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Motivations for an invisible particle below the TeV Scale

1. To solve the Higgs boson mass hierarchy problem there must be new
particles below the TeV scale.

2. Sub-TeV new physics avoids precision electroweak constraints most easily
if there is a new discrete symmetry that requires that they couple in pairs
to the SM particles (especially, the W and Z).

3. The lightest such new particle will then be stable and could explain the
observed dark matter in the universe.

4. In many models the correct dark matter density can be obtained and it will
have evaded observational contraints (dark matter detection, ....) if this
new particle is weakly interacting, → WIMP

⇒ 2 such particles (call them N) per LHC event that lead to variable and
partially balancing missing momentum in each event.

5. Can we determine masses of particles in the chain, especially the N?
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As a basic reference, we will often use the mSUGRA SPS1a point with
GUT-scale parameters

m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV, tan β = 10, µ > 0 . (1)

The decay chain of interest will be

q̃L → q χ̃0
2 → q ` ˜̀

R → q ` ` χ̃0
1, (` = e, µ), (2)

with the relevant masses being (some variation with program)

meχ0
1
, mè

R
, meχ0

2
, meuL/ edL

= 97.4, 142.5, 180.3, 564.8/570.8 GeV . (3)

Using lepton spectrum edges and the like yields a good determination of mass
differences, but a really precise determination of the overall mass scale is more
difficult.

ATLAS studied mass determination using edges. With enough edges, there
is sensitivity to the overall mass scale. The results (using the full decay
q̃L decay chain above and ATLFAST!) summarized in the LHC/LC project
(hep-ph/0410364, fhep-ph/0403133 with L = 300 fb−1) were:

∆meχ0
1

∼ ∆meχ0
2

∼ ∆mè
R

∼ 4.8 − 5 GeV,

∆meqL
∼ 9 GeV , ∆meg ∼ 8 GeV.
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Can we do better? Can we find independent cross-checks?

General Strategy:

• One would like to use pure kinematics to get the absolute masses, i.e. not
use cross sections, momentum correlations, etc., which are are presumably
quite model dependent.

• Use leptons (less smearing, smaller backgrounds) and try to find ways to
observe “peaks” as opposed to “edges”, the former being more vulnerable
to smearing, poor statistics, and backgrounds.

• Then, once the masses are known one can input these into the various
possible models and much more reliably employ cross sections, correlations
and so forth to discriminate between models.

• The focus of the Davis Project WIMPMASS is on using the full kinematic
information available in an event to get the masses.
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Stransverse Mass, MT 2: Review

We consider only SUSY-like events with two chains and two Ns.

Figure 1: Construction of MT 2. (I discuss only pair production of two chains.)

1. Assume a value for N mass, µN .

2. Consider all partitions of /pT = p
(1)
T + p

(2)
T .

MT 2(µN) ≡ Min
/pT =p

(1)
T +p

(2)
T

[Max {MT (1, a; µN), MT (2, b; µN)}] (4)

J. Gunion SUSY09, June 4, 2009 4



Basically, The function MT 2(µN) is the boundary between the allowed and
the forbidden regions in the 2-dimensional µY – µN mass space constructed
from the minimal kinematic constraints of the given event.
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Figure 2: Allowed regions in µY – µN mass space are separated by MT 2(µN)
curve.

The currently fastest code for computing MT 2, based on arXiv:0810.5178,
appears on the Project WIMPMASS website.

After accumulating many events, one can assume a value of µN and plot
the number of events as a function of MT 2. The plot will display an upper
edge at Mmax

T 2 (µN).

Crucial to remember: Mmax
T 2 (µN) gives the correct mother particle mass

MY for the correct (but unknown) value of µN = MN .
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To determine the actual value of MN , one turns to kinks.

Accumulate many events, and examine Mmax
T 2 (µN) vs. trial mass µN .

If there are 2 or more visible particles per chain aside from the N ,
MT 2(µN) has 2 branches and exhibits a kink at the correct µN = MN

mass value (Cho, et al., arXiv:ls ,0711.4526; see also Barr, Gripaios, Lester,
arXiv:0711.4008).

