c
CD

(
1

i

δ

δJν c(x′)

)(
1

i

δ

δηD δ(x′)

)]

× exp

{
−
i

2

∫
d

4
x
′
d

4
y
′
J
a′
µ′(x
′
)D
µ′ν′
a′b′ (x

′ − y′)Jb
′
ν′(y
′
)

}

× exp

[
−i
∫
d

4
x
′′
d

4
y
′′
η
A

(x
′′

)SF (x
′′ − y′′)δABη

B
(y
′′

)

]

3 igγ
ν
γδL

c
CD

∫
d

4
x
′
[
(−)

3
∫
d

4
x1η

A′
γ′ (x1)[SF (x1 − x

′
)]γ′γδA′C

]

×
{
−
∫
d

4
y2D

ν′′
ν cb′′(x

′ − y2)J
b′′
ν′′(y2)

}[
−
∫
d

4
y1[SF (x

′ − y1)]δδ′δDB′η
B′
δ′ (y1)

]
× exp{. . .} exp{. . .}

(583)where, we will not be needing the exponentials anymore. So the next
stage is: (

1

i

δ

δηAα(x)

)(
1

i

δ

δJaµ(y)

)(
1

−i
δ

δηB β(z)

)

×igγνγδL
c
CD

∫
d

4
x
′
[
(−)

3
∫
d

4
x1η

A′
γ′ (x1)[SF (x1 − x

′
)]γ′γδA′C

]

×
{
−
∫
d

4
y2D

ν′′
ν cb′′(x

′ − y2)J
b′′
ν′′(y2)

}[
−
∫
d

4
y1[SF (x

′ − y1)]δδ′δDB′η
B′
δ′ (y1)

]
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= igγ
ν
γδL

c
CD

∫
d

4
x
′
[

(−)3

i
δAA′δαγ′[SF (x− x′)]γ′γδA′C

]

×
{
−

1

i
D
µ
ν ca(x

′ − y)

}[
(
−1

−i
)(−)[SF (x

′ − z)]δδ′δDB′δB′Bδδ′β

]
= igγ

ν
γδL

c
CD

∫
d

4
x
′ [
iδAC [SF (x− x′)]αγ

]
×
{
iD
µ
ν (x
′ − y)δca

} [
i[SF (x

′ − z)]δβδDB

]
= ig

∫
d

4
x
′ [

[iSF (x− x′)]αγδAC
]
γ
ν
γδL

c
CD

[
[iSF (x

′ − z)]δβδDB

]
[iD

µ
ν ca(x

′ − y)]

= ig

∫
d

4
x
′
[∫

d
4
p̃
′
e
−ip′·(x−x′) [

SF (p
′
)
]
αγ

δAC

]
γ
ν
γδL

c
CD

×
[∫

d
4
p̃e
−ip·(x′−z) [

SF (p)
]
δβ δDB

] [∫
d

4
k̃e
ik·(x′−y)

D
µ
ν ca(k)

]
∝ igL

c
CDγ

ν
γδ(2π)

4
δ
4
(p
′

+ k− p)× external propagators and trivial plane wave factors

→ igL
a
ABγ

µ
αβ

(2π)
4
δ
4
(p
′

+ k− p) after standard relabeling . (584)

So, our Feynman rule forM (removing (2π)4δ4(p′+k−p) and 1/
√

2V E
factors that would appear in the reduction formalism approach) is:

[Mµa
AB]αβ(p, k, p′) = igLaABγ

µ
αβ . (585)

where A,α (B, β) is for the outgoing (incoming) fermion. (Ryder has
diagram labeling wrong and wrong sign, I claim.)
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• Summary

We are now in a position to summarize our results in a graphical manner.
We separate our summary into propagators and vertices.

����� � ���� �
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.0/
13254 ��6 7

Figure 7: Propagator rules for the gluon, the ghost and a fundamental representation

fermion. a, b, c = 1, . . . , (N2 − 1) are the gauge group indices (for SU(N)),

A,B = 1, . . . , N are fundamental fermion representation indices. For the gluon

propagator, we have written the simple α = 1 Feynman gauge form: more generally, the

propagator contains
[
−gµν +

kµkν

k2 (1− α)
]

. In the fermion propagator case, α, β are

Dirac indices.
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Figure 8: Feynman vertex rules: 3-gluon, ghost→ghost+gluon,
fermion→fermion+gluon and 4-gluon. In the 3rd diagram, α and
β are Dirac indices; the line labeled by p′ is the outgoing fermion.
All vertex rules are for M; they should be implicitly multiplied by a
(2π)4δ4(momentum conservation) when inserted into calculations.
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For comparison, I give the Feynman rules in the Bailin-Love conventions, which are also

those employed by Keith Ellis (http://theory.fnal.gov/people/ellis/Calctools/tools.html)

which, as stated earlier, assume the opposite sign for g. In addition: the 3-gluon vertex

is written in terms of incoming momenta; their capitalized A, . . . indices are a, . . . in

my notation and vice versa; they employ the SU(3) specializations of cabc → fabc

and LaCB → taCB =
λaCB

2 ; their gauge parameter λ corresponds to my α; they use

i, j for Dirac indices. After accounting for these convention differences and being very

careful with the indices, you can check that the rules below agree with my rules.
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• Gauge Invariance Check

We expect that Feynman amplitudes in QCD should obey Ward identities
such as found in QED.

In QED, Ward identities required that the external charged particles (the
fermions) be on-shell so that these sources of electromagnetic current
interactions corresponded to conserved currents.

In QED, we found that one did not need to have the external photons
on-shell, but we noted that this was a special case arising from the fact
that the photons themselves do not carry any charge.

In QCD, we expect that we will have to place the external gluons on-shell
as well as the external fermions, since in QCD the gluons themselves
carry charge.

So, let us verify this in one detailed sample calculation.

We consider gluon-gluon annihilation into a quark and antiquark. There
are 3 diagrams: t channel quark exchange; u channel quark exchange;
and s channel gluon exchange. These are depicted below, along with
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the momentum and other labels. All external momenta are defined as
flowing out of the diagram. We use a real ε basis.

g k1 a µ

g k2 b ν

p1 + k1

t-channel

q p1 A

q p2 B

g k1 a µ

g k2 b ν

k1 + k2

s-channel

q p1 A

q p2 B

g k1 a µ

g k2 b ν

p1 + k2

u-channel

q p1 A

q p2 B

Figure 9: The t, s and u channel Feynman diagrams for gg → qq.

For the two gluons, we take that with momentum k1 to have color a
and Lorentz index µ, and the 2nd to have color b and Lorentz index ν.
The outgoing quark has color label A and the outgoing antiquark has
color label B. The Feynman amplitudes for the two fermion exchange
diagrams are:

Mµν
t+uεµ(k1)εν(k2) = (ig)

2
uA(p1)

(
γ
µ
L
a
AC

iδCD
− /p2 − /k2 −m

γ
ν
L
b
DB

+γ
ν
L
b
AC

iδCD
/k2 + /p1 −m

γ
µ
L
a
DB

)
vB(p2)εµ(k1)εν(k2) .

(586)
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where we have hidden the Dirac indices on the spinors. Let us now
replace εν(k2) by k2 ν. We obtain (hiding the quark line color indices)

Mµν
t+uεµ(k1)k2 ν

= (ig)
2
u(p1)

(
γ
µ
L
a i

− /p2 − /k2 −m
/k2L

b
+ /k2L

b i

/k2 + /p1 −m
γ
µ
L
a
)
v(p2)εµ(k1)

= (ig)
2
u(p1)

(
γ
µ
L
a i

− /p2 − /k2 −m
( /k2 + /p2 +m)L

b
+ ( /k2 + /p1 −m)L

b i

/k2 + /p1 −m
γ
µ
L
a
)
v(p2)εµ(k1)

= (ig)
2
u(p1)

(
−iγµ[L

a
, L
b
]
)
v(p2)ε1µ

= −g2
u(p1)γ

µ
L
c
v(p2)ε1µf

abc
(587)

where we went from the 2nd line to the 3rd line by using

u(p1)(/p1 −m) = 0 , and (/p2 +m)v(p2) = 0. (588)

The final result is non-zero because the color matrices do not commute,
unlike the abelian case where one has (effectively) [I, I] = 0. It is the
gluon exchange diagram that will cancel the above non-zero contribution.
It has exactly the right structure as it involves the color structure factor
fabc (labeling the exchange gluon with color index c) and also a gluon
quark antiquark vertex which will be assigned Lc.
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The s-channel diagram takes the form (defining k3 = −k1 − k2, also
“outgoing” from the 3 gluon vertex)

Mµν
s εµ(k1)εν(k2)

= igu(p1)γ
ρ′
L
c
v(p2)

−igρ′ρ
k2

3

gf
acb

[
g
µν

(k1 − k2)
ρ

+ g
νρ

(k2 − k3)
µ

+g
ρµ

(k3 − k1)
ν
]
εµ(k1)εν(k2)

ε2→k2
= igu(p1)γρL

c
v(p2)

−i
k2

3

gf
acb

[k
µ
2 (k1 − k2)

ρ
+ k

ρ
2 (k2 − k3)

µ
+ g

ρµ
(k3 − k1) · k2]εµ(k1)

k2→−k3−k1
= igu(p1)γρL

c
v(p2)

−i
k2

3

gf
acb

[−gρµk2
3 + g

ρµ
k

2
1 + k

ρ
3k
µ
3 + k

ρ
1k
µ
1 ]εµ(k1)

k1·ε1=0 , k2
1=0

= igu(p1)γρL
c
v(p2)

−i
k2

3

gf
acb

[−gρµk2
3 + k

ρ
3k
µ
3 ]εµ(k1)

u(p1) /k3v(p2)=0
= igu(p1)γ

µ
L
c
v(p2)(−ig)f

acb
(−)εµ(k1) (remember: k3 = p1 + p2)

= g
2
u(p1)γ

µ
L
c
v(p2)f

abc
ε1µ (589)

where we had to be careful to note our clockwise convention for the
3-gluon vertex to write facb and only in the last line converted to
fabc = −facb. Obviously, this result cancels the result from the t + u
channel diagrams and we have the appropriate Ward identity. However,
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you will note that this cancellation depended on:

1. The coupling constant for the quark-antiquark-gluon interaction had to
be the same as that for the 3-gluon interaction.
This, of course, came directly from the requirement of invariance
under gauge transformations of the 2nd kind which correlates these
two couplings according to the minimal substitution rule.

