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Motivations for an invisible particle below the TeV Scale

1. To solve the Higgs boson mass hierarchy problem there must be new
particles below the TeV scale.

2. Sub-TeV new physics avoids precision electroweak constraints most easily
if there is a new discrete symmetry that requires that they couple in pairs
to the SM particles (especially, the W and Z).

3. The lightest such new particle will then be stable and could explain the
observed dark matter in the universe.

4. In many models the correct dark matter density can be obtained and it will
have evaded observational contraints (dark matter detection, ....) if this
new particle is weakly interacting, → WIMP

⇒ 2 such particles (call them N) per LHC event that lead to variable and
partially balancing missing momentum in each event.
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Popular Candidate Models

• SUSY with R-parity conservation.

The lightest supersymmetric particle (LSP) is likely to be a neutralino,
which is a good WIMP candidate.

• Little Higgs Models with T -parity: lightest T -odd particle is a good WIMP.

• Universal Extra Dimensions: lightest KK mode (e.g. first excited ’photon’)
is a good WIMP.

• Models with warped unification with Z3 parity, ...

Given the probable ILC time scales, the big question is if the LHC alone will
be able to measure the properties of the WIMP candidate and its higher mass
cousins that decay to it.
A very crucial part of the answer involves the accuracy with which mass scales
can be determined at the LHC in the presence of missing energy!
The problem: In general, if there is a pair of invisible particles, then there
is not enough information to reconstruct the kinematics of each event on an
event-by-event basis.

J. Gunion EPS and SUSY, July 2007 2



• Mass scales will be important not only for the dark matter issue but also
for the LHC inverse problem: Can we use LHC data to determine the
fundamental Lagrangian parameters?
And, can we do so with sufficient accuracy as to allow a meaningful
extrapolation to the GUT scale?
The general picture:

Figure 1: The likely LHC situation. N. Arkani-Hamed, G. L. Kane, J. Thaler and L. T. Wang,

JHEP 0608, 070 (2006) [arXiv:hep-ph/0512190].
The picture is particularly bad if the LHC will have a hard time determining
the absolute mass scale.
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As an example of the difficulties encountered, let us consider the mSUGRA
SPS1a’ point. It gives a spectrum of the following type:

Figure 2: Mass spectra of an SPS1a’-like point.

Using lepton spectrum edges and the like, one gets quite a bit of information
about the spectrum, but a really precise determination of the overall mass
scale is elusive. meχ0

1
sets the overall scale. An LHC ATLAS study using
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edges gives the following (L = 300 fb−1):
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Figure 3: Sample mass correlation plot. Dots: LHC alone; Vertical band = ±2σ
for ILC data. G. Weiglein et al. [LHC/LC Study Group], Phys. Rept. 426, 47 (2006)

[arXiv:hep-ph/0410364]. Note: These results are for the SPS1a’ ‘dot’.

LHC ±1σ accuracy for meχ0
1

and mè
R

is ±4.8 GeV. The ILC measures
meχ0

1
, meχ0

2
, mè

R
and mè

L
to within 0.05 GeV to 0.2 GeV.
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How does the LHC accuracy compare to what is needed?

a) A precision calculation of the dark matter primarily needs accurate
masses (couplings being fixed by supersymmetry).

Figure 4: Accuracy of WMAP (horizontal green shaded region), LHC (outer red
rectangle) and ILC (inner blue rectangle) in determining meχ0

1
, the mass of the

lightest neutralino, and its relic density Ωχh2. LHC is assumed to get 10% accuracy
on absolute meχ0

1
, meχ0

2
, meχ±

1
masses, but earlier quoted results are better. The

yellow dot denotes the actual values of meχ0
1

and Ωχh2 for point B’. A. Birkedal, et
al.hep-ph/0507214
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b) Precision mass measurement are needed to meaningfully assess GUT
scale boundary conditions.

Figure 5: Evolution to the GUT scale using LHC + ILC1000 measurements. On the
left, 1/Mi [GeV−1] is plotted vs. Q( GeV). On the right, M2

j̃
[103 GeV2] for 3rd

soft masses squared are plotted vs. Q( GeV).
Differences between sparticle masses are very well determined at the LHC,
but, absolute mass scale accuracies are on the margin. Will it require the
ILC (e.g. via threshold scans) to get the absolute mass scales?