Consider two chains of type Y → v1X → v1v2N , and compare X off-shell
and X on-shell.

X off-shell ⇒ good kink; X on-shell ⇒ no visible kink.
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Figure 3: g̃ → qqχ̃0
1 heavy squark vs. on-shell light squark intermediate state.

From Cho et al.
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I will focus in this talk on the case of multi-two-body decay chains, for which
the Mmax

T 2 kink is hard to see. This is where technology from the Davis
group has its greatest impact. But, also the X∗ case can be improved using
our event counting game first introduced in CGHMM and then pursued in
CEGHM,CH,CGHM.

The on-shell X = ˜̀
R case is somewhat different.

Figure 4: On-shell topology case.

•
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• Davis approach has been to map from kinematic observables to mass
space. In this approach, it is useful to define two types of situations:

– Marginal: Each event defines a region in the space of the unknown
masses for which the observed visible momenta and missing momentum
can be possible.

But, no matter how many events, cannot invert kinematic observables
to solve for discrete values of the unknown masses in the chains.

After many events one obtains a well-defined region in the multi-
dimensional mass space that is consistent with all events.

Counting the number of events near the edges of the consistent mass
region can allow determination of all masses.

For two-chain events (the standard situation), if one considers all
available information from both chains then the case of two observable
particles per chain is a ”Marginal” case.

– Solvable: The kinematic observables of a finite number of events yields
a discrete set of possible values for the unknown chain masses.

In the standard two-chain event scenario and considering all information
from both chains ”solvable” requires that each of the two chains has 3
(or more) visible particles per chain.
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Marginal and “Solvable” cases: Basic Constraint Counting

One chain employed, but two chains present.

1. The “marginal” case is 3 visible particles (or combinations of particles) with
3 on-shell resonances involved and 1 final invisible particle:

Z → Y v1 → Xv2v1 → Nv3v2v1

(e.g. q̃L → q χ̃0
2 → q ` ˜̀

R → q ` ` χ̃0
1, (` = e, µ)) (5)

2. The first ”solvable” case is 4 visible particles with 4 on-shell resonances
and the final N .

e.g. g̃ → q′q̃L → q′q χ̃0
2 → q′q ` ˜̀

R → q′q ` ` χ̃0
1, (` = e, µ) (6)

after n events there are 5 + 4n unknowns and 5n constraints, implying
equality when n = 5. So, if there were no combinatoric / resolution issues,
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n = 5 events would allow you to solve for the 5 masses aside from (very
considerable) discrete quartic equation solution ambiguities.

Two (identical) chain examples

1. The “marginal” case here is just two visible particles per chain: Y →
Xv1 → Nv2v1 (e.g. χ̃0

2 → ` ˜̀
R → `` χ̃0

1).

If we assume equal masses on the two chains, then there are 3 unknown
masses, including mN .

For each event, there are the two 4-momenta of the two final N ’s, but
we know the sum of their transverse momenta from balancing against
the visible particle transverse momenta, implying 6 unknown momenta
components per event.

After n events, the number of unknowns is then 3 + 6n.

The number of constraints is 6n (since we assume on-shell masses on both
chains.)

Thus, no matter how many events, we always have the 3 unknown mass
parameters that cannot be absolutely solved for.
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Note that by considering both chains, we are at the marginal situation with
just 2 visible particles and 2 on-shell resonances plus the 1 final invisible
particle, as opposed to the one-chain case where marginality required 3
visible particles, corresponding to 3 on-shell resonances plus 1 invisible
particle.

2. The first non-marginal case is clearly 3 visible particles per chain (Z →
Y v1 → Xv2v1 → Nv3v2v1), corresponding to 3 + 1 = 4 unknown masses.

In this case, after n events we have 4 + 6n unknowns and 8n on-
shell constraints (recall we have two chains each of which has four mass
constraints) implying solution (subject to discrete ambiguities) when 4 +
6n − 8n = 0 ⇒ n = 2.

There is a reduction in the number of on-shell resonances and associated
visible particles that are needed to get discrete solutions, as compared to
considering a single chain.