2. We had to use ε1µk
µ
1 = 0 and k2

1 = 0, i.e. we had to keep all
the “charged” particles on-shell and physical, that is having transverse
polarization.

• In a similar way, we could consider the process gg → gg. There are s,
t, and u channel g-exchange diagrams, and in addition, a diagram with
all four external gluons coming together at a single point (the quartic
interaction vertex term).

If we tried to check for the Ward identity without the “contact” quartic
interaction diagram, we would have failed. By including the contact
interaction diagram, the Ward identity is satisfied, provided the g appearing
there is the same as the g in the 3-gluon interaction vertices.

Thus, once again the full gauge invariance under gauge transformations
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of the 2nd kind is required for a sensible theory with Ward identities,
which, in turn, are crucial for a renormalizable theory.

• The role of ghosts

In proving the Ward identity above, we had to assume that the 2nd gauge
boson was transverse (k1 · ε1 = 0).

Should we have expected that this would come out of the argument
rather than having to be an input? In QED, the Feynman diagrams
predict that the photons produced by e+e− annihilation are transverse.
Amplitudes for producing the two other polarization states cancelled one
another. Recall:

If we go to a Lorentz frame where kµ = (k, 0, 0, k) has only a direction
3 vector component, then, in the Lorentz gauge we know that ε1(~k) =

(0, 1, 0, 0) and ε2(~k) = (0, 0, 1, 0), i.e. ε1
1 = 1 and ε2

2 = 1, all others
zero. So,

X = |M1|2 + |M2|2 , (590)

where the subscripts are the Lorentz indices. The Ward identity reduces
to

k(M0 +M3) = 0 , ⇒ M0 = −M3 . (591)

J. Gunion 230B, 2nd Quarter of Field Theory 268



This is the cancellation of which I speak. It meant that we could equally
well write

X = |M1|2 + |M2|2 + |M3|2 − |M0|2 = −gµνMµM∗ν = −MνM∗ν .
(592)

So, effectively, we could use the replacement∑
r=1,2

εµr (~k)ενr(
~k)→ −gµν . (593)

All of this fails in the case of QCD!

This is related to the question of how the optical theorem works in QCD.
The optical theorem says that, for example, if you have qq → qq at
one loop with intermediate gg states mediating the loop, then by taking
the imaginary part of this diagram you should get something proportional
to the amplitude-squared for qq → gg at tree-level. Without including
the ghost-ghost intermediate states, taking the imaginary part gives
you something that includes contributions to qq → qq corresponding to
unphysical intermediate gg polarization states. The role of the ghost-
loop intermediaries is to cancel away these unphysical polarization states
so that the optical theorem (a statement of probability conservation) is
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obeyed.

General Derivation of Optical Theorem

Let us write the S matrix in the form S = 1 + iT , in which case unitarity
S†S = 1 takes the form

−i(T − T †) = T †T . (594)

Take the matrix element between two-particle states, 〈p1p2| and |k1k2〉,
and use the definition of M that has an extra i compared to what we
have been employing (which is more convenient for the moment):

〈p1p2|iT |k1k2〉 =
1√

2V E~p1

1√
2V E~p2

1√
2V E~k1

1√
2V E~k2

(2π)
4
δ
4
(p1 + p2 − k1 − k2)iM̃(k1k2 → p1p2) .

(595)

The left hand side of Eq. (594) becomes

1√
2V E~p1

1√
2V E~p2

1√
2V E~k1

1√
2V E~k2

(2π)
4
δ

4
(p1 + p2 − k1 − k2)

×
[
−iM̃(k1k2 → p1p2) + iM̃∗

(p1p2 → k1k2)
]
. (596)
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Meanwhile, on the right hand side, we insert a complete set of states
labeled by momentum states {qi} and find

〈p1p2|T
†
T |k1k2〉 =

∑
n

 n∏
i=1

∫
V
d3qi

(2π)3

 〈p1p2|T
†|{qi}〉〈{qi}|T |k1k2〉

= (2π)
4
δ
4
(p1 + p2 − k1 − k2)

∑
n

 n∏
i=1

∫
V
d3qi

(2π)3


×

1√
2V E~p1

1√
2V E~p2

1√
2V E~k1

1√
2V E~k2

 n∏
i=1

1√
2V E~qi


2

×M̃∗(p1p2 → {qi})M̃(k1k2 → {qi})(2π)
4
δ
4
(k1 + k2 −

∑
i

qi) (597)

where we used the relationship between T and M̃. Equating the two
sides of our starting equation and removing the overall (2π)4δ4(p1 +p2−
k1 − k2) gives[

−iM̃(k1k2 → p1p2) + iM̃∗(p1p2 → k1k2)
]

=
∑
n

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
×M̃∗(p1p2 → {qi})M̃(k1k2 → {qi})(2π)4δ4(k1 + k2 −

∑
i

qi) .
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(598)

Let us now take the forward case of p1 = k1 and p2 = k2. In this case,
the above relation can be abbreviated as

2ImM̃(k1k2 → k1k2) =
∑
f

∫
dΠfM̃∗

(k1k2 → f)M̃(k1k2 → f)

= 4Ecmpcmσtot(k1k2 → anything)
small masses→ 2sσtot(k1k2 → anything) . (599)

Back to the role of ghosts

We can elucidate some of the words describing the role of ghosts in
satisfying unitarity constraints by doing a little calculation. Consider
kµ = (k0, ~k) with k2 = 0. There are two purely spatial vectors
orthogonal to ~k which define the transverse polarizations for a vector
boson of momentum k. Our normal approach to completing the basis
set is to include the longitudinal polarization state, with polarization
parallel to ~k, and the timelike polarization state. Instead, let us employ
two lightlike linear combinations of these latter states with polarization
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vectors parallel to the vectors kµ and k̃µ = (k0,−~k):

ε+
µ(k) =

(
k0

√
2|~k|

,
~k
√

2|~k|

)
, ε−µ (k) =

(
k0

√
2|~k|

,−
~k
√

2|~k|

)
. (600)

We call these the forward and backward lightlike polarization vectors.
Together with the transverse states εTµ(k), i = 1, 2, we have a complete
basis with

εTi ·ε
∗ T
j = −δij, ε+·εTi = ε−·εTi = 0, ε+·ε+ = ε−·ε− = 0, ε+·ε− = 1 .

(601)
They also satisfy the completeness relation

gµν = ε−µ ε
+ ∗
ν + ε+

µε
−∗
ν −

∑
i=1,2

εTi µε
T ∗
i ν . (602)

Let us now convert our earlier gg → qq calculation to qq → gg (which
just means we need to replace u by v and v by u with appropriate
momentum arguments, p1 for the incoming q and p2 for the incoming q)

and compute the amplitude for outgoing gluons, which we shall call iM̃′
(the amplitude for incoming gluons being in our new notation iM̃).
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Let us in particular consider the case where the outgoing gluons have the
polarizations ε−(k1) and ε+(k2). Since ε+ ∗

ν (k2) = k2 ν√
2|~k2|

, we will get the

same formulae (aside from above spinor replacements and an extra factor
of 1√

2|~k2|
) as obtained after the gauge invariance game for the t + u

channel diagrams as before and it is only iM̃′µνs ε−∗µ (k1)ε
+ ∗
ν (k2) that we

must reexamine. For this we obtain the same piece as before (with extra
1√

2|~k2|
) that cancels the t+ u diagrams, plus a piece that for transverse

polarizations vanished, but now no longer vanishes. This part arises since
ε−∗(k1) · k1 6= 0. It is obtained from Eq. (589) as shown below:

iM̃′µνs ε
−∗
µ (k1)ε

+ ∗
ν (k2) 3 igv(p1)γρL

c
u(p2)

−i
k2

3

gf
acb 1
√

2|~k2|
[k
ρ
1k
µ
1 ]ε
−∗
µ (k1)

= igv(p1)γρL
c
u(p2)

−i
k2

3

gf
acb

k
ρ
1
|~k1|
|~k2|

. (603)

In the center of mass, we can set |~k1| = |~k2|. I will implicitly use this
frame in what follows. (I have not quite figured out how the ensuing
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calculations work in some other frame.)

So, it appears that there is a non-zero amplitude for the unphysical
process of making two gluons with these lightlike polarizations.

Of course, for tree-level processes we can just simply say that the
only external physical gluon states we allow are those with transverse
polarizations.

But, these unphysical polarizations have the potential for getting us
into trouble when we go to loop diagrams and try to apply the optical
theorem. Why is this?

According to the optical theorem, two times the imaginary part of
M̃(qq → (1 − loop) → qq) coming from the indicated diagrams and
computed in the forward momentum configuration (i.e. initial momenta
equal to final momenta) is equal to the absolute square of the qq → gg
amplitude integrated over the gg final state phase space and keeping
only physical intermediate 2-particle states — i.e. transversely polarized
gluons. The proof appeared above. This does not work if we consider
only the gluon loop!
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q p1 A q p1 A

q p2 B q p2 B
g k2 b

g k1 a
q p1 A

q p2 B
c k2 b

c k1 a

Figure 10: The gluon-loop with two s-channel exchanges and the ghost
loop. In the gluon-loop case, where we show an s-channel exchange, one
should actually sum over the s, t and u-channel diagrams.

For the gluon loop, if we replace the gluon propagator gµν’s by the sum
over four polarizations, Eq. (602), it appears that all the polarizations,
including the unphysical ones, should be included for the gauge bosons
in the sum over the qq → gg amplitudes absolute squared. It is
the qq → (ghost − loop) → qq diagram that must be added to the
one-loop qq → (gluon − loop) → qq amplitude computation. The
ghost loop cancels off the loop contributions coming from the unphysical
polarizations hidden in the gµν’s and only transverse polarizations for the
final state g’s need be included in summing over the qq → gg squared
amplitudes.
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So, let us show this in detail. We write the amplitude for qq → gg in
the form

iM̃′µνε∗µ(k1)ε
∗
ν(k2) . (604)

The corresponding amplitude for gg → qq is that which we have already
written down and is of the form

iM̃µνεµ(k1)εν(k2) , (605)

where, of course, the k1 and k2 are the same since we are examining the
situation where the initial state of the gg → qq process is the same as
the final state of the qq → gg process.