We must work to get improve absolute mass accuracies using LHC data
alone.
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Basic Constraint Counting

One chain examples

1. The “marginal” case is 3 visible particles (or combinations of particles) with
3 on-shell resonances involved and 1 final invisible particle:

Z → Y v1 → Xv2v1 → Nv3v2v1 (1)

For this case, after n events, the number of unknowns is 4 masses and 4n
4-momenta of the final invisible particle (N).

The number of on-shell constraints from requiring given Z, Y, X, N masses
in each event is 4n.

Thus, the number of unknowns is always 4 + 4n − 4n = 4 (the masses) no
matter how many events.

2. For 4 visible particles with 4 on-shell resonances and the final N , after n
events there are 5 + 4n unknowns and 5n constraints, implying equality
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when n = 5. So, if there were no combinatoric / resolution issues, n = 5
events would allow you to solve for the 5 masses aside from discrete quartic
equation solution ambiguities.

Two chain examples

1. The “marginal” case here is just two visible particles per chain: Y →
Xv1 → Nv2v1.

If we assume equal masses on the two chains, then there are 3 unknown
masses, including mN .

For each event, there are the two 4-momenta of the two final N ’s, but
we know the sum of their transverse momenta from balancing against
the visible particle transverse momenta, implying 6 unknown momenta
components per event.

After n events, the number of unknowns is then 3 + 6n.

The number of constraints is 6n (since we assume on-shell masses on both
chains.)

Thus, no matter how many events, we always have the 3 unknown mass
parameters that cannot be absolutely solved for.
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Note that by considering both chains, we are at the marginal situation with
just 2 visible particles and 2 on-shell resonances plus the 1 final invisible
particle, as opposed to the one-chain case where marginality required 3
visible particles, corresponding to 3 on-shell resonances plus 1 invisible
particle.

2. The first non-marginal case is clearly 3 visible particles per chain, corresponding
to 3 + 1 = 4 unknown masses.

In this case, after n events we have 4 + 6n unknowns and 8n on-
shell constraints (recall we have two chains each of which has four mass
constraints) implying solution (subject to discrete ambiguities) when 4 +
6n − 8n = 0 ⇒ n = 2.

Again, there is a reduction in the number of on-shell resonances and
associated visible particles that are needed to get discrete solutions, as
compared to considering a single chain.

A significant problem with both the 1-chain and 2-chain approaches is
combinatorics.

For example, for the decay chain q̃ → q˜̃χ0
2 → qµµ̃R → qµµχ̃0

1 in q̃q̃
production, in each event there would be 2! ways to place the q’s and
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4 × 2 × 2 ways to place the µ’s (noting that each chain has to have one µ+

and one µ−, but we don’t know which comes first.) The net is 2 × 16 = 32
ways of placing particles.

If there are additional jets from ISR and / or from g̃q̃ and g̃g̃ production,
there would be additional combinatoric possibilities or else one would need
to implement a selection criterion for choosing the jets that one hoped came
from q̃ decays directly.
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Previous LHC Work

No time for a proper summary, but here are the bottom lines prior to our
work.

• The ATLAS LHC study using edges only and L = 300 fb−1 gives the best
results I have seen for the SPS1a point: 1σ errors on meχ0

1
and mè

R
of

order 5 GeV.

• Another such study is that of Lester (Les Houches 2004) (see also the earlier
work of Kawagoe, Nojiri, Polesello, hep-ph/0312317, hep-ph/0410160),
who uses the one-chain, 4-visible particle approach with

g̃ → b̃b → χ̃0
2bb → l̃lbb → χ̃0

1llbb (2)

with

meg = 650, meb = 500, meχ0
2
= 300, mel = 200, meχ0

1
= 150 (3)

and finds with 100 events an error on meχ0
1

of 17%.
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Mass differences have much smaller error.

I can’t be sure, but I don’t think this analysis included resonance width
effects, which are actually quite important.

ATLAS SPS1a results are presumably better since they use more events.

• As well as the LHC/ILC report, based on an ATLAS study, another edge
study is that of A.J. Barr, C.G. Lester, M.A. Parker: hep-ph/050843.
However, the ±4.8 GeV ±1σ errors of the ATLAS study appear to be as
good or better than those found in this study.

• If the model is known and all branching ratios for the different chain decay
sequences can be computed, then total cross sections and distribution
shapes for different topologies can be used to determine the absolute scale.

This, however, is rather model dependent, and even doing so still leaves
discrete ambiguities for the absolute scale.

