
230ABC Problems

For 230B, Winter 2016 The next problems now assigned and due Wednesday of next week
are problems 25 and 26. This problem file reflects the current due dates.

Grading: Unless indicated otherwise, each problem is due one week after it is assigned. Problems handed
in up to the day of the class following the class day when the problems were first due (e.g. Wednesday
if due on Monday, or Monday if due on Friday) will receive 60% credit. After that, no credit. Problems
will constitute a sizable (about 50% to 60%) fraction of your final grade.

The problems 1-16 are those I normally assign during 230A. But, for Winter 2016 230B, we will be
doing problems 1, 12, 14, followed by problems 19, ....

1. Assigned 1/4/2016; Due 1/11/2016. (20 points)

Mandl-Shaw Problem 1.2

The Lagrangian of a particle of mass m and charge q, moving in an electromagnetic field, is given
by

L(~x, ~̇x) =
1

2
m~̇x

2
+
q

c
~A · ~̇x− qφ (1)

where ~A = ~A(~x, t) and φ = φ(~x, t) are the vector and scalar potentials of the electromagnetic field
at the position ~x of the particle at time t.

(i) Show that the momentum conjugate to ~x is given by

~p = m~̇x+
q

c
~A (2)

(i.e. the conjugate momentum ~p is not the kinetic momentum m~̇x in general) and that Lagrange’s
equations reduce to the equations of motion of the particle

m
d

dt
~̇x = q

[
~E +

1

c
~̇x ∧ ~B

]
, (3)

where ~E and ~B are the electric and magnetic fields at the instantaneous position of the charged
particle.

(ii) Derive the corresponding Hamiltonian:

H =
1

2m

(
~p− q

c
~A
)2

+ qφ , (4)

and show that the resulting Hamilton equations again lead to Eqs. (2) and (3).

2. Assigned 4/10/12; Due 4/17/12.

Mandl-Shaw Problems 2.2,2.3,2.4

2.2: The real Klein-Gordon field is described by the Hamiltonian density

H(x) =
1

2

[
c2π2(x) + (~∇φ(x))2 + µ2φ2(x)

]
(5)

Use the commutation relations

[φ(~x, t), π(~x′, t)] = ih̄δ3(~x− ~x′) , [φ(~x, t), φ(~x′, t)] = [π(~x, t), π(~x′, t)] = 0 (6)



to show that
[H,φ(x)] = −ih̄c2π(x) , [H,π(x)] = ih̄(µ2 − ~∇2)φ(x) , (7)

where H is the Hamiltonian of the field. From this result and the Heisenberg equations of motion
for the operators φ(x) and π(x), show that

φ̇(x) = c2π(x) , (2 + µ2)φ(x) = 0 . (8)

2.3: Show that the Lagrangian density

L = −1

2
[∂αφβ(x)][∂αφβ(x)] +

1

2
[∂αφ

α(x)][∂βφ
β(x)] +

1

2
µ2φα(x)φα(x) (9)

for the real vector field φα(x) leads to the field equations

[gαβ(2 + µ2)− ∂α∂β ]φβ(x) = 0 , (10)

and that the field φα(x) satisfies the Lorentz condition

∂αφ
α(x) = 0, . (11)

2.4: Use the commutation relations

[φr(~x, t), πs(~x
′, t)] = ih̄δ3(~x− ~x′)δrs , [φr(~x, t), φs(~x

′, t)] = [πr(~x, t), πs(~x
′, t)] = 0 (12)

to show that the momentum operator of the fields

P j =

∫
d3~xπr(x)

∂φr(x)

∂xj
(13)

satisfies the equations

[P j , φr(x)] = −ih̄∂φr(x)

∂xj
, [P j , πr(x)] = −ih̄∂πr(x)

∂xj
. (14)

Hence, show that any operator F (x) = F (φr(x), πr(x)), which can be expanded in a power series
in the field operators φr(x) and πr(x), satisfies

[P j , F (x)] = −ih̄∂F (x)

∂xj
. (15)

Note that we can combine these equations with the Heisenberg equation of motion for the operator
F (x)

[H,F (x)] = −ih̄∂F (x)

∂x0
(16)

to obtain the covariant equations of motion

[Pα, F (x)] = −ih̄∂F (x)

∂xα
, (17)

where P 0 = H/c.

3. Assigned 4/12/2012; Due 4/19/2012.

Mandl-Shaw Problem 3.1 plus proof that H =
∑
~k ω~k

[
N(~k) + 1

2

]
and ~P =

∑
~k
~kN(~k) for the real

scalar field.

Problem 3.1 reads:



From the expansion for the real Klein-Gordon field φ(x) in terms of the a and a† operators, derive

the following expression for the absorption operator a(~k):

a(~k) =
1

(2V ω~k)1/2

∫
d3~xeik·x[iφ̇(x) + ω~kφ(x)] , (18)

where I am using h̄ = c = 1 notation. Use this expression to derive the commutation relations for
the creation and annihilation operators, a† and a, from the commutation relations for the fields,
φ(x) and π(x).