The Cutkosky rules state that4 DiscM̃ = 2iImM̃ for the qq → (gluon−
loop) → qq diagram is obtained by replacing the “cut” gauge boson
propagators with momentum ki by

−igµν(−2πi)δ+(k2
i) , (606)

where the δ+ means “keep only the positive energy solution” (i.e. θ(k0
i))

4Here, you should think of M̃ as an analytic function with a branch cut across which there is a discontinuity. The
branch cut begins when the incoming cm energy is sufficient for the process to take place. A sketchy proof of the
Cutkosky rules will be given when renormalization is discussed.
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and where the −igµν is simply the numerator part of the propagator. I
will not keep writing the +, but you should assume it is implicitly there.
The (−2πi)δ(k2

i) can sort of be thought of as the discontinuity associated
with the propagator obtained by replacing +iε by −iε. We make this
replacement for both the k1 and k2 gluon propagators, thereby turning
the two 4-dimensional loop integrals into two 3-dimensional integrals as
below:

∫
d4k1

(2π)4

d4k2

(2π)4
(2π)4δ4(P − k1 − k2)(−2πi)2δ(k2

1)δ(k
2
2)

= (−i)2

∫
d3~k1

(2π)32|k1|
d3~k2

(2π)32|k2|
(2π)4δ4(P − k1 − k2)

= (−i)2

∫
dΠ (607)

which is, aside from the (−i)2, exactly the form of the final state phase
space for the gg final state of qq → gg.

So, the net result for 2iImM̃(qq → (gluon− loop)→ qq) coming from
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the diagram is ∫
dΠ

1

2
(iM̃′µν)gµρgνσ(iM̃ρσ) , (608)

where the 1
2

is the appropriate “symmetry” factor for the gluon-loop.

Now we introduce the representation Eq. (602) for the two metric tensors.

1. The pieces that have only transverse polarizations correspond to the
expected imaginary part associated with qq → gg with transverse
polarizations for the gluons.

2. The cross terms between a transverse substitution for one metric
tensor and a lightlike substitution for the other vanish. Just follow the
Ward identity proof noting that one of the gluons just has transverse
polarizations — we showed precisely that (again, we are using iM̃ in
place of M for this material):

iM̃µνεT ∗µ (k1)ε
+ ∗
ν (k2) = 0 (609)

since ε+ ∗
ν (k2) ∝ k2 ν. Precisely the same result applies also for iM̃′.5

5This material is similar to that in Peskin’s Chapt. 16, but at this point I start disagreeing with him. In particular,
it is always ε+

µ(k) that is proportional to kµ, regardless of whether we are talking about k1 or k2.

J. Gunion 230B, 2nd Quarter of Field Theory 279



Similarly, if we keep the k2 gluon transverse and use ε+ ∗
ν (k1) ∝ k1 ν,

we will get zero. Since the non-transverse part of the gµν replacement
always includes at least one ε+(k1) or one ε+(k2), we will get zero for
all such cross terms.

3. If we make lightlike substitutions for both metric tensors then four
different types of contributions arise. We must be careful. We write
(keeping only the lightlike parts and dropping the star notation since
actually everything is real)

gµρgνσ 3 (ε
−
µ (k1)ε

+
ρ (k1) + ε

+
µ(k1)ε

−
ρ (k1))(ε

−
ν (k2)ε

+
σ(k2) + ε

+
ν (k2)ε

−
σ (k2)) (610)

We saw that if we have ε−µ (k1)ε
+
ν (k2) then we have a non-zero residual.

The same applies if we have ε+
µ(k1)ε

−
ν (k2). And also for the similar

structures in the ρσ indices: ε−ρ (k1)ε
+
σ(k2) and ε+

ρ (k1)ε
−
σ (k2) will give

non-zero residuals.
If we have ε+

µ(k1)ε
+
ν (k2), then the residual will be proportional to

k2
1 = 0, so such a term vanishes. Similarly, ε−µ (k1)ε

−
ν (k2) will be

proportional to k2
2 = 0.

Thus, the only cross terms that give a (dangerous) non-zero result are:

ε−µ (k1)ε
+
ν (k2)ε

−
ρ (k1)ε

+
σ(k2) + ε+

µ(k1)ε
−
ν (k2)ε

+
ρ (k1)ε

−
σ (k2) (611)
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4. The structure that arises from the above can be read off of Eq. (603).
We get

1

2

(
igv(p2)γρL

c
u(p1)

i

k2
3

gf
abc
k
ρ
1

)(
igu(p1)γρ′L

c′
v(p2)

i

k2
3

gf
abc′
k
ρ′
1

)
+(k1 ↔ k2) .

(612)

Now, the two terms above are actually equal since

v(p2)γρ(k1 + k2)
ρu(p1) = v(p2)γρ(p1 + p2)

ρu(p1) = 0 , (613)

where we used the Dirac equations for the spinors.
5. So, what is it that cancels this stuff? It is, of course, the diagram

corresponding to qq → (ghost− loop)→ qq. We take the imaginary
part of this in the same way so that each propagator is replaced
by i(−2πi)δ(k2

i), and convert to the phase space form. Using the
ghost-ghost-gluon vertex, we find the result for qq → c(k1) + c(k2):

iM̃′ghost = igv(p2)γρL
cu(p1)

i

k2
3

gfabckρ1 (614)
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for the qq → gg direction and

iM̃ghost = igu(p1)γρ′L
c′v(p2)

i

k2
3

gfac
′bkρ

′

2 (615)

for the gg → qq direction. In the latter term, we replace kρ
′

2 →
(p1 + p2 − k1)

ρ′, use the fact that the (p1 + p2)
ρ′ portion gives

zero by virtue of the Dirac equations for v(p2) and u(p1) and use

fac
′b = −fabc′. The product (iM̃′ghost)(iM̃ghost) is then of exactly

the same form as the first of the two gluon-loop terms in Eq. (612);
the factor of 1

2
in the latter is compensated by the fact that the 2nd

product term simply doubles the first product term. It would seem
that the ghost loop simply doubles the net result from the gluon loop?
Is there some reason for which they cancel? The answer is YES. They
cancel because we still must include the (−) sign for the ghost loop.

So, we have verified that the Faddeev-Popov ghosts serve to cancel
the timelike and longitudinal polarization states of the gauge bosons in
the context of situations (such as unitarity) where the gauge bosons of
internal loops are placed on shell.
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• Separating Color Algebra from Dirac/Feynman Algebra

We will now return to M in the following.

It will be convenient to separate off some additional i’s into the color
algebra (as opposed to the momentum, Dirac, Lorentz algebra) by writing

gcabc = (−ig)(icabc) for the 3-g and gh-gh-g vertex

−ig2ceabcecd = (ig2)(iceab)(icecd) for the 4-g vertex .

Our Feynman rules for M will then take the factorized form:

1. (−) sign for closed fermion or ghost loops;

2.
∫ d4ki

(2π)4 for each independent loop i;

3. Other internal loop momenta are determined by momentum conservation
at each vertex;

4. Symmetry factors, such as a factor of 1/2 for gluon loop insertion into
gluon propagator;

5. Times, the following graphical rules.
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Figure 11: Propagator rules for the gluon, the ghost and a fundamental
representation fermion in the Feynman/color factorized form.
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Figure 12: Factorized forms for Feynman vertex rules: 3-gluon, ghost→ghost+gluon,

fermion→fermion+gluon and 4-gluon. We will draw a separate Feynman/momentum diagram times a

color diagram for each of the expressions given; in particular, the 4-gluon vertex will be reduced to the

sum of three pieces, each represented in this factorized form. Note that I have set up a certain clock-wise

convention for the icabc factors; in order to do this for the three 4-gluon terms, I changed the 2nd and 3rd

metric tensor combination signs.
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Figure 13: The color diagrams for the 3-gluon, ghost→ghost+gluon,
fermion→fermion+gluon diagrams.

J. Gunion 230B, 2nd Quarter of Field Theory 286



�

� �

�

� ���	� � � ��
 ���	� ��� � 


�

� �

�

� ���	� �	�
��
 ���	� � � � 


�

� �

�

� ���	� � � ��
 ����� ��� � 


Figure 14: The color diagrams for the three subdiagrams coming from the
4-gluon interaction. They have an s-, u- and t-channel type topology,
respectively, from the perspective of the original diagram.

J. Gunion 230B, 2nd Quarter of Field Theory 287



Color Algebra Techniques

• We now need to learn a bit better how to deal with color algebra. There
are many different techniques. Here, I will discuss a technique developed
by Cvitanovic in PRD14, p1536.

It is a diagrammatically based technique, that once mastered allows
extremely rapid computation of color factors. We will focus on the
application to SU(N) groups, and in particular our notation will be
adapted for QCD SU(3).

Cvitanovic uses slightly different conventions regarding index names than

those I have employed above. In his notation a→ i for the Li = λi

2
, and

A→ a for the fundamental fermion representation color index. I will try
to stick to our earlier notation.

So, we have

[La, Lb] = i
∑
c′

cabc
′
Lc
′

(616)
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Tr[La] = 0 (617)

Tr[LaLb] =
1

2
δab (618)

icabc = 2Tr[Lc[La, Lb]] = 2Tr[LaLbLc − LcLbLa] (619)

2
∑
a

(La)BA(La)DC = δDAδBC −
1

N
δBAδDC , (620)

where the latter applies in the conventional representations of the La’s,
[e.g. the ~τ/2 matrices for SU(2) or the ~λ/2 matrices for SU(3), as you
can check] and agrees with the trace condition since we have from (618)

that Tr[LaLa] = 1
2
δaa = N2−1

2
whereas (620) implies

2Tr[LaLa] = δAAδBB −
1

N
δAA = N2 − 1 . (621)

The− 1
N

term in (620) is simply keeping track of the traceless requirement
for the generators of SU(N). Finally, we note that

LcBA = −LcAB (622)

in a real representation basis (fundamental representations are not real
in general).
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• We now convert the above identities into diagrammatic equivalent forms
using our previously established notation.