A significant problem with both the 1-chain and 2-chain approaches is
combinatorics.
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Advantages and Disadvantages of 1-chain vs. 2-chain approaches.

1-chain:

Less combinatoric ambiguity if you can isolate events in which there are
e.g. exactly two leptons, implying that the other side of the event is “simple”.

But, must go deeper into the chain to get an equivalent level of constraint
(3 visible particles in the chain vs. 2 in minimal cases).

2-chain:

More combinatoric ambiguity (assuming the two chains are the same as in
the analyses to be discussed).

But, need not go as deeply into the chain in the minimal case and need
fewer events to “solve” in the first solvable situation (2 events vs. 5 events
— the 5 events in the 1-chain case, means a high multiplicity of solutions
which may more than offset gain on combinatorics).
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2 chains — 2 visible particles per chain: (CGHMM)

• We claim that one can do well at the LHC by taking the more global point
of view and using as much information as is available in every event.

Consider the chain decay sequence:

Figure 5: A typical chain decay topology.

Note: some cuts to isolate a given topology are required (just as in the
previous analyzes) — roughly a ratio of S/B > 2 is certain to work.
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This topology can be applied to many processes with 4 visible and 2 invisible
particles.

We will suppose that MY = MY ′, MX = MX′, and MN = MN ′.

Examples that fit this: χ̃0
2χ̃

0
2 → ll̃ll̃ → llχ̃0

1llχ̃
0
1, q̃q̃ → qχ̃0

2qχ̃0
2 →

qZχ̃0
1qZχ̃0

1, and t̃t̃ → bχ̃+bχ̃− → bW +χ̃0
1bW −χ̃0

1. The first is a
subcomponent of the SPS1a chain.

1. In this marginal situation, for each event (with measured visible particle
momenta) if we know the 3 masses, then we can solve for the 4-momenta
of the N and N ′ and vice versa.

The equations are quartic, and so there can be 4, 2 or 0 solutions (with
acceptable positive real energies for the N and N ′). If not 0, then the
event is “solved” for those particular mass choices.

The code for testing if choices of MY , MX and MN lead to acceptable
pN and pN ′ momenta for a given event (specified by the visible particle
momenta and /pT , LHE format) is on the Davis WIMPMASS Project
website.

2. For each event, we scan through the mass space to see if one or more of
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the discrete solutions is acceptable.

Each event then defines a 3-dimensional region in the 3-dimensional mass
space that is physically acceptable.

3. As we increase the number of events the 3-dimensional mass region
consistent with all events becomes smaller.

However, in general (and in practice) this region will not shrink to a point.

Thus, we need additional methods to pick out the correct point in mass
space.

• To illustrate our approach, we can consider the explicit example

χ̃0
2χ̃

0
2 → ` ˜̀̀ ˜̀→ ``χ̃0

1``χ̃
0
1 ,

i.e. Y = Y ′ = χ̃0
2, X = X′ = ˜̀, N = N ′ = χ̃0

1 ,

which we generate as a subcomponent of

q̃q̃ → qχ̃0
2qχ̃0

2 → . . . → q``χ̃0
1q``χ̃0

1 . (7)
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Figure 6: Mass region (in GeV) that can solve all events. 500 generated events for
mY = 246.6 GeV, mX = 128.4 GeV and mN = 85.3 GeV, using correct chain
assignments and perfect resolution. Masses from ’Model I’, with large meχ0

2
.

We found that the correct masses lie at the end point of the allowed region.

However, with finite resolutions and combinatorics (which lepton goes where
in the two chains), not all events can be solved by the correct mass point.
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⇒ The correct mass point will not lie within the intersection region
(assuming there is any such region left).

• In the more realistic case, the correct mass choices do not correspond to
an endpoint but rather correspond to the choices such that changes in the
masses result in the most rapid decline in the number of solved/consistent
events.

• One approach to looking for this point of steepest decline in the 3-
dimensional mass space employs an iterative approach.

We vary one mass holding the other two fixed and identify the point at
which the number of solved events starts a steep decline as the non-fixed
mass is changed.

