Higgs sectors in which the only light Higgs is a A^0

Jack Gunion Davis Institute for High Energy Physics, U.C. Davis

LCWS, Jeju, August 27, 2002

Outline

- Motivations for Higgs doublets and beyond
- Escaping precision Electroweak constraints
- What will it take to find such an A^0 ?

EXTENDED STANDARD MODEL

Even within SM context, should consider extended Higgs sector possibilities.

• Add singlets

No particular theoretical problems (or benefits) but discovery becomes more challenging.

- Add doublets
 - -: Veltman: charged Higgs m^2 not automatically positive (EM?).

+: Weinberg: can get CP violation from Higgs sector.

• Add higher representations, e.g. triplets.

If neutral vev $\neq 0$, $\Rightarrow \rho$ is no longer computable (even if representations and vevs are chosen so that $\rho = 1$ at tree level); ρ becomes another input parameter to the theory.

Triplets are motivated by L-R models and seesaw neutrino mass generation. Aside from the triplet, an L-R must contain at least one doublet and more are certainly a possibility. • Coupling unification can be achieved without SUSY by introducing additional Higgs representations in the standard model.

To repeat, $\rho = 1$ suggests that representations other than T = 1/2, |Y| = 1 should have zero vev for the neutral field member (if there is one).

Some simple choices are $(N_{T,Y} = \text{number of reps. of given type})$:

$N_{1/2,1}$	$N_{1/2,3}$	$N_{0,2}$	$N_{0,4}$	$N_{1,0}$	$N_{1,2}$	α_s	$M_U~({ m GeV})$
1	0	0	2	0	0	0.106	$4 imes 10^{12}$
1	0	4	0	0	1	0.112	$7.7 imes10^{12}$
1	0	0	0	0	2	0.120	$1.6 imes10^{13}$
2	0	0	0	1	0	0.116	$1.7 imes10^{14}$
2	0	2	0	0	2	0.116	$4.9 imes10^{12}$
2	1	0	0	0	2	0.112	$1.7 imes10^{12}$
3	0	0	0	0	1	0.105	$f 1.2 imes 10^{13}$

Find lower M_U than comfortable for proton decay: must fix by not having true group unification, as in some string models, or ...

My personal favorite: $N_{rac{1}{2},1}=2, N_{1,0}=1 \Rightarrow lpha_s(m_Z)=0.115$, $M_U=1.7 imes10^{14}~{
m GeV}$

- We will find that there is no guarantee that in such generalized models we will find a light Higgs.
 - In particular, it is possible to construct a model in which the only (moderately light, i.e. $\leq 0.5 \,\mathrm{TeV}$) Higgs boson is a pseudoscalar member of a two (or more) doublet Higgs sector.
 - Such a model can be consistent with precision electroweak constraints.
 - Parameters are easily chosen so that discovery of the A^0 is very difficult.

General Two Higgs Doublet Model $(h_{1,2,3}^0, H^{\pm} - CPV - or h^0, H^0, A^0, H^{\pm} - CPC)$

For simplicity we will focus on the CPC case. It contains:

- CP-even h^0 and H^0 .
- CP-odd A^0 .
- Charged Higgs bosons H^{\pm} .

Some general points:

- A priori, there are no constraints on the masses other than ones required by perturbativity of the $\lambda_{i=1,7}$ quartic couplings of the most general potential for the model.
- An often discussed natural limit for the model is one in which m_{A^0} (along with m_{H^0} and $m_{H^{\pm}}$) become large (possibly well in excess of 1 TeV) while the h^0 remains relatively light.

This is possible while keeping all the λ_i perturbative.

• The scenarios we discuss are completely different from the above 'decoupling' limit.

In particular, the heavier Higgs bosons (h^0, H^0, H^{\pm}) must have masses not much above the 1 TeV scale in order for the λ_i to remain in the perturbative domain.

⇒ They will be discovered at machines with large enough mass reach.

• A possible scenario if only the A^0 is light.

The LHC discovers a 1 TeV SM-like h^0 .

There is no light CP-even Higgs boson (with WW, ZZ couplings) as apparently needed to satisfy precision electroweak constraints.

What should one do next?

Satisfying precision electroweak constraints with only a light A^0 .

(JFG, Farris, Chankowski, Grzadkowski, Kalinowski, Krawczyk)

• Assume that the $h_{\rm SM}$ -like Higgs boson is heavy.

 \Rightarrow large $\Delta S > 0$ and large $\Delta T < 0$.

• Compensate by large $\Delta T > 0$ from small mass non-degeneracy (weak isospin breaking) of heavier Higgs. Light A^0 + heavy SM-like $h^0 \Rightarrow$

$$\Delta
ho = rac{lpha}{16\pi m_W^2 c_W^2} \left\{ rac{c_W^2 m_{H^\pm}^2 - m_{H^0}^2}{s_W^2 - 2} - 3m_W^2 \left[\log rac{m_{h^0}^2}{m_W^2} + rac{1}{6} + rac{1}{s_W^2} \log rac{m_W^2}{m_Z^2}
ight]
ight\}$$

Can adjust $m_{H^{\pm}} - m_{H^0} \sim \text{few GeV}$ (both heavy) so that the S, T prediction is OK.