Eq. (617) becomes � �

Eq. (618) becomes �
�

�

Eq. (619) becomes
(note arrows on loops)

� ��� � �

Eq. (620) becomes
(note arrows)

� ���� � �� �

In words, this last result says (in QCD) that a gluon is almost a
quark-antiquark combination except that the singlet quark-antiquark
combination is subtracted. Finally,
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Eq. (622) becomes
(note arrow reversal)

� �

Let us give a simple, yet important application of these graphical rules:
the computation of the fundamental representation Casimir, CF . This is
defined algebraically by

∑
d

LdBCL
d
CA = CFδBA (623)

Graphically, this is
represented by:

� � � �

The computation is a simple application of Eq. (620). Graphically we
have:
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This implies that

CF =
N2 − 1

2N
=

4

3
for N = 3 (QCD). (624)

This same result can be obtained by a different graphical procedure that
makes use of Eq. (618) as shown below.
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Another little example that illustrates how we will use these color
computations when it comes to analyzing the effects of loops is the
following result.
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The other, and perhaps most important, Casimir operator is that for
the adjoint representation, i.e. the gluons themselves: (icade)(icdbe) =
CAδ

ba.

Graphically, this is
represented by:

� � � �

The computation is an application of Eq. (619). Graphically we have:

� �����������	��
 � 


where the (2)2 comes from using Eq. (619) twice, and the single (2)
comes from the fact that doing so actually yields 4 terms containing two
pairs of identical terms. Note: the arrows on the loops are in the same
direction for the 1st term and are in opposite directions for the 2nd term.

The first term inside the brackets is, using Eq. (620) (in graphical form),
the definition of CF and then Eq. (618) (in graphical form) for the
successive equalities:

� ���� � �� �

� �� �	� 
 � �� �
� �� �	� 
 �� � �� � ��
� � �
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The second term inside the brackets is reduced using the graphical forms
of Eqs. (620) and (618) as follows:

= 1
2[ − 1

N ]

= 1
2[ − 1

N ]

= 1
2[

1
2{ − 1

N } − 1
N (12)

2 ]

= 1
2[

1
2{(0)2 − 1

N (12) } − 1
N (12)

2 ]

= − 1
4N

The net result is then:

� �����������	��

�� �
��	� � � ���� � ���� �� � �
� � 
 �� � �! �� � � ��"� �
� #

implying that CA = N .
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It is useful to know that the values of CF and CA have powerful
experimental implications. For example, a quark moving along at high
momentum will radiate soft gluons (which then turn into hadrons) with
probability CF , whereas a gluon moving along at high momentum will
radiate additional soft gluons with probability CA. As a result the average
hadron multiplicity associated with a gluon jet will be larger than the
average multiplicity associated with a quark jet by the factor CA/CF .
This famous prediction was made in

Hadron Multiplicity in Color Gauge Theory Models. Stanley J. Brodsky
(SLAC) , J.F. Gunion (UC, Davis) . SLAC-PUB-1749, UCD-76-5, May
1976. 13pp. Published in Phys.Rev.Lett.37:402-405,1976.

and is now checked experimentally with quite good precision. For
example, in

Tests of Quantum Chromo Dynamics at e+ e- Colliders. Stefan Kluth
(Munich, Max Planck Inst.) . MPP-2006-19, Mar 2006. 91pp. Published
in Rept.Prog.Phys.69:1771-1846,2006. e-Print: hep-ex/0603011

The results from combined LEP data are

CA = 2.89± 0.21 , CF = 1.30± 0.09 . (625)
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and, for the ratio (in which some uncertainties cancel) is

CA

CF
= 2.23± 0.01(statistical)± 0.14(systematic) . (626)

Extracting these numbers from actual data is a bit of a tricky business as
there are finite phase space effects, mass effects, leading particle effects
and the need to precisely define a jet in a meaningful way using a cone
or other algorithm. You can look at the above thesis to see how much
work is actually involved.

Also, one must include higher order corrections to the naive multiplicity
ratio. These are significant.

Still, after all is said and done, the bottom line is very much as predicted.
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Finally, some additional triangle diagram type identities useful for loop
calculations are the following (perhaps assigned as homework). Note that
the directions of the arrows are reversed in the upper diagram compared
to the middle diagram.

� �
���
�

� �
���
�

� �
���
�

These vertex corrections control the evolution of αs (after renormalization)
with energy and, in particular, lead to the fact that αs decreases with
increasing energy (asymptotic freedom). The non-abelian structure turns
out to be critical for this kind of decrease.
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Spinor Algebra Techniques

It is useful to learn some clever calculational techniques that work
extremely well when the masses of the particles can be neglected. For some
particles, like the electron, photon, gluon, ..., this is a good approximation
at essentially all energies. For other particles, it is a good approximation
when the energies and momentum transfers all become large.

The approach I will introduce is based on the paper by Gunion and Kunszt
(GK) from which the spinor techniques originally derived: (“IMPROVED
ANALYTIC TECHNIQUES FOR TREE GRAPH CALCULATIONS AND
THE G G Q ANTI-Q LEPTON ANTI-LEPTON SUBPROCESS”, J.F.
Gunion, Z. Kunszt, Phys.Lett.B161:333,1985). Some aspects of the material
given below appear in Peskin problems 3.3, 5.3 and 5.6, Please let me know
if you spot any typos.

• One begins by defining some standardized spinors, and their inner
products. I will deviate somewhat from GK and begin ala Peskin by
first writing down the left-handed particle Dirac spinor for momentum
k0 = (E, 0, 0,−E). Peskin Eq. (3.49), states that particle spinors are
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given by

u =

( √
p · σξ√
p · σξ

)
, (627)

where σ is the 4-vector-like collection of 2× 2 matrices (1, σ1, σ2, σ3) ≡
(1, ~σ) and σ = (1,−~σ) and where

ξ(spin +ẑ) =

(
1
0

)
, ξ(spin −ẑ) =

(
0
1

)
. (628)

To construct a left-handed spinor for k0 (which is in the negative z

direction) we should employ +ẑ spin direction, i.e. ξ =

(
1
0

)
. From

this result one finds that the full 4-component spinor takes the form (in
the Weyl representation of the Dirac matrices)

uL 0 =
√

2E


1
0
0
0

 . (629)

Note that uL 0 is an eigenstate of PL = (1 − γ5)/2 which in the Weyl
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representation is

PL =

(
12×2 02×2

02×2 02×2

)
, (630)

as expected in the massless limit. We also need a standard right handed
spinor that will be an eigenstate of PR = (1 + γ5)/2 which, in the Weyl
representation takes the form

PR =

(
02×2 02×2

02×2 12×2

)
. (631)

As noted in Peskin, a convenient way to get such a state is to employ
k1 = (0, 1, 0, 0) and define uR 0 = /k1uL 0 = −γ1uL 0. That this is an
eigenstate of PR is obvious from

PRuR 0 = PR/k1uL 0 = /k1PLuL 0 = /k1uL 0 = uR 0 . (632)

Computing explicitly, we find

uR 0 =
√

2E


0
0
0
1

 . (633)
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which is indeed the spinor for momentum k0 and spin in the −ẑ direction
(i.e. in the same spatial direction as the 3-momentum of the k0 4-vector).

• Continuing to follow Peskin, the k0 spinors uL 0 and uR 0 are next used
to construct spinors uL(p) and uR(p) that are eigenstates of PL and
PR, respectively, and obey the Dirac equation /puL,R = 0. One writes

uL(p) =
/puR 0√
2p · k0

=
1√
p+
/p


0
0
0
1

 =
1√
p+


−p1 + ip2

p+

0
0

 (634)

where p+ ≡ p0 + p3 and the final form is obtained by explicitly writing
out

/p =

(
02×2 p · σ
p · σ 02×2

)
. (635)

That /puL(p) = 0 is evident from /p/p = p2 = 0 (for a massless particle).
That PLuL(p) = uL(p) is evident from PL/puR 0 = /pPRuR 0 = /puR 0.

J. Gunion 230B, 2nd Quarter of Field Theory 303



In a similar fashion, we construct

uR(p) =
/puL 0√
2p · k0

=
1√
p+


0
0
p+

p1 + ip2

 . (636)

However one arrives at these spinors (one could have just constructed
uR(p) and uL(p) explicitly by rotating uR 0 and uL 0 from the negative ẑ
momentum direction to the general p̂ direction), they are the right- and
left-handed spinors for a massless particle with momentum p as written
in the Weyl representation. The only difference at this point with GK is
that GK use the Dirac representation for these same spinors.

• Using these spinors we now construct the fundamental “inner products”.
To construct these, we also need

uR(p) = u†R(p)γ0 =
1√
p+

(
p+, p1 − ip2, 0, 0

)
(637)

uL(p) = u†L(p)γ0 =
1√
p+

(
0, 0,−(p1 + ip2), p+

)
(638)
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where the right-most expressions are obtained by explicitly taking the
u†R,L forms and multiplying by

γ0 =

(
02×2 12×2

12×2 02×2

)
, (639)

where we have given the Weyl form of γ0. The spinor “inner products”
are defined by

uR(k)uL(p) ≡ 〈k + |p−〉 =

√
p+

k+
(k

1 − ik2
)−

√
k+

p+
(p

1 − ip2
) (640)

uL(k)uR(p) ≡ 〈k− |p+〉 = −

√
p+

k+
(k

1
+ ik

2
) +

√
k+

p+
(p

1
+ ip

2
) , (641)

where the explicit expressions are simply those obtained by explicit
computation. In the bra-ket notation, the + or − denotes the R or L,
respectively, of the spinors. We also have, by explicit computation, the
results

uR(k)uR(p) = uL(k)uL(p) = 0 , i.e. 〈k + |p+〉 = 〈k− |p−〉 = 0 . (642)

This same result can be proved as follows. First, we note that

uR(k) = u
†
R(k)γ

0
= [PRuR(k)]

†
γ

0
= u
†
R(k)PRγ

0
= u
†
R(k)γ

0
PL = uR(k)PL (643)
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where we used the fact that {γ5, γ0} = 0 for the 4th equality. We may
then write, for example,

uR(k)uR(p) = uR(k)PLuR(p) = 0 (644)

where the last equality is simply the statement that uR is a right-handed
helicity spinor. More generally, we may prove using this latter kind of
technique that

〈k ± |(odd number of γ matrices)|p∓〉 = 0 (645)