4. Assigned 4/17/12; Due 4/24/12.

Mandl-Shaw Problem 3.2. Problem 3.2 reads as follows:

With the complex Klein-Gordon fields φ(x) and φ†(x) expressed in terms of two independent real
KG fields φ1(x) and φ2(x) by

φ =
1√
2

(φ1 + iφ2) , φ† =
1√
2

(φ1 − iφ2) , (19)

and with φr(x) (r = 1, 2) expanded in the form

φr(x) =
∑
~k

(
1

2V ω~k

)1/2 [
ar(~k)e−ik·x + a†r(

~k)eik·x
]
, (20)

show that

a(~k) =
1√
2

[
a1(~k) + ia2(~k)

]
, b(~k) =

1√
2

[
a1(~k)− ia2(~k)

]
. (21)

Next, derive the commutation relations for the φ and φ† fields and their conjugate momenta from
those for the φr=1,2 fields and their conjugate momenta (without reference to their operator de-
compositions).

Finally, derive the commutation relations for the a, a†, b, b† operators from those for a1, a
†
1, a2, a

†
2.

5. Assigned 4/17/12; Due 4/24/12.

Derive the expression for the Q operator given in the notes,

Q = q
∑
~k

[
Na(~k)−Nb(~k)

]
, (22)

starting from its expression in terms of fields,

Q = −iq
∫
d3~x :

[
φ̇†(x)φ(x)− φ̇(x)φ†(x)

]
: , (23)

where you should note the normal ordering instruction. However, please show what you get without
normal ordering before you give the normal-ordered version.

Now consider the case of two complex Klein-Gordon fields with the same mass. Label the fields as
φa(x), where a = 1, 2. Using Noether’s theorem, show that there are now four conserved charges,
one given by the generalization of Q, and the other three given by

Qi =
i

2

∫
d3x(φ†a(σi)abπ

†
b − πa(σi)abφb) , (24)

where the σi are the Pauli sigma matrices, and I have chosen a normalization for the Qi that allows
the connection to SU(2) below to be obvious. Show that these three charges have the commutation
relations of angular momentum, SU(2). This extra part of the problem will give you experience
with invariances of L in a space that has no physical interpretation (the SU(2) is not actual spin,
but some other spin — it could be, for example, isospin in one possible context).



6. Assigned 4/l9/2012; Due 4/26/2012.

Compute a different Green’s function or propagator for the scalar field theory defined by

∆new(x) =
1

(2π)4

∫
Cnew

d4k
e−ik·x

k2 − µ2
(25)

where Cnew is a contour that passes above both the −ω~k and the +ω~k poles. Give an expression
for ∆new in terms of ∆+ and ∆−.

7. Assigned 4/26/12; Due 5/3/12.

Demonstrate that the Sµν ≡ i
4 [γµ, γν ] matrices obey the commutation relationship required for

them to be a representation of the Lorentz Lie group generator algebra:

[Sµν , Sρσ] = i [gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ]

8. Assigned 4/26/12; Due 5/3/12.

Demonstrate that the structure ψ(x)iγµ∂µψ(x) appearing in the Dirac L is: a) Hermitian; and b)
Lorentz invariant. For the latter, you will need the discussion of the lecture notes.

9. Assigned 5/1/12; Due 5/14/12.

Derive the expression for Q in terms of operators, namely Q = q
∑
r~p[Nr(~p) −Nr(~p)], as given in

the lecture notes.

10. Assigned 5/1/12; Due 5/14/12.

Prove the result stated in the text. Namely, show that

[ψ±α (x), ψ
∓
β (y)]+ = i(i/∂ +m)αβ∆±(x− y) . (26)

In principle, you could use this problem as an opportunity to learn a bit more about the ur(~p)
and vr(~p) spinors, from Appendices A.4 and A.5. However, to do this problem you really only
need to know two results, which I allow you to assume without proof. For my spinor normalization
conventions (i.e. 2E~p vs. E~p/m) one has

∑
r ur(~p)ur(~p) = /p+m (vs. Mandl-Shaw (/p+m)/(2m))

and
∑
r vr(~p)vr(~p) = /p−m. We will prove this and other results at a later time.

11. Assigned 5/2/12; Due 5/14/12.

Prove that [Oi(x),Oj(y)] = 0 if (x − y)2 < 0, where the operators are of the form Oi(x) =
ψ(x)Γiψ(x) = ψα(x)Γiαβψβ(x) with Γi being any 4 × 4 matrix. The final form exposes the Dirac

indices on the fields and on the Γi matrix.

Problem 4.3 of Mandl-Shaw is a special case of this more general result.