– One, and probably the best, such analysis was that of Gjeltsen, Miller,
Osland: hep-ph/0410303.
The cases they analyzed were a low-mass SPS1a-like scenario and a
high-mass scenario along the SPS1a line with lower event rate.
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Without the use of distribution shapes the absolute mass scale appears
to be more poorly determined than in the LHC ATLAS edges study.
Using distribution shapes, in the low-mass SPS1a case, they found two
discrete solutions. Within either possible solution meχ0

1
can be determined

to about 5%, but there was a 10 GeV separation between the two discrete
possibilities, one of which was centered on the correct value and the other
of which was too low by about 10 GeV.
In the high mass scenario, results were much worse.

– The study of A.J. Barr, C.G. Lester, M.A. Parker: hep-ph/050843 looked
at how well the absolute mass scale could be determined using a 10%
measurement of the cross section, assuming that the model was already
known (i.e. including decay chain, branching ratios, relative rates for
sparticle pair production and so forth).
They found an error on meχ0

1
of order 15−20 GeV, which seems too high

given the ATLAS LHC edge study results?

• In any case, one would like to use pure kinematics to get the absolute
masses, and further improve the accuracy to better than the ATLAS LHC
1σ error of ∼ ±5 GeV.
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2 chains — 2 visible particles per chain

• We claim that one can do well at the LHC by taking a more global point
of view and using as much information as is available in every event.

Our approach can be applied to many different types of event topologies,
but here we focus on a subcomponent of the SPS1a type event in a way
that has not been previously attempted.

Consider the chain decay sequence:

Figure 6: A typical chain decay topology.
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Note: some cuts to isolate a given topology are required (just as in
the previous analyzes) — perhaps OSET would do the job. By this, we
don’t mean perfect isolation — roughly a ratio of S/B > 2 is certain to
work, where B could include old physics and new physics signals of other
topologies. Even S/B ∼ 1 is probably workable.

This topology can be applied to many processes with 4 visible and 2 invisible
particles.

For example, suppose MY = MY ′, MX = MX′, and MN = MN ′.

Examples that fit this:

tt → bW +bW − → bl+νbl−ν̄

χ̃0
2χ̃

0
2 → ll̃ll̃ → llχ̃0

1llχ̃
0
1

q̃q̃ → qχ̃0
2qχ̃0

2 → qll̃qll̃ → qllχ̃0
1qllχ̃0

1

t̃t̃ → bχ̃+bχ̃− → bW +χ̃0
1bW −χ̃0

1

The third entry above is the SPS1a’ case of interest.
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Let us count the constraints and unknowns once again. For this we
(temporarily) assume that the particles are exactly on-shell and that experimental
resolutions are perfect.

1. There are 8 unknowns corresponding to the 4-momenta of the N and N ′.

2. There are 2 constraints on these coming from knowledge of the visible
transverse momenta. (We are assuming that the longitudinal momentum
and energy of the collision is not known, as appropriate at a hadron collider.)

If there are extra visible jets in the event we just include them in visible ~pT .

The visible particles 3, 4, 5 and 6 need not be stable. We just need to be
able to determine their 4-momenta (e.g. W → jj is ok but W → `ν is
not).

3. There are the 3 constraints coming from requiring the equalities: MY =
MY ′, MX = MX′, and MN = MN ′.

4. Thus, for each event, since (8 − 2) − 3 = 3 we see that if we know the 3
masses, then we can solve for the 4-momenta of the N and N ′ and vice
versa.
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The equations are quartic, and so there can be 4, 2 or 0 solutions (with
acceptable positive real energies for the N and N ′). If not 0, then the
event is “solved” for those particular mass choices.

5. For each event, we scan through the mass space to see if one or more of
the discrete solutions is acceptable.

Each event then defines a 3-dimensional region in the 3-dimensional mass
space that is physically acceptable.

6. As we increase the number of events the 3-dimensional mass region
consistent with all events becomes smaller.

However, in general (and in practice) this region will not shrink to a point.

Thus, we need additional methods to pick out the correct point in mass
space.

