Solution to ’sunset’ diagram problem

The sunset diagram provides the leading contribution to the d¥(p?)/dp* and hence Z — 1, where I
am simplifying notation by using Z = Z,.

1. First, use Feynman parameters to write the product of 3 propagators as (to separate the e of
dimensional regularization from the Feynman propagator ie, I use i0 for the latter)
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where
D = zqi + yg5 + zq3 — m> + 0. (2)

Then substitute g3 = p — q1 — ¢2. Expanding ¢5 and collecting all the terms containing the ¢
momentum into a full square, we find
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We identify the first term here as ak?, where
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For the other two terms on the right hand side of Eq. (3), we expand (g2 — p)? and collect all
terms containing the go momentum into another full square, obtaining
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Consequently, we define
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after which the right hand side of Eq. (5) takes the form k2 + vp®. Altogether, we have
vl + yg + 2q3 = oki + Bk + 7p° (7)

We will shift to these new ’diagonal’ momenta. The Jacobian for replacing the original inde-
pendent loop momenta ¢; and g, with k; and ks is, given Eqs. (4) and (6),
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and therefore dk; dks = dg, dgo, dimension by dimension. In other words, for fixed Feynman

parameters,
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And, our final denominator form is
D = ak? + Bki + vp* — m?® + 0. (9)
Note, we must not set p> = m? at this stage.

. Assembling all the factors of the two loop amplitude and making use of the above results, we
have
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where D is as in Eq. (9). In particular, the dependence on the external momentum p comes
solely through the yp? term in D. Hence,
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Note that for large loop momenta k; and ks, D grows like k?. Consequently, the integrand of
the 8-dimensional momentum integral Eq. (10) behaves like 1/k®, and the integral diverges
quadratically. On the other hand, the integrand of Eq. (11) behaves like 1/k2, so the divergence
of this integral is only logarithmic.

. Rotating both loop momenta k; and ks into Euclidean momentum space, we have d*k; —
id* kP d*ky — id*kE | and

D — —a(k®? — BEY + p® — m?, (12)

hence

i B \2 d4k:1E d4k‘§ 6 % (—’7)

5 = 5 M vdzate v =0 [0 [ camr s ")
13

. Next, we need dimensional regularization to actually perform the momentum integrals. Chang-

ing
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(where we employ Euclidean signature for all dimensions and have introduced the p depen-
dence in a way equivalent to pulling out the p from the coupling constant), we have
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Note the I'(4 — n) factor: It has a pole at n = 4 but no poles at n < 4. This is dimensional
regularization’s way to show that the momentum integrals diverge, but only logarithmically.

In obtaining the above, I have used the following formulae, the first two of which provide an
alternative way of doing the dimensionally regulated momentum integrals. (You should get
the same result if you use the approach given in the notes.)
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The last formula above is simply the standard Gamma function expansion to be used below.

At this point, we may take n = 4 — 2¢ for an infinitesimally small €. Hence, the last line of
Eq. (15) becomes
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Plugging this formula back into Eq. (13) and assembling all the factors, we finally arrive at
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where C' = 2log(4m) — 27y is a numerical constant while o(z,y, 2), B(x,y,2) and v(z,y, 2)
depend on the Feynman parameters according to Eqgs. (4) and (6).

. We are left with one more task, namely integrating over the Feynman parameters. This looks
like a daunting task, especially if one wants analytic dependence on the external momentum
p?, but fortunately we are only interested in the particular value of p? = physical mass?. Since



we are working at the leading order of perturbation theory which contributes to the dX/dp?,
we may neglect the difference between the physical and the bare masses as a higher-order
correction and set p?> = m?2. Consequently, Eq. (20) simplifies to
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where the second equality follows from Eqs. (4) and (6) for the a(z,y,2), B(x,y,2), and
V(2. y,2)-
At this stage, you have arrived at the promised form:
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for the rational functions F', G of the Feynman parameters (and in the case of G, also of
p?/m? = 1) that are given explicitly in Eq. (21).

The reason that we have set p*> = m? (which to the present order is the same as m2), ..1), is
that our goal is the field strength renormalization factor
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where the derivative is evaluated at p* = My pysical

. Despite the above simplification, Eq. (21) is a painful mess to evaluate simply by hand.
However, if we turn to Mathematica it is fairly straightforward to find that
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Using Eqgs. (24), we find
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to the leading order in A\, and therefore
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As stated, to get these results in Mathematica it is useful to replace the (z,y,z) variables
with (w, &) according to x = w, y = (1 — §)w, z = 1 — w, then integrate over the w variable
first and over £ second. The Mathematica program and results follow.

. Finally, we use the % term to identify ¢; in the expansion for Z, in our general formulae:
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From this, we can now compute the anomalous dimension
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The result is

00 = 15 (155 +O0), (30)

as promised in the lecture notes.
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fl=Integrate[f, {xi, 0, 1}, {w, 0, 1}]
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gl =N ntegrate[g, {w, 0, 1}, {xi, 0, 1}]

NI nt egrate::slweon :
Nurerical integration converging too slowy; suspect one of the follow ng: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WrkingPrecision. |f your

integrand is oscillatory try using the option Method->Oscillatory in N ntegrate. More...
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