A few intermediate one-dimensional fits are shown in Fig. 7, which includes
initial and final state radiation, resonance widths, combinatorics and
experimental resolutions (as in ATLFAST). Various experimental cuts are
made to reduce the SM background to a negligible level.

We vary MX, MY and MN in turn (keeping others fixed) and count the
number of ”solved” events. There is always a peak and sharp edge. Update
value of respective mass to peak value.
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In the MN variation step, we record the number of events at the peak.
This event number will in general be non-integer.

• We repeat starting with low value of MN .
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Figure 7: A few steps showing the migration of the one dimensional fits. The middle
curve in each plot corresponds to masses close to the correct values.

• The number of events recorded at the MN peak will in general increase at
the beginning and then decrease after some steps, as seen in Fig. 8. Halt
the recursive procedure when the number of (fitted) events has sufficiently
passed the maximum position.
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Figure 8: The final plot for determining mN . The position of the maximum of the
fitted polynomial is taken to be the estimation of mN ..

Remarkably, the point at which the turnover occurs gives MN to good
accuracy.

• Fit Fig. 8 to a (quartic) polynomial and take the position where the
polynomial is maximum as the estimated MN .

• Keep MN fixed at the above value and do a few one-dimensional fits
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for MY and MX until they are stabilized. Take the final values as the
estimates for MY and MX.

A deeper understanding of our procedure can be gained by examining the
graphical representation of the steps taken in the (MY , MN) plane shown
in Fig. 9.

There, we display contours of the number of (fitted) events after maximizing
over possible MX choices.

There is a ‘cliff’ of falloff in the number of solved events beyond about
1825 events. It is the location where this cliff is steepest that is close to
the input masses, which are indicated by the (red) star.

The mass obtained by our recursive fitting procedure is indicated by the
(blue) cross.
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Figure 9: ”Model 1” example. Contours for the number of solved events in the
MN ∼ MY plane with 2000 events. The number of events is the maximum value
obtained after varying MX. Contours are plotted at intervals of 75 events, beginning
with a maximum value of 1975. The green dots correspond to a set of one-dimensional
fits. The ? shows the input masses and the + shows our fitted masses.
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• Error evaluation:

Must adopt an ‘experimental’ approach for such an empirical procedure:

Generate 10 different 90 fb−1 data Model 1 samples and apply the procedure
to each sample. For this study we used ATLFAST.

Estimate the errors of our method by examining the statistical variations of
the 10 samples, which yields

MY = 252.2±4.3GeV, MX = 130.4±4.3GeV, MN = 86.2±4.3GeV.
(8)

The statistical variations for the mass differences are much smaller:

∆MY X = 119.8 ± 1.0GeV, ∆MXN = 46.4 ± 0.7GeV. (9)

Compared with the correct values MA = {246.6, 128.4, 85.3}, we observe
small biases in the mass determination, which means that our method has
some “systematic errors”.

However, these systematic errors are determined from Monte Carlo (purely
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kinematic level) once we fix the experimental resolutions, the kinematic
cuts and the fit procedure.

Therefore, they can be easily corrected for, which leaves us errors for the
absolute mass scale of ∼ few GeV and for the mass differences of ∼ 1 GeV
which will decrease further after adding in 2e2µ and 4e final states.

The SPS1a Point

• It is desirable to compare directly to the results obtained by others for the
SPS1a SUSY parameter point.

• For the usual SPS1a mSUGRA inputs the masses for Y = χ̃0
2, X = µ̃R

and N = χ̃0
1 (from ISAJET 7.75) are

meχ0
2
= 180.3 GeV, meµR

= 142.5 GeV, meχ0
1
= 97.4 GeV (10)

• We perform the analysis using the same 4µχ̃0
1χ̃

0
1 final state that we have

been considering.
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• This is a more difficult case than Point I considered earlier due to the fact
that the dominant decay of the χ̃0

2 is χ̃0
2 → τ τ̃1.

The branching ratio for χ̃0
2 → µµ̃R is such as to leave only about 1200

events (using ATLFAST) in the 4µχ̃0
1χ̃

0
1 final state after L = 300 fb−1 of

accumulated luminosity.

• Cuts reduce the number of events further to ∼ 425.

