Outstanding Problems

- Electroweak Symmetry Breaking: Is it the SM, an effective 2HDM, technicolor, . . .
- Supersymmetry and Unification: Sparticle masses and properties, is there a desert, . . .
- Flavor Physics: Masses, mixings, CP violation, neutrino mass, . . .
- Space-time Structure: Large extra dimensions, branes, . . .

In all cases, the e^-e^- , $e^-\gamma$ and $\gamma\gamma$ colliders provide unique and important probes.

Especially important: high luminosity, L = 300 - 500 fb⁻¹ per year, and high polarization, $P_e \sim 80 - 90\%$.

e^-e^- Collisions

Unique capabilities arise for

- Contact interactions.
- SUSY studies, R-parity conserving.
- SUSY studies, R-Parity violating.
- Understanding or eliminating sources of neutrino masses and mixing.
- Looking for flavor violation via $e^- \rightarrow \mu^-$.
- Higgs studies related to above and to unification.

Moller Scattering Czarnecki+Marciano, Barklow

- Measure certain A_{LR} type asymmetries to determine $\sin^2 \theta_W$ and/or expose new contact interactions.
- The accuracy achievable depends crucially on $P_{\text{eff}} = \frac{P_1 + P_2}{1 + P_1 P_2}$. Expect to have $P_1 = P_2 = 0.9 \pm 0.005$, $\Rightarrow P_{\text{eff}} = 0.9945 \pm 0.0004$, i.e. P_{eff} is very large and has negligible error.
- Expect to achieve $\delta s_W^2 \sim \pm 0.0003$ at $\sqrt{s} = 1$ TeV and modest \mathcal{L} .

By adjusting angle of outgoing e^-e^- pair relative to beam direction, one probes Q^2 dependence of s_W^2 with great accuracy.

• A deviation in Moller scattering from expectations would signal "new physics." For example, deviations in angular dependence of cross section would probe

$$\mathcal{L}_{\text{eff}} = \frac{2\pi}{\Lambda^2} \bar{e}_L \gamma^{\mu} e_L \bar{e}_L \gamma_{\mu} e_L \,. \tag{1}$$

With $\sqrt{s} = 1$ TeV and 82 fb⁻¹ \Rightarrow probe $\Lambda = 150$ TeV.

• Bhabha scattering at e^+e^- with same $L \Rightarrow$ probes $\Lambda = 100$ TeV. Moller is better because of u vs. s dependence of Moller vs. Bhabha.

$$\frac{\Lambda_{e^-e^-}}{\Lambda_{e^+e^-}} = 2^{-1/4} \langle \left(\frac{s}{u}\right)^{3/2} \rangle \,. \tag{2}$$

Weak $\mathcal{L}^{1/4}$ dependence of Λ^{limit} on \mathcal{L} implies that if e^-e^- collisions have 1/3 as much luminosity as e^+e^- because of beam disruption, e^-e^- will still do better.

Standard SUSY Peskin + Feng

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 M_1^2}{2\cos^4 \theta_W} \left(\frac{1}{t - M_1^2} + \frac{1}{u - M_1^2}\right)^2$$
(3)

Very sensitive to M_1 as well as to $m_{\widetilde{e}^-}$ (through threshold turn on in S-wave).

- s-wave β turn on of $e^-e^- \rightarrow \tilde{e}_R^-\tilde{e}_R^- \Rightarrow$ uniquely precise measurement of $m_{\tilde{e}_R^-}$. About $100 \times$ as much L required for same precision in e^+e^- where turn on is β^3 .
- $m_{\tilde{e}_R^-}$ -optimized mode: $L = 1(10) \text{fb}^{-1} \Rightarrow \Delta m_{\tilde{e}_R^-} = 70(20)$ MeV assuming $m_{\tilde{\chi}_1^0}$ is well-determined from kinematic end-point measurements elsewhere (e.g. e^+e^-). Backgrounds very small, unlike e^+e^- .

Such precision could be crucial for evolving up to GUT scale with adequate precision to really determine soft-SUSY-breaking boundary conditions.