〈k ± |(even number of γ matrices)|p±〉 = 0 (646)

• Various properties of these spinor inner products are immediately apparent
from their explicit expressions. First, we have

〈k + |p−〉 = −〈p+ |k−〉 , 〈k − |p+〉 = −〈p− |k+〉 . (647)
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Next, we note that

〈k + |p−〉∗ = 〈p− |k+〉 , (648)

as suggested by the bra-ket notation. Next, we may take the explicit
forms and compute

|〈k + |p−〉|2

=
k+

p+
[(p

1
)
2

+ (p
2
)
2
] +

p+

k+
[(k

1
)
2

+ (k
2
)
2
]− (p

1 − ip2
)(k

1
+ ik

2
)− (p

1
+ ip

2
)(k

1 − ik2
)

=
k+

p+
[(p

0
)
2 − (p

3
)
2
] +

p+

k+
[(k

0
)
2 − (k

3
)
2
]− 2p

1
k

1 − 2p
2
k

2

= (k
0

+ k
3
)(p

0 − p3
) + (p

0
+ p

3
)(k

0 − k3
)− 2p

1
k

1 − 2p
2
k

2

= 2(k
0
p

0 − k1
p

1 − k2
p

2 − k3
p

3
)

= 2p · k , (649)

with the same result for |〈k − |p+〉|2, implying that the inner products
can be thought of as the square roots of twice the dot product. Another
way of arriving at this same result illustrates some further manipulation
techniques:

|〈k + |p−〉|2

= 〈k + |p−〉〈k + |p−〉∗ = 〈k + |p−〉〈p− |k+〉 = 〈k + |(|p−〉〈p− | + |p+〉〈p + |)|k+〉
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= 〈k + |/p|k+〉 = 〈k + |/pPR|k+〉 = Tr[/pPR(|k+〉〈k + | + |k−〉〈k− |)]

= Tr[/p
1 + γ5

2
/k] = 2p · k , (650)

where for the 3rd equality we used Eq. (642) and for the 6th equality
we used the fact that PR|k−〉 = 0, as is obvious from the definition of
negative helicity and also the explicit expression for |k−〉 ≡ uL(k).

• Of course, we will also need the helicity states for antiparticles in
computing some processes. These are obtained starting with the Peskin
form

v =

( √
p · ση

−
√
p · ση

)
(651)

where

η(+ẑ spin) =

(
0
1

)
, η(−ẑ spin) =

(
1
0

)
. (652)

One then finds that

vL 0 =
√

2E


0
0
0
1

 = uR 0 , vR 0 =
√

2E


1
0
0
0

 = uL 0 , (653)
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with the result that for general momentum

v+(p) ≡ vR(p) = uL(p) ≡ u−(p) ≡ |p−〉 (654)

v−(p) ≡ vL(p) = uR(p) ≡ u+(p) ≡ |p+〉 . (655)

• Another very important identity is

〈k + |γµ|p+〉 = 〈p− |γµ|k−〉 . (656)

To prove this identity, we must basically use the charge conjugation
operator as defined in Peskin’s chapter 3. In particular, it may be verified
explicitly, using the forms given in Eqs. (634), (636) and (638), that

u±(k) = C[u∓(k)]T (657)

where

C = −iγ2γ0 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 (658)
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and, as always, the ± subscripts are shorthand for R and L, respectively.
Accepting this result we can now proceed to prove Eq. (656). We have

〈k + |γµ|p+〉 ≡ u+(k)γµu+(p) = u†+(k)γ0γµu+(p)

=
{
C[u−(k)]T

}†
γ0γµC[u−(p)]T

= u−(p)CT [γµ]T [γ0]T
{
C[u−(k)]T

}∗
= u−(p)CT [γµ]TCC−1[γ0]TC∗

{
[u†−(k)γ0]T

}∗
= u−(p)

[
C[γµ]TC

] [
C[γ0]TC

]
[γ0]†u−(k)

= u−(p)γµγ0γ0u−(k)

= u−(p)γµu−(k)

≡ 〈p− |γµ|k−〉 , (659)

where at various points we have used the facts that C = −CT =
−C−1 = C∗, that [γ0]† = γ0 and that C[γµ]TC = γµ. This latter is the
crux of the charge conjugation symmetry and may be explicitly verified
for each choice of µ using the explicit form of C and the explicit forms
of the γµ, all in the Weyl representation of course.
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• Polarization vectors for gluons (or photons) can be constructed as follows:

[εµ±(k, p)]∗ =
±〈k ± |γµ|p±〉
√

2〈p∓ |k±〉
. (660)

Here, p is any light-like momentum, p2 = 0. Note that kµ[εµ±(k, p)]∗ =
0 by virtue of 〈k ± |/k ≡ u±(k)/k = 0.

In particular, it is not hard to explicitly evaluate these expressions for the
case of k = (E, 0, 0, E). One finds

[εµ+(k, p)]∗ = −
1
√

2
(0, 1,−i, 0)−

√
2

p+

k+(p1 + ip2)
kµ = standard+βkµ ,

(661)
and

[εµ−(k, p)]∗ =
1
√

2
(0, 1, i, 0)−

√
2

p+

k+(p1 − ip2)
kµ = standard + β′kµ ,

(662)
where by “standard” we mean we are getting the results equivalent to
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the usual photon helicity circular polarizations defined by

εµ(±) = ∓
1
√

2
(0, 1,±i, 0) (663)

(i.e. without any ∗).

Note that the the pieces proportional to kµ in Eqs. (661) and (662) will
have no effect in the context of computing a gauge-invariant quantity so
long as our choices of polarizations correspond to some kind of gauge
choice.
Correspondingly, if we change the reference light-like momentum from p
to l let’s say, one finds, for example,

[ε
µ+

(k, p)]
∗ − [ε

µ+
(k, l)]

∗
=

1
√

2

[
〈k + |γµ|p+〉
〈p− |k+〉

−
〈k + |γµ|l+〉
〈l− |k+〉

]

=
1
√

2

〈l− |k+〉〈k + |γµ|p+〉 − 〈p− |k+〉〈k + |γµ|l+〉
〈p− |k+〉〈l− |k+〉

=
1
√

2

〈l− | /kγµ|p+〉 − 〈p− | /kγµ|l+〉
〈p− |k+〉〈l− |k+〉

=
1
√

2

〈l− | /kγµ|p+〉 + 〈l− |γµ /k|p+〉
〈p− |k+〉〈l− |k+〉

using the C game

=
√

2k
µ 〈l− |p+〉
〈p− |k+〉〈l− |k+〉

(664)
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This shows that if we change the light-like reference momentum of
one gluon from p to l, keeping reference momentum p for all other
external gluons, then the Ward identity (applied for the altered gluon)
guarantees that the result for the net amplitude (after summing all
Feynman diagrams of course) will remain unchanged.

It is easy to see what gauge choice we have made, by noting that
pµε

µ±∗(k, p) = 0 by virtue of /p|p±〉 = 0 (the massless Dirac equation).
This means that we are in a light-like axial gauge. This may also be
verified by computing the completeness sum:

∑
λ=±

ε
µ

(λ)[ε
ν

(λ)]
∗

=
〈k + |γµ|p+〉∗
√

2〈p− |k+〉∗
〈k + |γν|p+〉
√

2〈p− |k+〉
+
−〈k− |γµ|p−〉∗
√

2〈p + |k−〉∗
−〈k− |γν|p−〉
√

2〈p + |k−〉

=
〈p + |γµ|k+〉〈k + |γν|p+〉

2(2p · k)
+
〈p− |γµ|k−〉〈k− |γν|p−〉

2(2p · k)

=
Tr[/pγµPR /kγ

ν]

4p · k
+

Tr[/pγµPL /kγ
ν]

4p · k

=
Tr[/pγµ /kγν]

4p · k

= −gµν +
pµkν + pνkµ

p · k
, (665)

which is precisely the expression for the gluon propagator in the so-called
“light-like axial” gauge with the light-like axial vector n chosen to be p.
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• Now come the very important Fierz identities.

1. The fundamental identity, that is obtained as part of a Peskin problem
(5.3, see also problem 3.6) is:

(γµPR)αβ(γµPL)γδ = 2(PL)αδ(PR)γβ , (666)

where the Greek indices are Dirac indices. A proof following the Peskin
5.3 route appears in a short section following this section. If we now
sandwich the αβ between the two + spinors u+(a)α . . . u+(b)β, we
obtain

u+(a)α(γµPR)αβu+(b)β(γ
µ
PL)γδ = 2(PR)γβu+(b)β u+(a)α(PL)αδ = 2u+(b)γ u+(a)δ .

(667)

In our bra-ket notation, this is written as

〈a+ |γµPR|b+〉(γµPL)γδ = 2|b+〉γ〈a+ |δ (668)

or, since PR|b+〉 = |b+〉, simply

〈a+ |γµ|b+〉(γµPL)γδ = 2|b+〉γ〈a+ |δ , (669)
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or, dropping the explicit Dirac indices,

〈a+ |γµ|b+〉(γµPL) = 2|b+〉〈a+ | . (670)

Note that this result also implies, using Eq. (656), that

〈b− |γµ|a−〉(γµPL) = 2|b+〉〈a+ | . (671)

We can get related identities by sandwiching the γδ Dirac index items
with u−(b)γ . . . u−(a)δ. We obtain

〈b− |γµ|a−〉(γµPR) = 2|a−〉〈b− | (672)

and, after using Eq. (656) again,

〈a+ |γµ|b+〉(γµPR) = 2|a−〉〈b− | . (673)

2. A very important use of these identities is the evaluation of the typical
sum that appears in Feynman diagram calculations associated with an
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internally exchanged gluon:

〈a+ |γµ|b+〉〈c− |γµ|d−〉 = 〈a+ |γµ|b+〉〈c− |γµPL|d−〉
= 〈c− | [〈a+ |γµ|b+〉γµPL] |d−〉
= 〈c− | [2|b+〉〈a+ |] |d−〉
= 2〈c− |b+〉〈a+ |d−〉 . (674)