12. Assigned 1/4/2016; Due 1/11/2016. (20 points)

Repeat the minimal substitution rule, ∂µ → ∂µ+iqAµ, game for the charged scalar field Lagrangian
and obtain the interaction Lagrangian describing the interactions between the charged scalar field
and the electromagnetic field.

Then define the appropriate local gauge transformation of the φ field that leaves the full Lagrangian
invariant when Aµ → Aµ + ∂µf(x), proving that what you define works.

13. Assigned 5/2/12; Due 5/14/12.

Do problem 4.5 of Mandl-Shaw. Problem 4.5 reads as follows.

For a Dirac field, the transformations

ψ(x)→ ψ′(x) = eiαγ5ψ(x) , ψ†(x)→ ψ† ′(x) = ψ†(x)e−iαγ5 , (27)



where α is an arbitrary real parameter, are called chiral phase transformations. Show that the
Lagrangian density ψ(x)(i/∂ −m)ψ(x) is invariant under chiral phase transformations in the zero-
mass limit m = 0 only, and that the corresponding conserved current in this limit is the axial vector
current jµA(x) = ψ(x)γµγ5ψ(x).

In the above, γ5 ≡ iγ0γ1γ2γ3. For this part of the problem, the only thing you need to know about
γ5 is that it anticommutes with all the regular gamma matrices: [γµ, γ5]+ = 0 for any µ and that
(γ5)2 = 1. (You should check that these statements are true given the definition of γ5.)

Further, deduce the equations of motion for the fields

ψL(x) ≡ 1

2
(1− γ5)ψ(x) , ψR(x) ≡ 1

2
(1 + γ5)ψ(x) (28)

for non-vanishing mass, and show that they decouple in the limit m = 0.

Using this last result, show that the Lagrangian density

L(x) = ψL(x)i/∂ψL(x) (29)

describes zero-mass fermions with negative helicity only, and zero-mass antifermions with positive
helicity only. (This ψL field is called a Weyl field and it was used to describe the neutrinos in weak
interactions when we thought they had zero mass. Because the neutrino masses are so small, this
is still a useful starting point.) For this part of the problem, you need to know one more fact about
the spinors u and v: namely, in the massless limit, γ5ur(~p) = Σ~pur(~p) and γ5vr(~p) = Σ~pvr(~p), i.e.
γ5 and the helicity operator Σ~p are equivalent in the massless limit. This can be shown starting
from the massless Dirac equation as follows. In the following, wr(~p) stands for either ur(~p) or vr(~p).
The massless Dirac equation says that

/pwr(~p) = 0 . (30)

This, with E~p = |~p|, can be rewritten as

γ0|~p|wr(~p) = −pkγkwr(~p) = +pkγkwr(~p) , (31)

where k = 1, 2, 3 is summed over. Now, premultiply by γ5γ0 to obtain

|~p|γ5wr(~p) = pkγ5γ0γkwr(~p) . (32)

Using the definition of γ5 and the definition of Σk = σij = i
2 [γi, γj ], where kij are in cyclic order,

one can show that γ5γ0γk = Σk. (For instance, γ5γ0γ1 = iγ0γ1γ2γ3γ0γ1 = −i(γ0)2γ1γ2γ3γ1 =
−i(γ1)2γ2γ3 = +iγ2γ3 = + i

2 [γ2, γ3] = Σ1.) Substituting this into the above equation gives

|~p|γ5wr(~p) = ~Σ · ~pwr(~p) , (33)

which, after dividing by |~p| becomes

γ5wr(~p) = (~Σ · p̂)wr(~p) ≡ Σ~p wr(~p) , (34)

the required ingredient for the proof.

14. Assigned 1/6/2016; Due 1/13/2016.

Do problems 5.1 (20 points) and 5.3 (30 points) of Mandl-Shaw.

Problem 5.1 reads as follows.

Show that the Lagrangian density obtained from

L = −1

4
Fµν(x)Fµν(x) (35)



by adding the term − 1
2 (∂µA

µ(x))(∂νA
ν(x)), i.e.

L = −1

4
Fµν(x)Fµν(x)− 1

2
(∂µA

µ(x))(∂νA
ν(x)) (36)

is equivalent to the Lagrangian density proposed by Fermi:

L = −1

2
(∂νAµ(x))(∂νAµ(x)) . (37)

Problem 5.3 reads as follows.

Let |ΨT 〉 be a state which contains transverse photons only. Let

|Ψ′T 〉 =
{

1 + c
[
a†3(~k)− a†0(~k)

]}
|ΨT 〉 , (38)

where c is some constant. Show that replacing |ΨT 〉 by |Ψ′T 〉 corresponds to a gauge transformation,
i.e.