• After including combinatorics and resolution we obtain:

MY = 188 ± 12 GeV , MX = 151 ± 14 GeV , MN = 100 ± 13 GeV .
(11)

Errors are determined by generating many such plots for different samples
of ∼ 425 events (the exact number changes depending upon event details).

Errors will come down to about ±5 GeV after including 2e2µ and 4e final
states, making our results comparable to the ATLAS LHC edge results.

Biases can be removed using Monte Carlo.
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Two interesting variations: CH

Use the Mmax
T 2 (µN) curve, possibly along with dilepton edge location, plus

the ”solution” procedure.

1. With dilepton edge:

(a) Follow the Mmax
T 2 (µN) curve which gives µY = Mmax

T 2 (µN) given µN .
(b) Use the dilepton edge constraint:

M2
``|edge =

(M2
Y − M2

X)(M2
X − M2

N)

M2
X

(12)

to establish value of µX (two-fold ambiguity) for the values of µN and
µY (µN) defined by Mmax

T 2 curve.
(c) Count the number of consistent ”solved” events as you move along the

Mmax
T 2 curve varying µN .

(d) Strong peak is observed at value of µN when µN = MN .
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Figure 10: MN determination following Mmax
T 2 (µY ) curve: left=using dilepton

edge; right=without dilepton edge information. No smearing, combinatorics.

2. Without dilepton edge:

(a) Fix µY (µN) for each trial µN using Mmax
T 2 curve.

(b) Vary µX and look for maximum in the number of consistent ”solved”
events for given µN .

(c) Plot this maximum number as a function of µN .
(d) Correct value of µN is located at the maximum of the former maximum.

These plots are before resolution and combinatorics — under study.
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2 chains: 3 visible particles per chain: CEGHM, CGHM

Figure 11: The 3-visible per chain topology.
• Recall from the counting section that to solve requires just n = 2 events.

Altogether, using measured visible particle momenta and /pT for 2 events,
one finds 16 unknowns and 16 equations. The system can be solved
numerically and we obtain discrete solutions for p1, p2, q1, q2 and thus the
masses MN , MX, MY , and MZ.
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Note that the equations always have 8 complex solutions, but we will keep
only the real and positive ones which we henceforth call “solutions”.

The code for getting the mass solutions for any given pair of events is found
on the Davis WIMPMASS Project web site.

Of course, the wrong solutions are different from pair to pair, but the
correct solution is common.

It is easy to get lots of pairs of events.

We focus on the SPS1a decay chain q̃ → qχ̃0
2 → qµµ̃R → χ̃0

1qµµ
with SPS1a masses meu, ed = 564.8 GeV, 570.8 GeV, meχ0

2
= 180.3 GeV,

meµR
= 142.5 GeV and meχ0

1
= 97.4 GeV.

We first consider the ideal case: no background events, all visible momenta
measured exactly, all intermediate particles on-shell and each visible particle
associated with the correct decay chain and position in the decay chain.

We also restrict the squarks to be up-type only.

In this case, we can solve for the masses exactly by pairing any two events.

The only complication comes from there being 8 complex solutions for the
system of equations, of which more than one can be real and positive.
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The mass distributions for the ideal case with 100 events are shown in
Fig. 13.
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Figure 12: We plot the number of mass solutions (in 1 GeV bins — the same
binning is used for the other plots) vs. mass in the ideal case. All possible
pairs for 100 events are included.

As expected, we observe δ-function-like mass peaks on top of small
backgrounds coming from wrong solutions. On average, there are about 2

J. Gunion SUSY09, June 4, 2009 29



solutions per pair of events.

The δ-functions in the mass distributions arise only when exactly correct
momenta are input into the equations we solve.

To be experimentally realistic, we now include the following.

1. Wrong combinations.

For a given event a “combination” is a particular assignment of the jets
and leptons to the external legs of Fig. 12. For each event, there is only
one correct combination (excluding 1357 ↔ 2468 symmetry).

Assuming that we can identify the two jets that correspond to the two
quarks, we have 8 (16) possible combinations for the 2µ2e (4µ or 4e)
channel.