Using Eq. (656), we also find

〈a+ |γµ|b+〉〈c+ |γµ|d+〉 = 〈a+ |γµ|b+〉〈d− |γµ|c−〉
= 2〈a+ |c−〉〈d− |b+〉
= 2[−〈c+ |a−〉][−〈b− |d+〉]
= 2〈c+ |a−〉〈b− |d+〉
= . . . (675)

3. Finally, from the Fierz identities Eqs. (670)-(673), we find the important
identity needed when an external polarization for a gluon is Lorentz
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contracted with a γ matrix at some QCD vertex on a fermion line.
The result of such a contraction is to produce a /ε or /ε∗, where ε is
the gluon polarization. Using the explicit forms given earlier for ε∗±(k),
and the Fierz identities, we find

/ε∗±(k) =
±〈k ± |γµ|p±〉
√

2〈p∓ |k±〉
γµ(PL + PR)

= ±
√

2

{|k∓〉〈p∓ |+ |p±〉〈k ± |
〈p∓ |k±〉

}
. (676)

The specific forms of the Fierz identities (670)-(673) employed in
obtaining this result are:

〈k + |γµ|p+〉γµPL = 2|p+〉〈k + |
〈k + |γµ|p+〉γµPR = 2|k−〉〈p− |
〈k − |γµ|p−〉γµPL = 2|k+〉〈p+ |
〈k − |γµ|p−〉γµPR = 2|p−〉〈k − | . (677)
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4. There is one final Fierz-like identity that is useful in more complex
2→ 4 calculations than those we will be working on. However, I give
it for completeness. It reads in bra-ket notation

|b+〉〈a− | − |a+〉〈b− | = 〈a− |b+〉PR . (678)

If we sandwich this between 〈c− | . . . |d+〉, we obtain the identity:

〈c−|b+〉〈a−|d+〉−〈c−|a+〉〈b−|d+〉 = 〈a−|b+〉〈c−|d+〉 (679)

as well as related identities obtained by using the antisymmetry of the
spinor inner product at various locations in the above identity.

• So, now just a few words about using this formalism — in particular for
the gluons.

First, consider external gluons. The idea is to choose reference
momentum p in ε(k, p) that will simplify your calculation. Typically,
the simplification will occur if p is chosen equal to one of the external
fermion momenta. In this way, one or more diagrams can often be
zeroed. Of course, once you make a choice of p for computing one
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diagram, you must continue to make this same (gauge) choice for all
other diagrams. The sum of diagrams will be independent of this choice
of course, but the calculation will be vastly simpler if you make a choice
of p that zeroes as many diagrams as possible. Now, in many simple tree-
level computations involving external fermions you can actually choose
p differently for different external gluons. This is because the difference
between the ε(k, p) and ε(k, p′) introduced thereby is simply proportional
to k which will be connecting to a conserved current. This trick can be
employed for the cases we have considered.

For internal gluons, you should in principle use the full axial gauge
propagator. Again, for the calculations we are doing, this internal
propagator is attaching to at least one conserved fermionic current, and
so one can drop the non-gµν part of the gluon propagator. However, in
general one must be careful.

• The Fierz Identity

Here, we prove the identity

〈k − |γµ|p−〉γµPL = 2|k+〉〈p+ | (680)
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from which all the others follow trivially. Let us rewrite it in terms of the
old spinor notation:

uL(p1)γ
µuL(p2)[γµ

1

2
(1− γ5)]αβ = 2 [uR(p1)uR(p2)]αβ . (681)

Clearly, the right hand side of the above equation must just be some
4 × 4 matrix M in Dirac space and so it can be written as a linear
combination of the standard 16 Γ matrices (1, γ5, γµ, γµγ5, 1

2
[γµ, γν]).

The only question is which of these actually appear on the left hand side.

Now, from the rhs we see explicitly that γ5M = −Mγ5 since γ5uR =
+uR and uRγ5 = u†Rγ

0γ5 = −u†Rγ5γ0 = −u†Rγ0 = −uR.

Of the above listed 16 matrices, only γµ and γµγ
5 have this property.

Thus, we must have

M = γµ
1

2
(1− γ5)V µ + γµ

1

2
(1 + γ5)Wµ , (682)

where V µ and Wµ are 4-vectors. These 4 vectors can be computed
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using trace technology. For example, we project out V µ by taking

V ν =
1

2
Tr

[
1

2
(1− γ5)γνM

]
. (683)

Thus, we would compute

V ν =
1

2
Tr

[
1

2
(1− γ5)γν(2uR(p1)uR(p2))

]
=

1

2
Tr

[
γν

1

2
(1 + γ5)(2uR(p1)uR(p2))

]
=

1

2
Tr [γν2uR(p1)uR(p2))]

= uR(p2)γ
νuR(p1)

= uL(p1)γ
νuL(p2) , (684)

where in the last step we used Eq. (656). Meanwhile, we would compute
W ν as

W ν =
1

2
Tr

[
1

2
(1 + γ5)γν(2uR(p1)uR(p2))

]
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=
1

2
Tr

[
γν

1

2
(1− γ5)(2uR(p1)uR(p2))

]
= 0 , (685)

since (1 − γ5)uR = 0. Thus, we verify the identity we were aiming at.
The PR version of this identity was

uL(p1)γ
µuL(p2)[γµ

1

2
(1 + γ5)]αβ = 2 [uL(p2)uL(p1)]αβ . (686)

We would prove this in just the same manner as above except that it
would be W ν that would survive and we would compute

W ν =
1

2
Tr

[
1

2
(1 + γ5)γν(2uL(p2)uL(p1))

]
=

1

2
Tr

[
γν

1

2
(1− γ5)(2uL(p2)uL(p1))

]
=

1

2
Tr [γν2uL(p2)uL(p1))]

= uL(p1)γ
νuL(p2) , (687)
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The other two Fierz identities of Eq. (677) are obtained from the two
derived by just using Eq. (656).

• Applications

• Let us first consider the computation requested in Peskin 5.3(d), namely

dσ

dΩ
(e−R(k)e+

L(p)→ µ−R(k′)µ+
L(p′)) =

α2

4E2
cm

(1 + cos θ)2 . (688)

The Feynman graph was given earlier
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Figure 15: The one Feynman diagram contributing to e+e−→ µ+µ−.
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The amplitude desired is (remembering that v−(p) = |p+〉, etc.)

M = u+(k′)ieγρv−(p′)i
−gρσ

(p+ k)2
v−(p)ieγσu+(k)

= i
e2

s
〈k′ + |γρ|p′+〉〈p+ |γρ|k+〉

= i
e2

s
2〈p+ |k′−〉〈p′ − |k+〉 , (689)

where we used one of the Fierz identities, Eq. (675), for the last equality
above. From this, we obtain (using |〈a+ |b−〉|2 = 2a · b)

|M|2 = 4
e4

s2
(2p · k′)(2p′ · k) . (690)

Now, we need to recall our kinematics

k = (E, 0, 0, E) , p = (E, 0, 0,−E)

k′ = (E,E sin θ, 0, E cos θ)

p′ = (E,−E sin θ, 0,−E cos θ) , (691)
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where E = Ecm/2 =
√
s/2. From this we have

2p · k′ = 2p′ · k = 2E2(1 + cos θ) =
1

2
E2

cm(1 + cos θ) (692)

so that

|M|2 = 4
e4

E4
cm

1
4
E4

cm(1 + cos θ)2 = e4(1 + cos θ)2 . (693)

So now, remembering that we are not spin averaging, but rather
computing the cross section for a given spin configuration, we have

dσ

dΩ
=

1

2E2
cm

|~k|
16π2Ecm

|M|2

=
1

64π2E2
cm

|M|2 for E � mµ, |~k| = Ecm/2

=
e4

64π2E2
cm

(1 + cos θ)2
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=
α2

4E2
cm

(1 + cos θ)2 , using e2 = 4πα . (694)

At this point, you should find it useful to improve your understanding of
the spinor techniques to check the other results found in Peskin’s Eqs.
(5.23) and (5.24) for the 3 other non-zero helicity configurations. You
can also easily check that helicity configurations not shown there are zero
(in the small mass limit). For instance,

dσ

dΩ
(e−R(k)e+

R(p)→ µ−R(k′)µ+
L(p′)) (695)

requires the amplitude

M = u+(k′)ieγρv−(p′)i
−gρσ

(p+ k)2
v+(p)ieγσu+(k)

= i
e2

s
〈k′ + |γρ|p′+〉〈p− |γρ|k+〉

= 0 (696)

by virtue of the fact that 〈a− |γρ|b+〉 = 0 always as a result of helicity
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conservation.

• So, now let us attempt a real QCD calculation. The process I will discuss
is gg → qq. We wish to obtain the form of the cross section

dσ

dt
=

1

16πs2

1

nspinncolor

∑
colors,spins

|M|2 (697)

where, as indicated, we must average over initial spins and over initial
colors.

The result we will obtain when the quark masses can be neglected is

dσ

dt
=
πα2

s

s2

(
1

6

u2 + t2

ut
−

3

8

u2 + t2

s2

)
. (698)

As you will see, even using the tricks of the massless limit, the calculation
is not easy.
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Figure 16: The t, s and u channel Feynman diagrams for gg → qq.
I will use a convention in which all the momenta are outgoing. For this
computation, unlike the unitarity check, I will use a convention in which
all the particles and momenta are outgoing. This will mean that in our
computation we will be using ε∗’s for the gluons.

There are three contributing diagrams as given in Fig. 16, where I employ
a convention where all particles are outgoing. The diagrams will be
labeled by the channel of the virtual exchange, t, s or u. So, for a given
set of external particle helicity choices, we will write

M = AtCt +AsCs +AuCu (699)
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where A represents the Feynman part of the amplitude (momenta,
vertices etc.) and C represents the color amplitude associated with the
diagram.

First, let us take care of the color algebra. We have two initial gluons.
Each of these initial gluons can have N2 − 1 = 8 different colors. Thus,
ncolor = (N2 − 1)2 = 64.

1. The square of the t channel color factor produces, after summing over
the colors of the initial gluons and of the final quarks, a closed quark
loop with two gluon CF type attachments leading to |Ct|2 = C2

FN =

N
(
N2−1

2N

)2

= (N2−1)2

4N
= 16

3
.
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� � �� � � �� �

Figure 17: The color factor computation for C2
t .