〈Ψ′T |Aµ(x)|Ψ′T 〉 = 〈ΨT | [Aµ(x) + ∂µΛ(x)] |ΨT 〉 , (39)

where

Λ(x) =

(
2

V ω3
~k

)1/2

Re(ice−ik·x) . (40)

15. (15 pts) Not assigned Winter 2016.

As an explicit check of Wicks theorem for four scalar fields, show explicitly that

T (φ(x1)φ(x2)φ(x3)φ(x4)) =: φ(x1)φ(x2)φ(x3)φ(x4) +
∑

all contractions : ,

assuming x0
2 > x0

1 > x0
3 > x0

4.

16. (20 points) Not assigned Winter 2016

Derive the expression given in the notes for the contribution of the left-hand “s-channel” diagram
of Fig. 2 (in QFT-II.pdf) to e+γ → e+γ:

+e2(2π)4δ4(p′ + k′ − p− k)vr(~p)/εs(~k)

[
i
/q +m

q2 −m2

]
q=−k−p

/εs′(~k
′)vr′(~p

′)

× 1√
2V E~p

√
2V E~p ′

√
2V |~k|

√
2V |~k′|

. (41)

Make sure the derivation is as detailed as that done in the notes for the right-hand u-channel
diagram.

Problems above are typically for 230A; problems below and down to about 29 are for 230B, but
some are typically skipped.

17. (40 pts) Not assigned Winter 2016

This is an enhanced version of problem 7.1 of Mandl-Shaw.

Problem 7.1 says:

Derive the lowest-order non-vanishing S-matrix element and hence the corresponding Feynman
amplitude for Bhabha scattering, i.e the process

e+(~p1, r1) + e−(~p2, r2)→ e+(~p′1, s1) + e−(~p′2, s2) (42)



The result you are supposed to prove for the lowest order S-matrix element is

S(2)(e+e− → e+e−) = Sa + Sb , (43)

with

Sa = −e2

∫
d4x1 d

4x2 : (ψ
−
γαψ+)x1

(ψ
+
γβψ−)x2

: iDF αβ(x1 − x2) (44)

Sb = −e2

∫
d4x1 d

4x2 : (ψ
−
γαψ−)x1(ψ

+
γβψ+)x2 : iDF αβ(x1 − x2) . (45)

The corresponding Feynman amplitudes you must derive are:

Ma = −ie2us2(~p2
′)γαur2(~p2)

1

(p1 − p1
′)2
vr1(~p1)γαvs1(~p1

′) (46)

Mb = +ie2us2(~p2
′)γαvs1(~p1

′)
1

(p1 + p2)2
vr1(~p1)γαur2(~p2) (47)

In other words, I want you to make clear (following the same kind of detailed derivation that I do
in the notes for e−e− → e−e−) that there is indeed a relative − sign between Ma and Mb and
that the expressions given are indeed the correct ones. This is the proof by example of the relative
minus sign rule (in our list of Feynman rules) that is to be supplied if two diagrams differ only by
interchanging an initial positron with a final electron or vice versa.

18. (40 pts) Not assigned for Winter 2016

Compute the differential cross-section dσ
dΩ for e+(p′)e−(p) → γ(k′)γ(k) (please use indicated mo-

menta labeling) in the laboratory frame p = (m, 0, 0, 0) (using k = (ω,~k), etc.) and in the center-
of-mass frame at high energy, neglecting the electron mass. In the latter case, convert dσ

dΩ to dσ
dt and

express the result in terms of the Mandelstam invariants s = (p+p′)2, t = (p−k)2 and u = (p−k′)2.
Please be sure to do the computation using my fermion normalizations, as opposed to MS’s.

Compare this latter result to that obtained for γ(k)e−(p) → γ(k′)e−(p′) at high energy in the
center-of-mass. For the latter, simply use the expression given in the notes, neglecting m. Again
use the Mandelstam invariants for the γe− → γe− process (s = (p+ k)2, t = (k − k′)2 = (p− p′)2,
and u = (k − p′)2 = (p− k′)2).

Show that the high energy c.o.m expressions for the e+e− → γγ and e−γ → e−γ cases are related
by the appropriate “crossing relation” (state what the crossing relation should be).

19. (50 pts) Assigned 1/14/2016; due 1/20/2016.

This is a problem regarding non-relativistic single particle quantum mechanics and path integrals.

Imagine a Hamiltonian for a particle moving in one dimension given by Hop =
P 2

op

2M + µ (µ can
be thought of as a chemical potential). For this Hamiltonian, the Schroedinger equation for the

one-particle wave function φ(x) takes the form Oopφ(x) = 0, where Oop = i ∂∂t + 1
2M

∂2

∂x2 − µ.

