Accessing the LHC /LC Higgs Wedge.

J. Gunion, H.Haber, H. Logan, Y. Okada, S. Mrenna

July 17, 2001

Motivations and Procedures

There is a region starting at $m_{A^0} \sim 200 \text{ GeV}$ at $\tan \beta \sim 6$, widening to $2.5 < \tan \beta < 15$ at $m_{A^0} = 500 \text{ GeV}$ for which the LHC cannot directly observe any of the heavy MSSM Higgs bosons.

ATLAS detector. This figure is preliminary.

This wedge is not covered at the LC. L=2500 fb⁻¹ $L = 1000 \text{ fb}^{-1}$ tanβ tanβ In fact, the LC wedge for $t\bar{t} + H^0, A^0$ and 10 10 $b\overline{b} + H^0, A^0$ is even < 50 evts. any mode < 50 evts. any mode larger. Further, e^+e^- √s=500 G √s=500 GeV ZH^0H^0 and √s=800 GeV √s=800 Ge\ $e^+e^- \rightarrow ZA^0A^0$ 10 10 100 300 400 400 100 300 200 200 only cover up to M_{h1}[GeV] M_{b1}[GeV] $m_{A^0} = 150 \text{ GeV}$ $(m_{A^0} = 250 \text{ GeV})$ at $\sqrt{s} = 500 \text{ GeV}$ $(\sqrt{s} = 800 \text{ GeV})$ using For $\sqrt{s} = 500 \text{ GeV}$ (dashes) and $\sqrt{s} = 800 \text{ GeV}$ (solid) the maximum and minimum 20 events in L = 1 ab⁻¹. $\tan\beta$ values between which $t\bar{t}h$ and $b\bar{b}h$ final states both have fewer than 50 events for decoupled h (a) $L = 1000 \text{fb}^{-1}$ or (b) $L = 2500 \text{fb}^{-1}$.

- In this region, the h^0 will be observed and its couplings measured to a certain level.of accuracy. (We will consider LHC only and LHC + LC.)
- Will we be able to indirectly determine m_{A^0} from these precision measurements?
- The issue: How much model dependence is there in the h^0 branching ratios, etc., that might prevent an interpretation in terms of m_{A^0} of the observations.
- Main difficulty: There are choices of parameters for which the h^0 has completely standard model couplings to gauge bosons and fermions **independent of** m_{A^0} .
- Main question: Can observations of other SUSY parameters guarantee that we are not in this situation?

Main Ingredient: Higgs Mass Matrix

$$\mathcal{M}^{2} = \begin{pmatrix} \mathcal{M}_{11}^{2} & \mathcal{M}_{12}^{2} \\ \mathcal{M}_{12}^{2} & \mathcal{M}_{22}^{2} \end{pmatrix} = \begin{pmatrix} m_{A^{0}}^{2} s_{\beta}^{2} + m_{Z}^{2} c_{\beta}^{2} & -(m_{A^{0}}^{2} + m_{Z}^{2}) s_{\beta} c_{\beta} \\ -(m_{A^{0}}^{2} + m_{Z}^{2}) s_{\beta} c_{\beta} & m_{A^{0}}^{2} c_{\beta}^{2} + m_{Z}^{2} s_{\beta}^{2} \end{pmatrix} + \delta \mathcal{M}^{2}$$

$$(1)$$

It is diagonalized by rotation angle α determined by

$$\sin 2\alpha = 2c_{\alpha}s_{\alpha} = 2\frac{\mathcal{M}_{12}^2}{\sqrt{(\mathrm{Tr}\mathcal{M}^2)^2 - 4\mathrm{Det}\mathcal{M}^2}}$$
(2)
$$\cos 2\alpha = c_{\alpha}^2 - s_{\alpha}^2 = \frac{\mathcal{M}_{11}^2 - \mathcal{M}_{22}^2}{\sqrt{(\mathrm{Tr}\mathcal{M}^2)^2 - 4\mathrm{Det}\mathcal{M}^2}}$$
(3)

where

$$\sqrt{(\mathrm{Tr}\mathcal{M}^2)^2 - 4\mathrm{Det}\mathcal{M}^2} = m_{H^0}^2 - m_{h^0}^2.$$
(4)

Writing

$$\sin 2(\beta - \alpha) = 2\sin(\beta - \alpha)\cos(\beta - \alpha) = \sin 2\beta\cos 2\alpha - \cos 2\beta\sin 2\alpha$$
 (5)

we obtain

$$\cos(\beta - \alpha) = \frac{(\mathcal{M}_{11}^2 - \mathcal{M}_{22}^2)\sin 2\beta - 2\mathcal{M}_{12}^2\cos 2\beta}{2(m_{H^0}^2 - m_{h^0}^2)\sin(\beta - \alpha)}$$
(6)
$$= \frac{2m_Z^2\sin 2\beta\cos 2\beta + (\delta\mathcal{M}_{11}^2 - \delta\mathcal{M}_{22}^2)\sin 2\beta - 2\delta\mathcal{M}_{12}^2\cos 2\beta}{2(m_{H^0}^2 - m_{h^0}^2)\sin(\beta - \alpha)}$$
(7)

Exact decoupling corresponds to $\cos(\beta - \alpha) = 0$, which is obtained by zeroing the numerator, equivalent (assuming $\tan \beta \neq 1$) to requiring

$$2m_Z^2 \sin 2\beta + (\delta \mathcal{M}_{11}^2 - \delta \mathcal{M}_{22}^2) \tan 2\beta - 2\delta \mathcal{M}_{12}^2 = 0.$$
(8)

To evaluate where exact decoupling occurs and how rapidly one moves away from exact decoupling as SUSY parameters change, one needs the best available expressions for the δM_{ij}^2 's. We have used those employed in hep-ph/0106116 (Carena, Haber, Logan, Mrenna).