• To illustrate our approach, we can consider the explicit example

χ̃0
2χ̃

0
2 → ` ˜̀̀ ˜̀→ ``χ̃0

1``χ̃
0
1 ,

i.e. Y = Y ′ = χ̃0
2, X = X′ = ˜̀, N = N ′ = χ̃0

1 ,
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which we generate as a subcomponent of

q̃q̃ → qχ̃0
2qχ̃0

2 → . . . → q``χ̃0
1q``χ̃0

1 . (4)
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Figure 7: Mass region (in GeV) that can solve all events. 500 generated events for
mY = 246.6 GeV, mX = 128.4 GeV and mN = 85.3 GeV, using correct chain
assignments and perfect resolution. Masses from ’Model I’, with large meχ0

2
.
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We found that the correct masses lie at the end point of the allowed region.
A graphical picture is:

Figure 8: Map between mass space and kinematic space. The nominal masses,
point A, produces a kinematic region that coincides with the experimental region:
KA = Kexp. A point B inside the allowed mass region produces a larger kinematic
region: KB ⊃ Kexp.

The kinematic space K refers to the set of observable momenta of the 4
leptons in the chain.

The allowed masses in M space are those for which every point in the
Kexp part of K space produces at least one acceptable set of ~pN and ~pN ′,
i.e. is ’solved’.
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a) The correct set of masses, M at point A in Fig. 8, produces a kinematic
region KA that coincides with the experimental one, KA = Kexp, as
long as the experimental statistics is large enough.

b) A different mass point produces a region that is either smaller or larger
than Kexp

1.
c) If smaller, the mass point does not appear in the mass region for which
all events are solved.

d) If larger, all events are solved; we denote this kind of point, with mass
set M′, as point B in Fig. 8.

e) Let us shift the masses slightly to M′ + δM′.
– If the kinematic region for which we have acceptable solutions still

covers Kexp, then M′ + δM′ is still within the allowed region.
– Apparently, point B, which produces a region larger than Kexp, has

the freedom to move in all directions and must live inside the allowed
region.

– On the other hand, the correct mass point A, which produces exactly
Kexp, has the least freedom to move and must be located at an end
point of the allowed region.

However, with finite resolutions and combinatorics (which lepton goes where
1In general cases, there could exist degenerate points that produce exactly the same kinematic region as the correct

one. It is impossible to raise the degeneracy using pure kinematics.
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in the two chains), not all events can be solved by the correct mass point.

⇒ The correct mass point will not lie within the intersection region
(assuming there is any such region left).
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Figure 9: The allowed mass region (in GeV) with smearing (ALTFAST)
and wrong combinatorics. 500 generated events for Model I masses:
mY = 246.6 GeV, mX = 128.4 GeV and mN = 85.3 GeV. Cuts: |η| < 2.5,
pT (`) > 6 GeV.

• In the more realistic case, the correct mass choices do not correspond to
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an endpoint but rather correspond to the choices such that changes in the
masses result in the most rapid decline in the number of solved/consistent
events.

• Looking for this point of steepest decline in a 3-dimensional space is
numerically difficult.

• If we fix two of the masses, and vary the 3rd mass, then we can usually
identify the point at which the number of solved events starts a steep
decline as this 3rd mass is changed.

This will allow an iterative approach.

• The approach that works is to cycle through the 3rd-mass choices, mN ,
mX and mY in that order, and at each stage look for the peak in the
number of solved/consistent events as a function of the mN mass each
time it is the 3rd-mass. Then, update this 3rd-mass to the peak location.

The ‘peaks’ are actually obtained by the intersection of the two fitted
straight lines illustrated in the following figure, where two masses are set
to their correct values and the 3rd-mass is varied.
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Figure 10: One-dimensional fits by fixing the other two masses at the correct values.
500 events, combinatorics, smearing and simple cuts included. Peaks are close to
correct masses.

• We now get more realistic. For certain soft-SUSY parameters one obtains
our Model I with

meg ∼ 524, m edL,esL
∼ 438, meuL,ecL

∼ 431

meχ0
2

∼ 246.6, meµR
∼ 128.4, meχ0

1
∼ 85.3 (5)
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For this point, the net cross section available is

σ

0@pp →
X

q,q′=u,d,c,s

eqL eq′
L +

X
q,q′=u,d,c,s

eqL eq′
L +

X
q,q′=u,d,c,s

eqL eq′
L

1A ∼ 2.9 × 104
fb ,

(6)

coming from all sources including gg fusion, uLuL fusion, etc. The
branching ratios relevant to the particular decay chain we examine are

B(q̃L → qχ̃0
2) ∼ 0.27 (q = u, d, c, s)

B(χ̃0
2 → µ̃±

Rµ∓) ∼ 0.124

B(µ̃±
R → µ±χ̃0

1) = 1 . (7)