(a) Compute 〈xf , tf |xi, ti〉 without using path integrals and show that

〈xf , tf |xi, ti〉 =

∫
dp

2π
e
ip(xf−xi)−i

[
p2

2M +µ

]
(tf−ti)

. (48)

(b) Check that P (xf−xi, tf−ti) = −i〈xf , tf |xi, ti〉θ(tf−ti) is a Greens function of the Schroedinger
equation operator: i.e.

OopP (x− x′, t− t′) = δ(x− x′)δ(t− t′) . (49)



(c) Evaluate 〈xf , tf |xi, ti〉 explicitly by performing the
∫
dp above. You should find

〈xf , tf |xi, ti〉 = e
−iµ(tf−ti)+

i(xf−xi)
2M

2(tf−ti)

√
M

2πi(tf − ti)
. (50)

We will now obtain the same result following a path integral approach.

(d) Consider first the general case where we have a 1-dimensional L of form

L(ẋ(t), x(t)) = c1ẋ
2(t) + c2x

2(t) , (51)

with action

S[x(t)] =

∫
dt′′L(ẋ(t′′), x(t′′)) , (52)

where the time derivative is in the dummy integration variable t′′. Expand S[x(t)] about an
arbitrary trajectory x0(t) using

S[x(t)] = S[x0(t) + y(t)]

= S[x0(t)] +

∫
dt

δS

δx(t)

∣∣∣∣
x0(t)

y(t) +
1

2

∫
dt dt′y(t)

δ2S

δx(t)δx(t′)

∣∣∣∣
x0(t)

y(t′) + . . .

(53)

Hint: Use rules like δx(t)
δx(t′) = δ(t− t′) and δẋ(t)

δx(t′) = d
dtδ(t− t

′) — sometimes it will be useful to

partial integrate the latter form under some integral.

(e) Derive the Euler-Lagrange equation for the general L(ẋ, x) from the action principle δS
δx(t) = 0.

(f) Now compute 〈xf , tf |xi, ti〉 using path integral techniques. You must look back in our notes
and you will find the expression

〈xf , tf |xi, ti〉 =

∫ x(tf )=xf

x(ti)=xi

[
dx(t)√
2πiε/M

]
eiS[x(t)] (54)

where the ε stuff is to remind you of what is actually present when you go to the discrete limit.
Note that we have made M explicit here, whereas we had set M = 1 in the notes to simplify
our expressions obtained after performing the dpi integrals. In the discrete limit, the fully
correct expression was (assuming the simple potential V = µ and using the notation adopted
for this problem):

〈xf , tf |xi, ti〉 =
1√

2πiε/M
lim
n→∞

∫ n∏
k=1

dxk√
2πiε/M

exp
{
iε

n+1∑
j=1

[M
2

(
xj − xj−1

ε

)2

− µ
]}
(55)

where the j indices label the intermediate points separated by ε in time and xn+1 = xf and
x0 = xi are fixed. In the above, I have assumed the same H and associated L as specified in
the problem introduction. One can, of course, evaluate this directly. For pedagogical reasons,
I want you to instead evaluate this by using the expansion techniques above, expanding around
the classical path x0(t) which solves δS

δx(t) = 0. You wish to show that

〈xf , tf |xi, ti〉 = eiS[x0(t)]〈0, tf |0, ti〉 , (56)



with

〈0, tf |0, ti〉 =

∫ y(tf )=0

y(ti)=0

[
dy(t)√
2πiε/M

]
ei
∫
dt c1ẏ

2(t)

≡

(
1√

2πiε/M

)n+1 ∫ n∏
k=1

dyk exp

iε
n+1∑
j=1

[
M

2

(
yj − yj−1

ε

)2
] , (57)

where for this case we took c1 = M
2 and c2 = 0 and we have yn+1 = y0 = 0.

(g) Now evaluate 〈0, tf |0, ti〉 explicitly. For this purpose, go back to the discrete version of Eq. (57)
which we obtain by noting that

∫
dt c1ẏ

2(t) = lim
ε→0,n→∞

ε n+1∑
j=1

c1

(
yj − yj−1

ε

)2
 (58)

and write the sum as a bilinear form
κyTAy , (59)

where y(tf ) = yn+1 = 0 and y(ti) = y0 = 0 and A is a symmetric matrix containing only
numbers. Then use the result derived in class that says∫

dx1 . . . dxn exp

{
−1

2
xiAijxj + xiJi

}
=

(2π)n/2√
detA

exp

{
1

2
JiA

−1
ij Jj

}
, (60)

setting Ji = 0. You will obviously need to compute detA — it should be fairly easy.

Having done this, take the continuum limit of your result, n→∞, ε→ 0.

(h) Finally, solve the Euler Lagrange equation for the boundary conditions

x(tf ) = xf , x(ti) = xi (61)

and call the solution x0(t). Compute S[x0(t)]. Then, plug this and your result for 〈0, tf |0, ti〉
into Eq. (56) and verify that this answer agrees with the answer you obtained in Eq. (50).