One finds many decoupling solutions at all $\tan\beta$ values in the wedge region, although the difficulty of finding solutions consistent with $m_{h^0} \gtrsim 113 \text{ GeV}$ (the LEP limit for an exactly SM-like coupled h^0) increases at lower $\tan\beta$ values.

Important parameters for our scanning:

- $m_{\rm SUSY}$
- $\tan\beta$
- μ , A_t , A_b
- Note: at the decoupling limit, there is no dependence on m_{A^0} .

Outputs

- Stop and sbottom masses
- Light Higgs boson mass
- Note: even if A_t and A_b are large, what is important is whether the output stop and sbottom masses are reasonable enough that the approximations being employed are acceptable.

For $\tan \beta = 6$, we plot μ , $\min(m_{\widetilde{b}_1}, m_{\widetilde{t}_1})$, A_t and A_b as a function of $m_{\rm SUSY}$ for various small bands of m_{h^0} .

For $\tan \beta = 6$, we plot X_t/μ , X_b/μ , μ/m_{SUSY} and A_t/A_b as a function of m_{SUSY} for various small bands of m_{h0} .

For $\tan \beta = 8$, we plot μ , $\min(m_{\widetilde{b}_1}, m_{\widetilde{t}_1})$, A_t and A_b as a function of $m_{\rm SUSY}$ for various small bands of m_{h^0} .

Results for $\tan \beta = 8$

For $\tan \beta = 8$, we plot X_t/μ , X_b/μ , μ/m_{SUSY} and A_t/A_b as a function of m_{SUSY} for various small bands of m_{h0} .

Implications

Even if we do not see the A^0 or H^0 (or H^{\pm}) at the LHC and LC, if we could approximately determine m_{A^0} this would:

- Allow us to know where to focus the $\gamma\gamma$ collider.
- Allow us to know where to focus the $\mu^+\mu^-$ collider.
- Allow us to know to what energy we must increase the LC \sqrt{s} .
- Give us important information regarding MSSM boundary conditions.

Our results show that if μ is large then there is a distinct possibility that the h^0 could be completely decoupled, implying independence of all its properties on the value of m_{A^0} .

Note: This does not mean that all of the h^0 properties will be the same as for the SM $h_{\rm SM}$. For example, stop and sbottom loops affect $\Gamma(h^0 \to gg)$ and $\Gamma(h^0 \to \gamma\gamma)$. However, the SUSY-loop correction, $\Delta \lambda_b$, vanishes in the exact decoupling limit.

Fractional deviations of the gg branching ratio for the decoupling scenarios. Note: The deviations are large enough to affect the branching ratios to the standard channels because of changes in the total h^0 width.

We present a scantter plot of the percentage deviations of $\Gamma(h^0 \to gg)$ in the exact decoupling scenarios.

CONCLUSIONS

- If, we observe that the h^0 has completely standard model *couplings* (*i.e.* not just branching ratios), then there are two possibilities:
 - 1. m_{A^0} is very large $m_{A^0} \gtrsim 600 \text{ GeV}$ or so putting it outside the LC reach and outside the LHC reach unless $\tan \beta$ is large;
 - 2. we are close to one of the exact decoupling scenarios found here, in which case m_{A^0} could be any value above $\sim 150~{
 m GeV}$.
- Obviously, it would be important to determine which of the above is correct, since the 2nd alternative would imply we should still search for the A^0 by raising the machine energy or using $\gamma\gamma$ or $\mu^+\mu^-$ collisions.
- To make this assessment we must have quite a bit of information about the overall SUSY scenario. It would appear that we need:
 - observations of the heavier charginos/neutralinos whose masses are of order μ (in many scenarios),

- observations of the 1st two generations of squarks (which more or less determine m_{SUSY}),
- observations of the lightest stop and sbottom squarks,
- information from, say, the chargino sector to determine $\tan\beta$.

Only with all this information would we have a good idea of whether or not we are in a decoupling scenario.

- These are a lot of if's.
- Further, even if we are only near the decoupling zone, the properties of the h^0 will have reduced sensitivity to m_{A^0} .
- We will study these scenarios further to see if we can find easier techniques for using other SUSY observations to allow us to know when decoupling is present.
- We will also study if some precision couplings might still reveal the mass of the H^0, A^0, H^{\pm} .

The most obvious coupling of this type is $h^0 \rightarrow \gamma \gamma$ which has some sensitivity to the mass of the H^{\pm} through the corresponding loop contribution. Probably,

however, this is overwhelmed by the usual W-loop contribution (which is full SM strength in the decoupling scenarios).