To understand how this diagram arises in more detail, let us call the
color of gluon 1 a, that of gluon 2 b, that of quark 1 C and that of
anti-quark 2 D. Ignoring the internal structure of the color diagram
and calling the color amplitude 〈CD|M|ab〉, what we want is∑
a,b,C,D

|〈CD|M|ab〉|2 = 〈CD|M|ab〉〈a′b′|M|C′D′〉δaa′δbb′δCC′δDD′ ,

(700)
where in the 2nd form we have assumed the repeated index summation
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convention. Diagrammatically:
(a) 〈CD|M|ab〉 is represented by a diagram (in the present case the

t-channel diagram) with 2 gluons in and quark and antiquark out.
(b) 〈a′b′|M|C′D′〉 is represented by a diagram with quark and antiquark

in and 2 gluons out.
(c) δaa′ is represented by a gluon color propagator line joining the in

gluon a to the out gluon a′.
(d) δbb′ is represented by a gluon color propagator line joining the in

gluon b to the out gluon b′.
(e) δCC′ is represented by a quark color propagator joining the out quark

C to the in quark C′.
(f) δDD′ is represented by a quark color propagator joining the out

antiquark D to the in antiquark D′, except that since this is an
antiquark the direction of the color (vs. anticolor) flow is opposite.

Putting these diagram elements together, we get the diagram drawn
above in Fig. 17.

2. The square of the u channel color factor gives the same: |Cu|2 =
(N2−1)2

4N
= 16

3
.

3. The square of the s channel color factor gives a diagram in which there
are two closed gluon loops (i.e. 3 gluon lines with two 3-gluon vertices)
with a closed quark loop inserted in one of them. The latter gives a
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factor of 1/2, leaving a diagram equivalent to a gluon loop correction
to a closed gluon loop, which equals CA times a single closed gluon
loop, which in turn is simply counting the number of gluons N2 − 1.
The result is thus |Cs|2 = 1

2
CA(N2 − 1) = 1

2
N(N2 − 1) = 12.

� �� � ���� �

� �� � � ��� � 	 
��

Figure 18: The color factor computation for C2
s.

4. The interference term CtCu gives a color diagram equivalent to a
closed quark loop with one horizontal gluon attached to opposite sides
of the loop and one vertical gluon attached to the top and bottom of
the loop. One can then “reduce” out the vertical gluon (for example),
with associated numerical factor of 1/2, leaving a “double-tadpole”
diagram (which is 0) and a − 1

N
times a closed quark loop with just

the horizontal gluon, which topology is equivalent to CF times a bare
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closed quark loop (which corresponds to a factor of N). The result is

CtCu = 1
2

[
0− 1

N
CFN

]
= −N

2−1
4N

= −2
3
.

� � ���� � �� �

� �� � � � �� 	 
 �

� �� � � � �� 	 
 � �
Figure 19: The color factor computation for CtCu.

5. Finally, we have the color calculation for CtCs = −CuCs, where the
latter − sign comes from the fact that the gluons are crossed (in their
attachment to a closed quark loop) in the CuCs calculation compared
to the CtCs calculation.
The CtCs diagram has a closed quark loop to which 3 gluons attach.
Two of the gluons circle from left to right to attach to a 3-gluon vertex
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into which enters the 3rd gluon emanating from the quark loop. Thus,
a substructure that appears is the gluon-gluon-quark loop correction
to a gluon quark vertex, which yields −CA

2
times the bare quark-gluon

vertex. After this replacement we are left with a gluon loop correction
to a closed quark loop, giving CFN = 1

2
(N2 − 1). The net result is

thus CtCs = −CA
2
CFN = −N

2
N2−1

2N
N = −6

� � ���� � � � ���� � �	 ���
�

� � �� � � �	 �� 
��
�� � � ���
� � ���� �	 �� 
� 
�� � � ���

Figure 20: The color factor computation for CtCs.

• So, now we turn to the Feynman helicity amplitudes,As,t,u(λ1, λ2, s1, s2).
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1. Consider first the t-channel amplitude:

At(λ1, λ2,+,+) = 〈p1 + |/ε1(λ1)
∗(/p1 + /k1)/ε2(λ2)

∗|p2−〉 = 0 (701)

where the final |p2−〉 comes from remembering that v+(p2) = u−(p2),
and the final result of 0 arises because we need to have an even number
of γ matrices between a bra and ket of opposite helicities.
A similar argument applies to the s and u channel diagrams for the
s1 = s2 = + helicity configurations, as well as to the s1 = s2 = −
helicity configurations.

2. Next consider s1 = +, s2 = −. Here we must work case by case in
λ1, λ2.

Consider first λ1 = λ2 = +.

The t-channel diagram gives a numerator algebra:

At(λ1, λ2,+,−) = 〈p1 + |/ε1(λ1)
∗(/p1 + /k1)/ε2(λ2)

∗|p2+〉 . (702)
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For ε2(+) choose reference momentum p2. Then,

/ε+
2 (k2, p2)

∗|p2+〉 =
√

2

[|k2−〉〈p2 − |+ |p2+〉〈k2 + |
〈p2 − |k2+〉

]
|p2+〉 = 0

(703)
by virtue of the facts that 〈p2 − |p2+〉 = 0 (antisymmetry of inner
product) and 〈k2 + |p2+〉 = 0 (helicity “conservation”).
The u-channel diagram gives a numerator algebra expression of the
form:

Au(λ1, λ2,+,−) = 〈p1 + |/ε2(λ2)
∗(/p1 + /k2)/ε1(λ1)

∗|p2+〉 . (704)

This will be 0 if we choose reference momentum p2 for ε1(+), just as
we did for ε2.
The s-channel numerator algebra expression takes the form

As(λ1, λ2,+,−) = 〈p1 + |γα|p2+〉Vα(ε1, ε2) , (705)

where

Vα ∝ εγ1 (λ1)
∗εβ2 (λ2)

∗ [(k1 − k2)αgγβ + (2k2 + k1)γgαβ − (2k1 + k2)βgαγ] .
(706)
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The latter two terms insert /ε2(+) or /ε1(+), respectively, into the
structure 〈p1 + | . . . |p2+〉, and both insertions give 0 for the above
reference momentum choices. As regards the first term in Vα, it
has the structure (remembering that p2 is chosen as the reference
momentum for both ε1 and ε2)

∝ ε∗1 · ε
∗
2 . . . ∝ 〈k1 + |γµ|p2+〉〈k2 + |γµ|p2+〉

∝ 〈k1 + |γµ|p2+〉〈p2 − |γµ|k2−〉
∝ 2〈k1 + |k2−〉〈p2 − |p2+〉
= 0 (707)

because the 2nd inner product is 0.
The net result is that A(+,+,+,−) = 0.

What about As,t,u(−,−,+,−)?

Starting with (as before)

At(λ1, λ2,+,−) = 〈p1 + |/ε1(λ1)
∗(/p1 + /k1)/ε2(λ2)

∗|p2+〉 , (708)
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we choose p1 for the ε1(−) reference momentum and then note that

〈p1 + |/ε−1 (k1, p1)
∗ = 〈p1 + |

(
−
√

2

[|k1+〉〈p1 + |+ |p1−〉〈k1 − |
. . .

])
(709)

which gives 0.
Similarly, for Au we will get zero if we choose p1 as the reference
momentum for ε2(−).
As in the previous λ1 = λ2 = + case, we will also find that the
s-channel diagram is zero in the present λ1 = λ2 = − case when both
ε1(−) and ε2(−) are referenced to p1.
Note: In case you have not noticed, we have been very careful to
choose the same reference momentum (same gauge) for all diagrams
contributing to a given helicity configuration. We are free to change
the gauge when computing the diagrams for a different helicity
configuration. This is allowed, since each helicity configuration is an
independent physical observable.
Thus, by a somewhat clever choice of gauge, we have been able
to show that all helicity amplitudes other than A(+,−,+,−) and
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A(−,+,+,−) (and the parity flips thereof) are zero.

So, now let us work on As,t,u(+,−,+,−).

We will choose reference momentum p1 for ε2 and p2 for ε1. This is ok
for this and similar processes with some external fermions. Of course,
we must keep these choices for all three diagrams.
The required ε-related forms are then

/ε−2 (k2, p1)
∗ = −

√
2
|k2+〉〈p1 + |+ |p1−〉〈k2 − |

〈p1 + |k2−〉

/ε+
1 (k1, p2)

∗ = +
√

2
|k1−〉〈p2 − |+ |p2+〉〈k1 + |

〈p2 − |k1+〉

ε−2 (k2, p1)
∗
β = −

〈k2 − |γβ|p1−〉√
2〈p1 + |k2−〉

ε+
1 (k1, p2)

∗
γ = +

〈k1 + |γγ|p2+〉√
2〈p2 − |k1+〉

(710)
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We start by noting that Au = 0 by virtue of the fact that

〈p1+|/ε−∗2 (k2, p1) = 〈p1+|
(
−
√

2
|k2+〉〈p1 + |+ |p1−〉〈k2 − |

〈p1 + |k2−〉

)
= 0

(711)
using 〈p1 + |p1−〉 = 0.
Next we consider At. For this non-zero amplitude we write out all the
details. We will use repeatedly the fact that 〈a± |b±〉 = 0.