20. (15 pts) Assigned 1/14/2016; due 1/20/2016.

The simplest path integral there is, is the 0-dimensional path integral, which is just a Gaussian
integral over one variable:

Z =

∫
dφ√
2π
e−φ

2/2 . (62)

In analogy with what we do for the full path integral to evaluate correlation functions, generalize
this to be a function of an external current J :

Z[J ] =

∫
dφ√
2π
e−φ

2/2+Jφ . (63)

Evaluate each of the following:

d2Z[J ]

dJ2

∣∣∣∣
J=0

and
d4Z[J ]

dJ4

∣∣∣∣
J=0

(64)

by each of the following two methods:

(a) Carry out the derivatives with respect to J . Then, set J = 0. Then, do the φ integration.



(b) Solve for Z[J ] by actually doing the φ integration, first. Then, carry out the derivatives on
the resulting expression, and set J = 0 at the end.

You should get the same answers. Verify by looking at the first method, that the answers are the
two-point and four-point functions, that is, the integral with φ2 and φ4 inserted into the integrand.

21. (40 pts) Assigned 1/22/16; Due 2/3/16 (note extra time).

Do problem 9.2 of Peskin and Schroeder, parts (a), (b) and (c). This is a hard problem but a very
interesting topic that we won’t cover in class – namely the connection between path integrals and
the partition function.

22. (20 pts) Assigned 1/27/16; Due 2/3/16.

Using the functional derivative technique, obtain the usual Wick’s theorem result for

〈0|T{ψ(x1)ψ(x2)ψ(x3)ψ(x4)ψ(x5)ψ(x6)}|0〉 (65)

for the free-field Dirac Lagrangian (i.e. no interactions). Of course, you want to first write down
the “usual Wick’s theorem result” obtained in the anticommutator 2nd quantization approach.

23. (20 pts) Assigned 2/3/16; Due 2/12/16.

Consider an abelian gauge theory with charge e in the standard covariant derivative.

Consider a closed contour C0 through which passes a certain amount of flux, as shown in Fig. 1.
Assume that Fµν = 0 on the contour C0. Show that (at any fixed time)

���

� �
�

Figure 1: Picture of contour C0 with flux passing through it.

Φ ≡ ◦
∫
C0

Aidx
i =

2πn

e
, (66)

where n is any integer, using the fact that Aµ is pure gauge on C0 (i.e. Aµ ∝ (∂µU)U−1) and the
requirement that all charged fields be single-valued. P0 is the point at which the integral above
begins.

24. (20 pts) Assigned 2/3/16; Due 2/12/16.

Consider F̃µν = 1
2εµναβF

αβ in the case of a non-abelian gauge theory (recall Fµν = ~L · ~Fµν). Show
that

Tr[F̃µνF
µν ] = ∂µξµ , (67)

where

ξµ = 2εµναβTr

[
Aν∂αAβ +

2g

3i
AνAαAβ

]
, (68)



where g appears in our standard equation of motion, for example,

[Dµ, Fµν ] = ∂µFµν − ig[Aµ, Fµν ] = 0 . (69)

25. (20 pts) Assigned 2/17/16; Due 2/24/16.

Obtain the 3-gluon vertex (only the first term analogous to path integral approach 1st term done
in class) using the 2nd quantization commutator “killing” approach.

26. (20 pts) Assigned 2/17/16; Due 2/24/16.

Obtain the 4-gluon vertex (only two inequivalent terms need to be obtained, let us say the a →
f, b→ g, c→ f ′, d→ g′ and a→ g, b→ f, c→ f ′, d→ g′ terms) using the path integral/functional
derivative approach, assuming that the reduction projection works as it did in the 3-gluon vertex
case.
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27. (20 pts) Assigned 2/29/16; Due 3/7/16.

Prove the first and third of the color relations above.

28. (30 pts) Assigned 3/2/16; Due 3/9/16. This problem is likely to be important for the final.

Compute the cross section dσ/dt for uu → dd, where the u and u represent up-quark and anti-
up-quark (and similarly for d and d) in the fundamental triplet representation. Express the cross
section in terms of the s, t, u variables in the massless limit. The cross section you should give is
that obtained by using the Feynman rules of QCD and by summing over final spins and final colors
for the quark and antiquark and averaging over initial spins and initial colors. You will probably
want to employ the color graph techniques to get the appropriate color factors for the various terms,
although other techniques can also be used. I also hope you will use the spinor techniques to do the
Feynman/momentum-space part of the computations, but this is not required since we will only
barely have got to them.



Problems above this point are those typically assigned for 230B. They are not relevant for 230C.
Problems below this point (but above the next division) have been assigned for 230C.

29. (30 pts) Assigned 1/16/13; Due 1/28/13

This problem concerns renormalization of φ4 theory at two loops.