The total number of combinations for a pair of events is the product of the
two, i.e. 64, 128 or 256.

Adding the wrong combination pairings for the ideal case yields the mass
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distributions of Fig. 14.
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Figure 13: Number of mass solutions versus mass after including all
combination pairings for 100 events.

Compared to Fig. 13, there are 16 times more (wrong) solutions, but the
δ-function-like mass peaks remain evident.
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2. Finite widths.

3. Mass splitting between flavors.

4. Initial/final state radiation. These two types of radiation not only

smear the visible particles’ momenta, but also provide a source for extra
jets in the events. We will apply a pT cut to get rid of soft jets.

5. Extra hard particles in the signal events.

6. Background events. The SM backgrounds are negligible for this

signal in SPS1a. Backgrounds from other SUSY processes are very small
after our cuts.

7. Experimental resolutions. In order to estimate this experimental

effect at the LHC, we process all events with PGS (vs. ATLFAST of shorter
paper). PGS yields fewer surviving events (more stringent lepton isolation
cuts) implying larger errors than we found for ATLFAST.
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For a data sample with 300 fb−1 integrated luminosity, there are about 620
(vs. 1050 using ATLFAST) events left after basic signal isolation cuts, out
of which about 420 are signal events. After taking all possible pairs for
all possible combinations and solving for the masses, we obtain the mass
distributions in Fig. 15.

Entries  2420318

mass (GeV)
0 100 200 300 400 500 600 700 800 900 1000

so
lu

ti
on

s/
G

eV

0

2000

4000

6000

8000

10000

Entries  2420318

Figure 14: Mass solutions with all effects 1 – 7 included and after cuts I – III
for the SPS1a SUSY model and L = 300 fb−1.
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Fitting each distribution using a sum of a Gaussian plus a (single) quadratic
polynomial and taking the maximum positions of the fitted peaks as the
estimated masses yields 78.4, 134.2, 181.5, 553.9 GeV. Averaging over 20
different data samples, we find

MN = 76.7 ± 2 GeV, MX = 134.6 ± 2.2 GeV,
MY = 178.9 ± 3.8 GeV, MZ = 561.6 ± 5.4 GeV.

The statistical uncertainties are very small (and smaller than ATLAS results
for this same chain, despite using PGS, which gives fewer final events than
ATLFAST) but there exist biases, especially for the two light masses.

In practice, we can always correct the biases by comparing real data with
Monte Carlo.

Nevertheless, it is perhaps more satisfying to reduce the biases as much as
possible using data only.

In some cases, the biases can be very large and it is essential to reduce
them before comparing with Monte Carlo.

The combinatorial background is an especially important source of bias since
it yields peaked mass distributions that are not symmetrically distributed

J. Gunion SUSY09, June 4, 2009 34



around the true masses, as can be seen from Fig. 14.

This will introduce biases that survive even after smearing. Therefore, we
developed a procedure for reducing wrong solutions (param. fcut).

Next, we found a procedure for increasing the weight of the correct solution.

We also found it useful to keep only those solutions for which all three mass
differences fall within certain mass difference windows.
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Figure 15: Final mass distributions after the bias-reduction procedure for the
SPS1a SUSY model and L = 300 fb−1.
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Repeating the procedure for 20 data sets, we find

MN = 93.8 ± 3.9 GeV, MX = 138.4 ± 4.5 GeV,
MY = 178.7 ± 4.6 GeV, MZ = 559.5 ± 5.4 GeV.

(compared to somewhat larger ATLAS edge errors despite PGS) vs. inputs

MN = 97.4 GeV, MX = 142.5,
MY = 180.3 GeV, MZ = 564.8, 570.8 GeV.

The biases are reduced at the cost of (slightly) increased statistical errors.

We reemphasize that the remaining biases in the above mass determinations
can be removed by finding those input masses that yield the observed
output masses (in fact mass distribution plots) after processing Monte
Carlo generated data through our procedures. In this way, very accurate
central mass values are obtained with the indicated statistical errors.

Further checks and tests

• We have applied our method to other mass points to show its reliability.
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• We have demonstrated that the results are independent of spin by comparing
SUSY to a UED model with exactly same masses.