The net effective branching ratio for the double decay chain is

B(q̃Lq̃L → 4µχ̃0
1χ̃

0
1) ∼ (0.27)2 × (0.124)2 ∼ 1.12 × 10−3 (8)

for any one q̃L choice. The effective cross section for the 4µχ̃0
1χ̃

0
1 final

state is then

σ(4µχ̃0
1χ̃

0
1) ∼ 2.9 × 104 fb × 1.12 × 10−3 ∼ 32.5 fb . (9)
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For an integrated luminosity of L = 90 fb−1, this gives us 2900 4µχ̃0
1χ̃

0
1

events before any cuts are applied.

Initial and final state radiation, resonance widths, combinatorics and
experimental resolutions (as in ATLFAST) are all included.

To reduce the SM background, we require that all muons are isolated and
pass the kinematic cuts:

|η|µ < 2.5, PT µ > 10 GeV, p/ T > 50 GeV. (10)

With these cuts, the four-muon SM background is negligible.

The number of signal events is reduced from 2900 to about 1900.

The procedure comprises the following steps:

1. Randomly select masses mY > mX > mN that are below the correct
masses (for example, the current experimental limits).

2. Plot the number of solved events, Nevt, as a function of one of the 3
masses in the recursive order mN , mX, mY with the other two masses
fixed. In the case of mY and mN , we fit Nevt for the plot with two
straight lines and adopt the mass value at the intersection point as the
updated mass. In the case of mX, the updated mass is taken to be the
mass at the peak of the Nevt plot.
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Figure 11: A few steps showing the migration of the one dimensional fits. The
middle curve in each plot corresponds to masses close to the correct values.

A few intermediate one-dimensional fits are shown in Fig. 11.
3. Each time after a fit to mN , record the number of events at the

intersection (sometimes called the turning point) of the two straight
lines, as exemplified in Fig. 11 a. This event number at the turning point
will in general be non-integer.

4. Repeat steps 2 and 3. The number of events recorded in step 3 will in
general increase at the beginning and then decrease after some steps,
as seen in Fig. 12. Halt the recursive procedure when the number of
(fitted) events has sufficiently passed the maximum position.

5. Fit Fig. 12 to a (quartic) polynomial and take the position where the
polynomial is maximum as the estimated mN .

6. Keep mN fixed at the value in step 5 and do a few one-dimensional fits
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for mY and mX until they are stabilized. Take the final values as the
estimates for mY and mX.

• The end result is the plot below.

80 100 120 140
mN HGeVL

1800

1820

1840

1860

events

Figure 12: The final plot for determining mN . The position of the maximum of
the fitted polynomial is taken to be the estimation of mN ..

Remarkably, the point at which the turnover occurs gives MN (and MX
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and MY ) to good accuracy.

The final values for the masses in one ”experiment” were determined as

{252.2, 130.4, 85.0} GeV vs. {246.6, 128.4, 85.3} GeV (11)

Remarkably, the N mass is extremely accurate and the Y mass quite close
as well.

A deeper understanding of our procedure can be gained by examining the
graphical representation of the steps taken in the (mY , mN) plane shown
in Fig. 13.

There, we display contours of the number of (fitted) events after maximizing
over possible mX choices.

There is a ‘cliff’ of falloff in the number of solved events beyond about
1825 events. It is the location where this cliff is steepest that is close to
the input masses, which are indicated by the (red) star.

The mass obtained by our recursive fitting procedure is indicated by the
(blue) cross.
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Figure 13: Contours for the number of solved events in the mN ∼ mY plane with
2000 events. The number of events is the maximum value obtained after varying
mX. Contours are plotted at intervals of 75 events, beginning with a maximum value
of 1975. The green dots correspond to a set of one-dimensional fits. The ? shows
the input masses and the + shows our fitted masses.
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• Error evaluation:

Must adopt an ‘experimental’ approach for such an empirical procedure:

Generate 10 different 90 fb−1 data samples and apply the procedure to
each sample.

Estimate the errors of our method by examining the statistical variations of
the 10 samples, which yields

mY = 252.2 ± 4.3GeV, mX = 130.4 ± 4.3GeV, mN = 86.2 ± 4.3GeV.
(12)

The statistical variations for the mass differences are much smaller:

∆mY X = 119.8 ± 1.0GeV, ∆mXN = 46.4 ± 0.7GeV. (13)

Compared with the correct values MA = {246.6, 128.4, 85.3}, we observe
small biases in the mass determination, which means that our method has
some “systematic errors”.