As we have discussed in class, at the one loop level Zφ = 1 since the one loop diagram that has
a bubble attached to the propagator is such that the external momentum does not enter into the
bubble. This is no longer true at two loops.

a) (10 pts) Find the one diagram at two loop level (order λ2) which gives a momentum dependent
contribution to Σ(p2). Set up the expression for the associated contribution to Σ(p2) in terms of
two loop integrals, verifying that indeed the expression will be p2-dependent.

b) (20 pts) Carry out the loop integrations using Feynman parameter techniques and dimensional
regularization. There are some useful hints for this part.

Your diagram should involve three propagators that you will combine all at once using the identity
given as Eq. 131 in the web notes. You should then shift momenta so that you end up with an
expression that looks like∫ ∫ ∫

dx dy dz δ(x+ y + z − 1)

∫
d4l1

(2π)4

∫
d4l2

(2π)4

1

[αl21 + βl22 + γp2 −m2 + iε]3
(70)

where the α, β, γ depend on x, y, z. Now wick rotate l1 and l2 and dimensionally regularize and
evaluate the momentum integrals. Do not yet try to integrate over x, y, z. Once you have gotten
an expression, compute dΣ/dp2 (which is what you need to get Zφ). Then, go to the limit of ε→ 0
isolating the terms of order 1/ε and terms that are finite as ε→ 0. Take p2 → m2 in the resulting
expression. You should find that the counter term required for Zφ − 1 takes the form∫ ∫ ∫

dxdydzδ(x+ y + z − 1)F (x, y, z)×
(

1

ε
+ const.+ logG(x, y, z)

)
(71)

for some rational functions F (x, y, z) and G(x, y, z). Now go to Mathematica and evaluate these
integrals using substitutions like x = ξw, y = (1− ξ)w, z = 1− w and integrating over w first and
then over ξ. (Be careful to get the Jacobian for the change of variables into the game.)

30. (20 pts) Assigned 1/16/13; Due 1/28/13. More φ4 renormalization.

In order to carry out the full 2-loop renormalization of φ4 theory, many additional diagrams aside
from the one above would need to be considered.

a) Draw all order λ2 diagrams for −iΣ(p2). Be sure to include diagrams generated by including
∆L(1).

b) Draw all order λ3 diagrams for Γ(p2) (i.e. all diagrams that correct the basic vertex of order λ
that have up to an additional two powers of λ. Again, be sure to include diagrams generated by
including ∆L(1).

This exercise should make it clear why the full two-loop renormalization of φ4 theory (in principle,
the simplest theory we can consider) is fairly non-trivial.

31. (15 pts) Assigned 1/16/13, Due 1/28/13. This, and the next problem are relevant for renormaliza-
tion issues in QED. They show that certain potentially infinite diagrams are either zero or at least
not divergent. You must use dimensionalregularization for them.

Show that the “tadpole” fermion-loop correction to the electron propagator is zero. This diagram
is that in which a single photon attaches to a propagating electron and the other end of the photon
line attaches to a closed fermion loop.



32. (15 pts) Assigned 1/16/13, Due 1/28/13.

Show that D < 0 for the fermion-loop contributions to a 4-photon vertex (after summing all of
them).

33. (50 pts) Assigned 2/6/13; Due 2/13/13

Exotic contributions to g − 2.

As discussed in class, new physics can give rise to extra contributions to the g − 2 of the electron
and muon. One such type of new physics is Higgs bosons and axions.

(a) A scalar Higgs boson interacts with the electron or muon according to

Hint =

∫
d3x

λ√
2
hψψ . (72)

Compute the contribution of a virtual Higgs boson exchange to the electron g−2 in terms of λ and
the mass mh of the Higgs boson.

(b) QED accounts extremely well for the electron’s anomalous magnetic moment, a calculation we
did in class at one loop. One finds, defining a = g−2

2 that

|aeexpt − aeQED| < 1× 10−10 . (73)

What limit does this place on λ and mh? In the simplest version of the electroweak theory,
λe = 3 × 10−6 (where λe goes with ψe for the electron) and mh > 114 GeV. Show that these
values are not excluded.

The coupling of the Higgs boson to the muon is larger by a factor of mµ/me: λµ = 6× 10−4 and

|aµexpt − a
µ
QED| < 3× 10−8 (74)

is the experimental limit. Does this place a limit on mh?

(c) Some more complex versions of this theory contain a pseudoscalar particle called the axion,
which couples to the electron or muon according to

Hint =

∫
d3x

iλ√
2
aψγ5ψ. (75)

The axion may be as light as the electron, or lighter, and may couple more strongly than the Higgs
boson. Compute the contribution of a virtual axion to the g − 2 of the electron, and work out the
excluded values of λ and ma.