- A 2-point scan determines M_1 to ± 5 GeV unlike e^+e^- where M_1 comes only from end-point game.
- Even if M_1 is very large, get determination of M_1 from cross section size.
- $e^+e^- \rightarrow \tilde{e}_R^{\pm}\tilde{e}_L^{\mp} \Rightarrow m_{\tilde{e}_L^-}$ and then $m_{\tilde{e}_L^-} m_{\tilde{e}_R^-} \Rightarrow$ model independent determination of $\tan\beta$ (at low to moderate $\tan\beta$).
- Check equality $\tilde{g} = g$ of $\tilde{g}e\tilde{e}\tilde{B}$ vs. $geeB_{\mu}$ couplings to much better than 1%.

Non-decoupling of corrections to $\tilde{g}/g = 1$ means that this ratio would be sensitive to sparticles of arbitrarily large mass.

Looking for slepton flavor oscillations J. Feng, S. Thomas, G. Kribs, ...

- In general, the matrix that diagonalizes lepton flavor does not diagonalize slepton flavor.
- - 2. Lepton number violating decay: $e^-e^- \rightarrow \widetilde{e}^-\widetilde{e}^-$ followed by $\widetilde{e}^- \rightarrow \mu^- \widetilde{\chi}_1^0$ decay.
- These events are much more background free in e^-e^- than corresponding events in e^+e^- collisions, especially if we have ability to turn off W^-W^- production using e_R^- polarized beams.

Bileptons and Doubly Charged Higgs Bosons Gunion, Frampton, . . .

• Bileptons: extend $SU(2)_L$ to $SU(3)_L$:

$$\mathcal{L} \sim \left(\begin{array}{ccc} \ell^{+} & \nu & \ell^{-} \end{array}\right)_{L}^{*} \left(\begin{array}{ccc} & Y^{++} \\ & Y^{+} \\ Y^{--} & Y^{-} \end{array}\right) \left(\begin{array}{c} \ell^{+} \\ \nu \\ \ell^{-} \end{array}\right)_{L}, \quad (4)$$

where Y are new gauge bosons. Y^{--} are produced as an s-channel resonance at e^-e^- colliders, and \Rightarrow background-free events like $e^-e^- \rightarrow Y^{--} \rightarrow \mu^-\mu^-$.

- For Higgs, adding doublets with unusual *Y*, and/or triplets and/or higher reps. is possible and perhaps desirable, both within SM context and in attractive SM extensions:
 - 1. If neutral vev = 0, then no EWSB impact and $\rho = 1$ is natural.
 - 2. Such additions, esp. triplets, are good for unification without SUSY, but at lower scale than usual (maybe desirable for large-scale extra dimensions, . . .).

3. Triplets are very desirable for neutrino mass game in L/R symmetric models. Usual notation for Y = -2 is

$$\Delta = \begin{pmatrix} \Delta^{-}/\sqrt{2} & \Delta^{0} \\ \Delta^{--} & -\Delta^{-}/\sqrt{2} \end{pmatrix} .$$
 (5)

Introduce Δ_R triplet for see-saw with $\langle \Delta_R^0 \rangle =$ large.

L/R symmetry requires Δ_L and $\langle \Delta_L^0 \rangle \equiv v_\Delta = 0$ is natural.

4. There is a possibility of non-zero bi-lepton couplings of Higgs bosons. For the standard $SU(2)_L$ case, with $Q = T_3 + \frac{Y}{2} = -2$, the allowed doubly-charged cases are:

$$e_{R}^{-}e_{R}^{-} \rightarrow \Delta^{--}(T = 0, T_{3} = 0, Y = -4),$$

$$e_{L}^{-}e_{R}^{-} \rightarrow \Delta^{--}(T = \frac{1}{2}, T_{3} = -\frac{1}{2}, Y = -3),$$

$$e_{L}^{-}e_{L}^{-} \rightarrow \Delta^{--}(T = 1, T_{3} = -1, Y = -2).$$
(6)

5. If $v_{\Delta} = 0$, most decay channels are eliminated.

 \Rightarrow small $\Gamma_{\Delta^{--}}$, which, in turn, \Rightarrow great sensitivity to small couplings of above type via *s*-channel $e^-e^- \rightarrow \Delta^{--}$ production.

also \Rightarrow dominance of bi-lepton decay modes is possible.

The $\tau^-\tau^-$ channel could easily have the largest partial width and be the dominant decay of the Δ^{--} .