However, these systematic errors are determined once we fix the experimental
resolutions, the kinematic cuts and the fit procedure.
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Therefore, they can be easily corrected for, which leaves us errors for
the absolute mass scale of ∼ few GeV and for the mass differences of
∼ 1 GeV.

• Backgrounds

In the above example, the background is negligible with the applied cuts.

However, if in some other case the backgrounds turned out to be substantial,
they could decrease the accuracy of the mass determination.

Instead of analyzing another process with sizable backgrounds, we stick to
the four muon events studied above but make up more “backgrounds”.

In particular, we consider the 4-muon events from top pair production, but
unlike above we do not require the muons to be isolated (which eliminates
this background).

⇒ a significant number of events have 4 hard muons.
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Figure 14: Fits with 90fb−1 signal events and an equal number of background
events. Separate numbers of signal (blue) and background (red) events are also
shown.

Adding an equal number of background events to 90fb−1 signal events, we
repeat the one-dimensional fits. A typical cycle around the correct masses
is shown in Fig. 14.

For comparison the number of solvable signal events and background events
are also shown separately.

The effect of background events is clear: the curve for solvable background
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events is much smoother around the turning point, and therefore smears
but does not destroy the turning point.

Although we are considering one specific background process, this effect
should be generic, unless the backgrounds happen to have non-trivial
features around the turning points.

Nevertheless, due to the fact that there are 8 possible combinations, the
chance that a background event gets solutions is quite large and they do
affect the errors and biases of the mass determination.

This can be seen in Fig. 15, in which we have used the same 10 sets of signal
events as in the previous subsection, but varied the number of background
events according to the ratio background/signal = 0, 0.1, 0.2, 0.5, 1.

We observe increases in both the biases and variations.

But, if the backgrounds are understood (which if SM, they will be), then
we can correct for them.
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Figure 15: mN determination with different background-signal ratio. The dashed
horizontal line corresponds to the correct mN .
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• If it should be that mN ∼ 0, then we will know it.

We have found that it would quickly become apparent that we were not
finding a maximum in the included event number as mN is increased.

We would then backtrack to mN = 0 and find that actually the number
of included events is largest there and declines as mN increases. A typical
plot is shown in Fig. 16.
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Figure 16: mN determination for a case with mY = 199.4 GeV, mX = 100 GeV
and mN = 0.1 GeV. Requires very large µ in SUSY model. 2000 event sample.
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• Peculiar mass separation choices can give some special features.

We are currently working on optimizing our procedures for such cases.

• We are confident that the experimental groups will actually end up doing
even better in the end.

In particular, if they understand the backgrounds then they can separately
apply our procedure to them and subtract the background from the summed
curves of Fig. 14, returning us to a situation close to the zero-background
case first considered.

The SPS1a Point

• It is desirable to compare directly to the results obtained by others for the
SPS1a SUSY parameter point.

• We perform the analysis using the same 4µχ̃0
1χ̃

0
1 final state that we have

been considering. For the usual SPS1a mSUGRA inputs the masses for
Y = χ̃0

2, X = µ̃R and N = χ̃0
1 (from ISAJET 7.75) are 180.3 GeV,

142.5 GeV and 97.4 GeV, respectively.
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• This is a more difficult case than Point I considered earlier due to the fact
that the dominant decay of the χ̃0

2 is χ̃0
2 → τ τ̃1. The branching ratio for

χ̃0
2 → µµ̃R is such as to leave only about 1200 events in the 4µχ̃0

1χ̃
0
1 final

state after L = 300 fb−1 of accumulated luminosity.

• Cuts reduce the number of events further to ∼ 425.

This is too few for our technique to be as successful as for the earlier
considered cases.

• After including combinatorics and resolution we obtain:

mY = 188 ± 12 GeV , mX = 151 ± 14 GeV , mN = 100 ± 13 GeV .
(14)

In Fig. 17, we give an SPS1a plot analogous to Fig. 12.

Errors are determined by generating many such plots for different samples
of ∼ 425 events (the exact number changes depending upon event details).

Errors will come down to about ±5 GeV after including 2e2µ and 4e final
states, making our results comparable to the ATLAS LHC edge results.
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Figure 17: Fitted number of events at the turning point as a function of mN for the
fits for the SPS1a case.