34. (20 pts) Assigned 2/6/13; Due 2/13/13

Show explicitly (i.e. not using the charge conjugation operator but rather using explicit expres-
sions for the one-loop diagrams) that the sum of the two diagrams for the possible fermion-loop
contribution to a 3-photon vertex combine to give 0. (Furry’s Theorem)

35. (40 pts) Assigned 2/6/13; Due 2/18/13

Do Peskin Problem 10.4. Asymptotic behavior of diagrams in φ4 theory.

Compute the leading terms in the S-matrix element for boson-boson scattering in φ4 theory in the
limit of s→∞, t fixed. Ignore all masses on internal lines, and keep external masses non-zero only
as infrared regulators when needed. Show that the sum of the zero-loop, one-loop and two-loop
diagrams (all of them) give

M(s, t) ∼ −iλ− i λ2

(4π)2
log s− i 3λ3

2(4π)4
log2 s+ . . . (76)

Notice that ignoring the internal masses allows some pleasing simplifications of the Feynman pa-
rameter integrals. Also note that my answer above differs from Peskin’s answer. See if you can
verify my answer or not. I believe Peskin left out a contribution coming from the expansion of his
Eq. (10.63). Actually, he now confirms that my answer is correct.



36. (30 pts) Assigned 3/4/13, due 3/11/13.

a) Verify the c10, c11 and c22 coefficients in

α
(nf+1)
s (µ2) = α

(nf )
s (µ2)

(
1 +

∞∑
n=1

n∑
l=0

cnl

[
α

(nf )
s (µ2)

]n
lnl

µ2

m2
h

)
, (77)

where mh is the mass of the (nf +1)th flavor, and the first few cnl coefficients are c11 = 1
6π , c10 = 0,

c22 = c211, c21 = 19
24π2 , and c20 = − 11

72π2 when mh is the MS mass at scale mh (c20 = 7
24π2 when mh

is the pole mass.)

b) Verify the b1
b20

term of

αs(µ
2) ' 1

b0t

(
1− b1

b20

ln t

t
+
b21(ln2 t− ln t− 1) + b0b2

b40t
2

−
b31(ln3 t− 5

2 ln2 t− 2 ln t+ 1
2 ) + 3b0b1b2 ln t− 1

2b
2
0b3

b60t
3

)
, (78)

where t ≡ ln µ2

Λ2 .

37. (30 pts) Assigned 3/8/13, due 3/15/11.

In equation (556) of the notes, you will find that b1 and b2 contain the terms

−b1 3
3

5
NT2 and − b2 3

2

3
NT2 , (79)

where NT2 is the number of weak isospin triplets with hypercharge Y = ±2. And, there is no
NT2

term in b3. Using the discussions of the notes, but thinking carefully about how going from a
doublet to a triplet representation of the weak isospin group changes things, derive these results.
For the SU(2) you might find it useful to look at the QFT-III notes where I first discussed SU(2)
and the doublet and triplet representations thereof.

38. (30 pts) Assigned 3/8/13, due 3/15/13.

a) One of our experimentalists asked me last year whether there is a top-loop induced contribution
to gg → γ + Higgs, where g of course is a gluon. In fact, this potentially very important process
(since there are so many gluons in a proton effectively, especially in LHC collisions) is zero at the
one-loop level. The vision might have been that gg attaches to a top quark loop from which the γ
and Higgs are emitted. Prove that the sum of all top quark loop diagrams in which two gluons, a
photon and a scalar Higgs boson attach to the quark loop is zero. Hint: you will want to use the
fact that there is a matrix C, where C ≡ iγ2γ0 is such that −C = C−1 = CT = C†.

b) There are non-zero diagrams that give rise to qq → γ +Higgs. For simplicity, just consider the
case where the q from the colliding proton is q = u and the q from the other colliding proton at the
LHC (or from the colliding anti-proton if at the Tevatron) is q = u.

At tree-level there are two possible diagrams. Draw them and explain why they will be quite small.
For this, and the following part, you will have to make use of your knowledge of the SM, including
the Higgs.

Now consider the possible one-loop diagrams. Try to think of all the contributing diagrams using
Feynman gauge for the vector bosons involved (which includes things like the W and Z) and
associated ghosts. There are a lot of diagrams. The idea is to give you a taste of the complexity of
a real calculation that is of interest for a potential Higgs signal that because of the photon being
present in the final state might have small background.



If you have not fully derived Feynman rules for the weak interactions in the Feynman gauge, you
will find it helpful to look at an appropriate reference, e.g. the Appendix on Feynman rules for the
electroweak interactions in Cheng and Li.

The evaluation of the one-loop diagrams is messy, so don’t attempt it. Just give the diagrams
and for your own good it would be valuable to think about writing down some of the starting
expressions. In fact, by doing so, it is possible to argue that some of the one-loop diagrams are
again very small. But others are not necessarily small. See if you can give at least one example of
each type.