At(+,−,+,−) = 〈p1 + |/ε+
1 (k1, p2)

∗
(igs)

i(/p1 + /k1)

(p1 + k1)2
/ε
−
2 (k2, p1)

∗
(igs)|p2+〉

= −ig2
s(+
√

2)(−
√

2)
〈p1 + |k1−〉
〈p2 − |k1+〉

〈p2 − |(/p1 + /k1)|p1−〉
2p1 · k1

〈k2 − |p2+〉
〈p1 + |k2−〉

= 2ig
2
s
〈p1 + |k1−〉
〈p2 − |k1+〉

〈p2 − |(0 + |k1+〉〈k1 + |)|p1−〉
〈p1 + |k1−〉〈k1 − |p1+〉

〈k2 − |p2+〉
〈p1 + |k2−〉

= 2ig
2
s
〈k1 + |p1−〉〈k2 − |p2+〉
〈k1 − |p1+〉〈p1 + |k2−〉

(712)

The s-channel amplitude takes the form, now including all factors
carefully:

As = igs〈p1 + |γα|p2+〉ε−2 (k2, p1)
∗
βε

+
1 (k1, p2)

∗
γ

[ −igαα′
(k1 + k2)2

]
×

(−igs)
[
gγα′(−2k1 − k2)β + gγβ(k1 − k2)α′ + (2k1 + k2)γgα′β

]
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=
−ig2

s

(k1 + k2)2
〈p1 + |(/k1 − /k2)|p2+〉

(
−

1
√

2

)(
1
√

2

)
2〈k2 − |p2+〉〈k1 + |p1−〉
〈p1 + |k2−〉〈p2 − |k1+〉

(713)

where, in the above, we used the explicit ε forms given for this case
earlier and noted that

〈p1 + |/ε−∗2 (k2, p1)|p2+〉 = 〈p1 + |/ε−∗1 (k1, p2)|p2+〉 = 0 (714)

for the reference momentum choices made, implying that we only had
to keep the gγβ term in the vertex component in the above reduction.
Now, we use k2 = −(p1 + p2 + k1) and 〈p1 + |/p1 = /p2|p2+〉 = 0 to
rewrite

〈p1 + |(/k1 − /k2)|p2+〉 = 〈p1 + |(2/k1)|p2+〉
= 2〈p1 + |k1−〉〈k1 − |p2+〉
= −2〈p1 + |k1−〉〈p2 − |k1+〉 . (715)

Inserting this into Eq. (713), and canceling a common 〈p2 − |k1+〉 in
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numerator and denominator, we obtain

As(+,−,+,−) = −
2ig2

s

2k1 · k2

〈p1 + |k1−〉〈k2 − |p2+〉〈k1 + |p1−〉
〈p1 + |k2−〉

(716)

Finally we have As,t,u(−,+,+,−)

This can be obtained from theAs,t,u(+,−,+,−) amplitudes by noting
that the amplitudes differ by the interchange of gluon-1 and gluon-2,
implying that

At(−,+,+,−)(k1, k2) = Au(+,−,+,−)(k2, k1) = 0 (717)

and

Au(−,+,+,−)(k1, k2) = At(+,−,+,−)(k2, k1)

= 2ig2
s

〈k2 + |p1−〉〈k1 − |p2+〉
〈k2 − |p1+〉〈p1 + |k1−〉

(718)

and (remembering that the non-color part of the 3-gluon vertex is
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antisymmetric under such an interchange)

As(−,+,+,−)(k1, k2) = −As(+,−,+,−)(k2, k1)

= +
2ig2

s

2k1 · k2

〈p1 + |k2−〉〈k1 − |p2+〉〈k2 + |p1−〉
〈p1 + |k1−〉

(719)

Thus, we have computed all the momentum space structures by using
tricks to get many zeroes and only, in the end, had to perform 2 non-
trivial computations, both of which reduced to relatively simple forms in
terms of the inner products.

Note that these inner products could be easily computed numerically
for given choices of the momenta generated inside some Monte Carlo
program.

Here, however, we want to continue so as to get the final simple analytic
form for the cross section. This involves combining the color stuff with
these momentum space amplitudes. The process is a bit tricky and fairly
revealing.

Let us simplify our notation somewhat before proceeding. Our non-zero
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helicity amplitudes are

At(+−+−; k1, k2) = Au(−+ +−; k2, k1) ≡ At(1, 2)

As(+−+−; k1, k2) = −As(−+ +−, k2, k1) ≡ As(1, 2) .(720)

Our two helicity amplitudes are then, bringing back in the color factors,

M(+−+−)(k1, k2) = At(1, 2)Ct +As(1, 2)Cs

M(−+ +−)(k1, k2) = At(2, 1)Cu −As(2, 1)Cs . (721)

We wish to sum the absolute squares of these two physically distinct
helicity amplitudes. We have

|M(+− +−)|2 = |At(1, 2)|2C2
t + |As(1, 2)|2C2

s + 2ReAt(1, 2)A∗s(1, 2)CtCs

|M(− + +−)|2 = |At(2, 1)|2C2
u + |As(2, 1)|2C2

s − 2ReAt(2, 1)A∗s(2, 1)CuCs .

(722)

We now recall our color factors. Including the 1/64 for initial gluon color
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averaging, we have

C2
t = C2

u =
1

12
, C2

s =
3

16
, CtCs = −CuCs = −

3

32
. (723)

Putting this into the previous equation gives

|M(+− +−)|2 + |M(− + +−)|2 =
1

12

(
|At(1, 2)|2 + |At(2, 1)|2

)
+

3

16

(
|As(1, 2)|2 + |As(2, 1)|2 − ReAt(1, 2)A∗s(1, 2)− ReAt(2, 1)A∗s(2, 1)

)
(724)

which exhibits the expected final symmetry under interchange of the two
initial gluons. (Note how the − sign of CuCs made up for the extra −
sign in the momentum-space calculation of As(−+−+).)

The final task is then to compute explicitly the various A products. This
is easy using |〈a+ |b−〉|2 = 2a · b. We have

|At(1, 2)|2 = 4g4
s

2k1 · p12k2 · p2

2k1 · p12p1 · k2

= 4g4
s

(
t

u

)
, (725)
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|At(2, 1)|2 = 4g4
s

(
u

t

)
since u↔ t under k1 ↔ k2 , (726)

|As(1, 2)|2 =
4g4
s

s2

2k2 · p2(2k1 · p1)
2

2p1 · k2

=
4g4
s

s2

(
t3

u

)
, (727)

|As(2, 1)|2 =
4g4
s

s2

(
u3

t

)
, (728)

and, finally, the only tricky case,

A∗t (1, 2)As(1, 2) = −
4g4
s

s

〈p1 − |k1+〉〈p2 + |k2−〉
〈p1 + |k1−〉〈k2 − |p1+〉

〈p1 + |k1−〉〈k2 − |p2+〉〈k1 + |p1−〉
〈p1 + |k2−〉

= −
4g4
s

s

2p1 · k12p2 · k2

2p1 · k2

= −
4g4
s

s

t2

u
, (729)

where we canceled a common factor of 〈p1 + |k1−〉 in numerator and
denominator and then used 3 versions of

|〈a− |b+〉|2 = 〈a− |b+〉〈b+ |a−〉 = 2a · b. (730)

Further,
At(1, 2)A∗s(1, 2) = A∗t (1, 2)As(1, 2) . (731)
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Inserting these results into Eq. (724), we obtain

|M(+− +−)|2 + |M(− + +−)|2 = 4g
4
s

[
1

12

(
t

u
+
u

t

)
+

3

16

(
u3

s2t
+
t3

s2u
+
t2

su
+
u2

st

)]
. (732)

This can be further simplified by noting that

t3

s2u
+
t2

su
=

1

s2u
t2(t+ s) =

1

s2u
t2(−u) = −

t2

s2
, (733)

and, similarly,
u3

s2t
+
u2

st
= −

u2

s2
, (734)

resulting in

1

4

∑
λ1,λ2,s1,s2

|M(λ1, λ2, s2, s2)|2 =
1

4
2
(
|M(+,−,+,−)|2 + |M(−,+,+,−)|2

)

= g
4
s

[
1

6

(
t

u
+
u

t

)
−

3

8

u2 + t2

s2

]
, (735)

where the extra factor of 2 comes from including also the (−,+,−,+)
and (+,−,−,+) squared amplitudes which are equal to the (+,−,+,−)
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and (−,+,+,−) squared amplitudes, respectively, (due to parity invariance)6,
and the 1/4 is for averaging over the initial gluon helicities. The final
result for the helicity-averaged and color-averaged cross section is then:

dσ

dt
=

1

16πs2

1

4

∑
λ1,λ2,s1,s2

∣∣M(λ1, λ2, s2, s2)
∣∣2

=
(4παs)

2

16πs2

[
1

6

(
t

u
+
u

t

)
−

3

8

u2 + t2

s2

]
=

πα2
s

s2

[
1

6

(
t

u
+
u

t

)
−

3

8

u2 + t2

s2

]
=

πα2
s

s2

[
1

6

t2 + u2

tu
−

3

8

u2 + t2

s2

]
, (736)

which is the promised result.

• From this result, we can also get dσ
dt

for other processes related by
crossing. For example, consider gq → gq. If we denote with primes the

6Parity changes ~p→ −~p but leaves the spin (like angular momentum) unchanged. As a result, helicity is changed
to minus helicity for each particle. QCD is parity invariant since there are no γ5’s floating around. Thus, amplitudes
related to one another by a parity transformation should be equal (up to a possible phase which we don’t care about).
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s′, t′, u′ variables for the gq → gq process, we have

s′ = t , u′ = u , t′ = s . (737)

We must also account for the change in color averaging. The color
averaging factor of 1/(N2 − 1)2 = 1/64 for gg → qq must be replaced
by 1/[N(N2 − 1)] = 1/24 for gq → gq. The ratio gives a factor of
8/3. Thus, up to a sign that I will discuss shortly, we have (dropping the
prime notation)

dσ

dt

gq→gq
(s, t, u) =

8

3

dσ

dt

gg→qq
(t, s, u)

=
8

3

πα2
s

s2

(
1

6

u2 + s2

su
−

3

8

u2 + s2

t2

)
= −

πα2
s

s2

(
u2 + s2

t2
−

4

9

u2 + s2

us

)
. (738)

This expression is obviously < 0, and so there was some subtlety that
the above argument misses. To get the sign straight, we must return to
the underlying procedures and recognize an important subtlety.
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The subtlety is that in crossing the antiquark in gg → qq to a quark in
gq → gq we must change the sign of the quark momentum. Using the
quark labeled with p for this and taking p→ −p, this means that∑

s

v(p, s)v(p, s) = /p→ −/p = −
∑
s

u(p, s)u(p, s) (739)

whereas what should actually appear in gq → gq is

+
∑
s

u(p, s)u(p, s) = +/p . (740)

In terms of the notation we have adopted here, this means that the
final outgoing antiquark momentum p2 is crossed to an incoming quark
with outgoing momentum −p2, whereas (in our all outgoing notation)
we want this momentum to be +p2.

This means that we must also change the sign of
∑

colors,spins |M|2 at
the same time that we perform the s↔ t interchange, yielding

dσ

dt
= +

πα2
s

s2

(
u2 + s2

t2
−

4

9

u2 + s2

us

)
. (741)
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