• We have demonstrated that extracted masses are very robust as available
integrated L declines.

• We have demonstrated that errors worsen rather slowly as (artificial in case
of SPS1a) background is introduced, especially if we employ a relatively
mild dilepton edge cut.

• The dilepton edge cut procedure described below also essentially eliminates
all biases with only a small sacrifice in accuracy.

The DiLepton Edge Cut

• Ignoring resolution smearing, kinematics predicts that correct combinations
should have

(M edge
`` )2 =

(M2
Y 0 − M2

X0)(M
2
X0 − M2

N0)

M2
X0

, (13)
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where MY 0, MX0 and MN0 are the input masses.

Indeed a sharp dilepton edge is visible in the Monte Carlo data even after
allowing for combinatorics, smearing, etc.

• Before employing the bias reduction procedure, we apply a cut on the
MY , MX, MN values obtained for a given solution of

∣∣∣∣√(M2
Y − M2

X)(M2
X − M2

N)/M2
X − M edge

``

∣∣∣∣ < 20 GeV, (14)

where we have purposely employed a rather loose cut so as to not lose
statistics and to take into account smearing of the input X, Y, N masses
that will be present even for a correct combination, as well as the small
error associated with determining the edge location experimentally.

• The resulting mass distributions are now essentially unbiased and very sharp.
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Figure 16: Final mass distributions after dilepton edge cut and the
bias-reduction procedure (using fcut = 0.75) for the SPS1a SUSY model
and L = 300 fb−1.

Bias removal occurs because many of the wrong solutions have been
eliminated.

For example, after the dilepton edge cut and after employing the bias-
reduction procedure using fcut = 0.75, about 160 events are retained on
average and the average number of solutions for the remaining pairs formed
from these surviving events is only about 1.2.
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with dilepton edge cut without dilepton edge cut

fcut 0.60 0.65 0.70 0.75 0.60 0.65 0.70 0.75

mN 93.0 ± 3.7 96.1 ± 3.9 97.5 ± 4.3 97.9 ± 4.9 85.6 ± 2.3 88.1 ± 3.5 90.7 ± 3.8 93.8 ± 3.9
mX 138.9 ± 3.9 141.4 ± 4.6 143.7 ± 4.6 144.3 ± 4.0 131.5 ± 2.7 133.9 ± 3.6 135.9 ± 4.3 138.4 ± 4.5
mY 176.5 ± 3.8 178.8 ± 4.6 180.8 ± 5.1 181.5 ± 5.3 172.8 ± 2.8 174.8 ± 3.8 176.6 ± 4.4 178.7 ± 4.6
mZ 557.8 ± 4.4 559.9 ± 4.5 563.2 ± 5.0 565.6 ± 6.2 555.8 ± 5.2 557.2 ± 5.5 557.8 ± 5.1 559.5 ± 5.4

Table 1: Peak locations for various values of fcut (a bias reduction parameter)
with and without the dilepton edge cut. Errors were determined using 20
distinct data sets.

• Errors for the peak mass values are, of course, slightly larger when a dilepton
edge cut is imposed,

⇒ ultimately the best mass determinations may be those obtained using
Monte Carlo determination of the bias corrections that should be applied
to mass peak values obtained without the dilepton edge cut.

Nonetheless, doing the analysis with a dilepton edge cut will provide a very
important cross check of the bias determination.

• Dilepton edge cut totally kills τ̃ background (primary χ̃0
2 decay mode).
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Conclusions

• There are now a lot of techniques for mass determination in the presence
of two chains, each ending in an invisible particle.

• Not sure who is winning, but the Davis techniques for mapping from event
space to mass space are certainly very good.

• Especially useful seems to be combining the above mapping with a dilepton
edge cut. One should explore throwing Mmax

T 2 into the mix.

• Don’t forget that we must understand how to single out a single topology
(i.e. suppress others adequately) in the case that there are many new
physics topologies.

If this cannot be done, then we must learn how to work with multiple
topologies. We believe our techniques can be generalized to such a
situation.

• Try out the Davis WIMPMASS Project website, under HEFTI/Projects.
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