Note the vertical scale. The change in the number of events as one varies
mN is quite small for small event samples and this is what leads to the
larger errors in this case.

• In principle, we must also take into account the fact that the dominant
χ̃0

2 → τ τ̃1 decays provide a background to the purely muonic final state.
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The background level (after cuts and branching ratios) is at about the 50%
level. However, using other channels involving e’s to which it, but not our
signal, contributes, we can subtract this background statistically.

We have not yet performed the relevant procedure to see how well we do,
but we expect that the net background contamination will be equivalent to
B/S <∼ 0.1, a level for which our techniques work very well and the errors
quoted earlier for the SPS1a point will not be increased by very much.
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2 chains: 3 visible particles per chain

• Recall from the counting section that to solve requires just n = 2 events.

There are many ways to set up the equations. The most convenient form
leads (for 2 events) to 3 simultaneous quadratic equations.

There are multiple solutions to these equations for any 2 events, even
before including combinatorics and resolution.

However, before combinatorics and resolutions, typically only one of the
multiple solutions is common to all pairs of events that one can consider.

It is easy to get lots of pairs of events; for example, 58 events leads to
1653 pairs.

We again focus on the decay chain q̃ → qχ̃0
2 → qµµ̃R → χ̃0

1qµµ with
SPS1a masses meq = 565 GeV, meχ0

2
= 180 GeV, meµR

= 142 GeV and
meχ0

1
= 97 GeV.
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Figure 18: mN bins populated by 1653 pairs of events: no resonance width effects
are included, all squarks are taken degenerate and no resolution effects are included,
but correct combinatoric uncertainties are and give the “pedestal”.

In the above plot, you see the ideal situation: narrow width approximation
for all the intermediate states; exactly degenerate squark masses (vs.
the real SPS1a masses that have some differences between 1st two
generations); and no resolution smearing —only combinatoric reassignments
are incorporated.
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To be more realistic, one should do the following;

1. generate q̃Lq̃L production with ISR and FSR jets turned on;
2. allow for squark mass differences — e.g. for SPS1a point, we find

meuL
= mecL

= 565 GeV vs. m edL
= mesL

= 571 GeV . (15)

3. include the decay widths of the q̃L’s, χ̃0
2’s, . . .

4. allow for combinatoric interchanges in which muons are placed in all
physically possible places along the two decay chains;

5. allow for interchanging the two jets that we choose to associate with the
primary q̃L decays;
(We choose these two jets by taking those with the largest pT ’s —
sometimes this is not the correct choice.)

6. smear the momenta of the jets and muons using the resolutions of
ATLFAST.

Note: When solving for consistent masses for all the particles at once,
jet energy smearing, combinatorics and so forth will influence the masses
extracted further down the chain for χ̃0

2, . . ..

⇒ the excellent µ momentum resolution will not help all that much.
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Figure 19: Mass bins populated by 120 pairs of events: resolution effects are
included, combinatoric interchanges are included, and squark mass differences and
resonance widths are included.

Target SPS1a masses: meχ0
1
, meµR

, meχ0
2
, meq = 97, 142, 180, 565 GeV.

Peaks are close to the actual masses. We are currently working on
further refinements and error analyses, e.g. by fitting to the peak of such
distributions and using different sets of 120 pairs.
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Conclusions

• Using 2 chains with 2 visible particles each, ⇒ ∼ few GeV to 10 GeV
accuracy for the absolute mass scale is achievable at the LHC, depending
upon the number of events available.

• Using more visible particles is likely to improve further on this result —
refinement and error analysis of the case where we consider 2 chains with
3 visible particles in each chain is under way.

Consequences:

1. The above accuracy, even in the difficult SPS1a case, should be sufficient
to eliminate the ’slider’ degeneracies of the LHC inverse solutions.

2. The accuracy already achieved will aid enormously in the GUT extrapolation.
3. It will also greatly increase the accuracy of the dark matter calculation.

• The ability to get an absolute mass scale out of LHC data could be quite
crucial for determining whether the ILC500 is sufficient or one needs to go
to ILC1000.
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• Our technique can, of course, be combined with the other techniques
outlined at the beginning to obtain the best possible overall mass scale and
mass differences.

• Don’t forget that we must understand how to single out a single topology
(i.e. suppress others adequately) in the case that there are many new
physics topologies.

If this cannot be done, then we must learn how to work with multiple
topologies. We believe our techniques can be generalized to such a
situation.
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