しエリ

E.g. **choose** $tan \beta$ and that m_{A0} SO A^0 is in Yukawa nodiscovery wedge and choose $m_{h^0} > \sqrt{s} =$ 500 GeV or 800 GeV m_{H^0}, m_{H^\pm} still and heavier but adjusted to minimize $\Delta \chi^2$ for precision electroweak data.

 \Rightarrow the blue Blobs (for $\tan \beta > 1$).

Giga-Z(with 6MeV Δm_W scan) would pinpoint situation.

Outer ellipses = current 90% CL region for U=0 and $m_{m h_{
m SM}}=115$ GeV. Blobs = S, T predictions for Yukawa-wedge 2HDM models with minimum relative $\Delta\chi^2$. Innermost (middle) ellipse = 90% (99.9%) CL region for $m_{h_{
m SM}} = 115$ GeV after Giga-Z and a $\Delta m_W \lesssim 6$ MeV threshold scan measurement. Stars = from WW threshold SM S, T prediction if $m_{h_{SM}} = 500$ or 800 GeV.

a_{μ} = evidence for light 2HDM A^{0} ?

A light A^0 (h^0) gives a positive (negative) contribution dominated by two-loop Bar-Zee graph. (Cheung *et al.*, Krawczyk) Light A^0 can \Rightarrow appropriate Δa_{μ} .

For latest Δa_{μ} range $(\sim 3 \pm 1 \times 10^{-9})$, at moderate $m_{A^0} \gtrsim 50$ GeV, high $\tan \beta > 30 - 70$ is needed to explain Δa_{μ} . $\Rightarrow A^0$ in LC/LHC 'no-discovery' wedges (roughly defined by $m_{A^0} > 50 - 100$ GeV and $\tan \beta \sim 6 \pm \Delta(m_{A^0})$ could only supply part of E Δa_{μ} .

Explanation of old BNL a_{μ} value via light 2HDM A^0 . (Cheung, Chou, Kong)

Detecting a light A^0 .

At
$$e^+e^-$$
 , $\gamma\gamma$ and $\mu^+\mu^-$ colliders

Need to consider:

- $e^+e^- \rightarrow t \overline{t} A^0$ and $e^+e^- \rightarrow b \overline{b} A^0$.
- $ullet e^+e^- o Z^* o ZA^0A^0 \ e^+e^- o e^+e^-W^*W^* o e^+e^-A^0A^0.$
- $e^+e^-
 ightarrow \gamma A^0$, ZA^0 , $u_e\overline{
 u}_eA^0$ (all one-loop induced)
- $\gamma\gamma
 ightarrow A^0$ (loop) and $\mu^+\mu^-
 ightarrow A^0$ (tree).

Corresponding 'guarantees':

- Fermionic couplings: $g_{t\overline{t}A^0}^2 = \left(\frac{\cos\beta}{\sin\beta}\right)^2$, $g_{b\overline{b}A^0}^2 = \left(\frac{\sin\beta}{\cos\beta}\right)^2$ \Rightarrow either $t\overline{t}$ or $b\overline{b}$ coupling of A^0 must be big.
- The quartic couplings ZZA^0A^0 and $W^+W^-A^0A^0$, from gauge covariant structure $(D_\mu\Phi)^{\dagger}(D^\mu\Phi)$, are of guaranteed magnitude.
- $\gamma\gamma \to A^0$ coupling from fermion loops, $\mu^+\mu^- \to A^0$ direct coupling to fermions.

Q: Are these processes enough?

A: No, but they certainly help.

 $e^+e^- \rightarrow t\bar{t}A^0$ always works if $\tan\beta$ is small enough (and process is kinematically allowed). $e^+e^- \rightarrow b\bar{b}A^0$ always works if $\tan\beta$ is large enough, but increasingly large $\tan\beta$ is required as m_{A^0} increases.

For $\sqrt{s} = 500 \text{ GeV}$ (dashes) and = 800 GeV (solid) the maximum and minimum $\tan \beta$ values between which $t\bar{t}A^0$ and $b\bar{b}A^0$ final states both have fewer than 50 events for decoupled A^0 (a) $L = 1000 \text{fb}^{-1}$ or (b) $L = 2500 \text{fb}^{-1}$. (from JFG+Grzadkowski+Kalinowski)

 $L = 2500 {\rm fb}^{-1}$ wedge begins at $m_{A^0} \sim 80 {\rm ~GeV}$ ($\sqrt{s} = 800 {\rm ~GeV}$). LHC \Rightarrow smaller bad region (due to high rates)? – MSSM studies suggest so. Challenge: close these wedges! Wedges extend to higher m_{A^0} than plotted. A^0A^0Z and $A^0A^0
u\overline{
u}$ production allows discovery of light (decoupled) A^0 . If 20 events sufficient:

- \sqrt{s} = 500 GeV probes $m_{A^0} \leq$ **150** GeV.
- $\bullet \sqrt{s} = 800$ ${
 m GeV}$ probes $m_{A^0} \leq$ **250 – 300** GeV.

Cross Sections for $e^+e^- \rightarrow AAZ$ and $AA\nu\nu$

But, 20 events probably not enough given that there are backgrounds.

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0 50 ΑΑνν

20 evts, L=1 ab⁻¹

100

AAZ

√s=500 GeV

σ (fb)

 σ_{min}

 $1 < t_{an\beta} < 50$ m(other higgs)=√s

ΑΑνν

–∖800 Ge√

√s

Of single A^0 (one-loop) production processes, $e^+e^- \rightarrow \gamma A^0$ production has largest rate. (JFG+Farris+Logan+Su)

- Event rate $\neq 0$ only for $\tan \beta < 5$.
- $\frac{d\sigma}{dm_{b\bar{b}}}(e^+e^- \rightarrow \gamma b\bar{b}) =$ 0.5 fb/10 GeV at $m_{A^0} = 200$ GeV, = 0.2 fb/10 GeV at $m_{A^0} = 400$ GeV ($\sqrt{s} =$ 500 GeV).

 \Rightarrow very hard!

For $\sqrt{s} = 500$ GeV, we plot $\sigma(e^+e^- \to \gamma A^0)$ as a function of $m_{A0}^{}$. (from

JFG+Farris; see also Arhrib)

On the next page we show that $\gamma\gamma$ collisions could allow A^0 discovery in the wedge.

A muon collider could also be very competitive using $\mu^+\mu^- \to A^0$ and a carefully designed scan procedure. (JFG)

$\gamma\gamma \rightarrow A^0$ collider results: peaked + broad spectrum running.

+'s show points with > 4σ signal after combining N_{SD} 's for 2 yr type-I and 1 yr type-II NLC operation at $\sqrt{s} = 630$ GeV. o's show TESLA additions. (from JFG+Asner+Gronberg) Recall that $A^0 A^0 \nu \overline{\nu}$ production covers up to $m_{A^0} \sim 285$ GeV for $\sqrt{s} =$ 800 GeV operation. For $\tan \beta \gtrsim 30 - 40$, $\gamma \gamma \rightarrow A^0$ becomes detectable for m_{A^0} range shown.

J. Gunion

Vital for sorting out a complex Higgs sector.

• At LC there are many techniques based on WW and/or ZZ couplings for verifying a substantial CP=+ component.

But such couplings only sensitive to CP=- component at loop level in Higgs models. \Rightarrow very hard to see CP=- coupling even if there.

- Since CP=+ and CP=- couplings to $t\bar{t}$ of any h are both tree-level $(\bar{t}(a+ib\gamma_5)t), t\bar{t}h$ angular distributions allow CP determination for lighter h's. Use optimal observables.
 - At the LC, as long as there is reasonable event rate ($\sqrt{s} > 800 \text{ GeV}$), this is straightforward. (JFG, Grzadkowski, He), (carried on by TESLA TDR, Reina, Dawson, ...).
 - At the LHC, there will be a high event rate, but reconstruction of t and \overline{t} (identification required) is trickier and backgrounds will be larger. Still, there is considerable promise. (JFG, He; JFG, Pliszka, Sapinski). LHC experimentalists must convince themselves they can do this.

• CP=+ and CP=- components also couple with similar magnitude but different structure to $\gamma\gamma$ (via 1-loop diagrams),

At the LC, \Rightarrow use $\gamma\gamma$ collisions. (JFG, Grzadkowski; JFG, Kelly; Djouadi etal, ..)

 $\mathcal{A}_{CP=+} \propto \vec{\epsilon}_1 \cdot \vec{\epsilon}_2, \quad \mathcal{A}_{CP=-} \propto (\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \hat{p}_{\text{beam}}.$ (2)

- For pure CP states, maximize linear polarization and adjust orientation $(\perp \text{ for CP odd dominance, } \parallel \text{ for CP even dominance})$ to determine CP nature of any Higgs by using appropriate linearly polarized laser photons.. In particular, can separate A^0 from H^0 when these are closely degenerate (as typical for $\tan \beta \gtrsim 4$ and $m_{A^0} > 2m_Z$).
- For mixed CP states, can use circularly polarized photons (better luminosity, reduced background) and employ helicity asymmetries to determine CP mixture.
- At a muon collider Higgs factory could probe CP of *s*-channel produced *h* by rotating transverse polarizations of colliding muons relative to one another.

Must take into account precession, but theoretical study suggests great promise (JFG, Pliszka).

Excellent determination of b and a is possible if luminosity can be upgraded from SM96.

- It could happen that the only light Higgs boson is a multi-doublet A^0 .
- The ability to directly detect and study a CP-odd Higgs boson with light to moderate mass would be of substantial importance in a variety of different model contexts.
- The precision electroweak data does not guarantee that a $\sqrt{s} = 600 \text{ GeV}$ $e^+e^- \text{ LC}$ will find some Higgs signal in most general model.

But, the scenarios of this type constructed so far always have a heavy SM-like Higgs that will be found by the LHC.

Further, Giga-Z studies and $\gamma\gamma$ collisions at the LC would then be very crucial to exposing the A^0 .

• Direct CP determination will probably prove to be vital to disentangling any but the simplest SM Higgs sector.