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Introductory Outline

• In Yang-Mills theories, an explicit mass term for the gauge vector bosons
in the Lagrangian is forbidden by gauge invariance.

L 3 m2AµA
µ (1)

is clearly not invariant under the standard gauge transformation of Aµ →
Aµ + ∂µΛ.

• While this is acceptable for theories like QED (Quantum Electrodynamics)
and QCD (Quantum Chromodynamics), where both photons and gluons are
massless, it is unacceptable for the gauge theory of weak interactions, since
both the charged (W±) and neutral (Z) gauge bosons have very heavy
masses (MW '81 GeV, MZ'91 GeV), and simply inserting corresponding
mass terms into the Lagrangian destroys the gauge invariance of the theory
and leads to non-renormalizabiity and violations of unitarity.

• A possible solution to this problem, inspired by similar phenomena found in

J. Gunion 250Higgs, U.C. Davis, 1



the study of spin systems, was proposed by Englert, Higgs and Guralnik in
1964, and it is known today simply as the Higgs mechanism.

• These lectures will begin with a review of the basic ideas. Following this,
we will recall how the Higgs mechanism is implemented in the Standard
Model and we will discuss the Higgs boson, the only physical scalar particle
predicted by the model and how the SM expectations compare to current
observations.

• Finally, we will generalize our discussion to models such as the MSSM,
NMSSM and 2HDM to illustrate how differently the Higgs mechanism can
be implemented in extensions of the SM and how the current deviations
in the 126 GeV data from SM predictions compare to predictions for the
Higgs bosons of these BSM models.
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A brief introduction to the Higgs mechanism

The essence of the Higgs mechanism can be very easily illustrated
considering the case of a classical abelian Yang-Mills theory. In this case, it is
realized by adding to the Yang-Mills Lagrangian

LA = −
1

4
FµνFµν with Fµν = (∂µAν − ∂νAµ) , (2)

a complex scalar field with Lagrangian

Lφ = (Dµφ)∗Dµφ− V (φ) = (Dµφ)∗Dµφ− µ2φ∗φ− λ(φ∗φ)2 , (3)

where Dµ = ∂µ + igAµ, and λ > 0 for the scalar potential to be bounded
from below. The full Lagrangian

L = LA + Lφ (4)
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is invariant under a U(1) gauge transformation acting on the fields as:

φ(x)→ eiα(x)φ(x) , Aµ(x)→ Aµ(x) +
1

g
∂µα(x) , (5)

while a gauge field mass term (i.e., a term quadratic in the fields Aµ) would
not be gauge invariant and cannot be added to L if the U(1) gauge symmetry
has to be preserved.

Although the Lagrangian in Eq. (4) does not have an explicit mass term
for the gauge field, it can still describe the physics of a massive gauge boson,
provided the potential V (φ) develops a non trivial minimum (〈φ〉 6=0).

The occurrence of a non trivial minimum, or, better, of a continuum of
degenerate of minima only depends on the sign of the µ2 parameter in V (φ).

For µ2 > 0 there is a unique minimum at φ = 0, while for µ2 < 0 the
potential develops a continuum of degenerate minima satisfying the equation
φ∗φ=−µ2/(2λ).

This is illustrated in Fig. 1, where the potential V (φ) is plotted as a
function of the real and imaginary parts of the field φ=φ1 + iφ2.
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Figure 1: The potential V (φ) with φ= Re(φ) + iIm(φ) is plotted for an arbitrary positive

value of λ and for an arbitrary negative value of µ2.

In the case of a unique minimum at φ∗φ= 0 the Lagrangian in Eq. (4)
describes the physics of a massless vector boson (e.g. the photon, in
electrodynamics, with g = −e) interacting with a massive charged scalar
particle.

On the other hand, something completely different takes place when µ2<0.
Choosing the ground state of the theory to be a particular φ among the

many satisfying the equation of the minimum, and expanding the potential in
the vicinity of the chosen minimum, transforms the Lagrangian in such a way
that the original gauge symmetry is now hidden or spontaneously broken, and
new interesting features emerge.

To be more specific, let’s pick the following φ0 minimum (along the
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direction of the real part of φ, as traditional) and shift the φ field accordingly:

φ0 =

(
−
µ2

2λ

)1/2

=
v
√

2
−→ φ(x) = φ0 +

1
√

2
(φ1(x) + iφ2(x)) . (6)

The Lagrangian in Eq. (4) can then be rearranged as follows:

L = −
1

4
F
µν
Fµν +

1

2
g

2
v

2
A
µ
Aµ︸ ︷︷ ︸

massive vector field

+
1

2
(∂

µ
φ1)

2
+ µ

2
φ

2
1︸ ︷︷ ︸

massive scalar field

+
1

2
(∂

µ
φ2)

2
+ gvAµ∂

µ
φ2︸ ︷︷ ︸

Goldstone boson

+ . . .

(7)
and now contains the correct terms to describe a massive vector field Aµ with
mass m2

A = g2v2 (originating from the kinetic term of Lφ), a massive real
scalar field φ1 with mass mφ1 =−2µ2, that will become a Higgs boson, and
a massless scalar field φ2, a so called Goldstone boson which couples to the
gauge vector boson Aµ.

The terms omitted contain couplings between the φ1 and φ2 fields irrelevant
to this discussion.

The gauge symmetry of the theory allows us to make the particle content
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more transparent. Indeed, if we parameterize the complex scalar field φ as:

φ(x) =
ei
χ(x)
v

√
2

(v +H(x))
U(1)−→

1
√

2
(v +H(x)) , (8)

the χ degree of freedom can be rotated away, as indicated in Eq. (8), by
enforcing the U(1) gauge invariance of the original Lagrangian. With this
gauge choice, known as unitary gauge or unitarity gauge, the Lagrangian
becomes:

L = LA +
g2v2

2
AµAµ +

1

2

(
∂µH∂µH + 2µ2H2

)
+ . . . (9)

which unambiguously describes the dynamics of a massive vector boson Aµ of
mass m2

A=g2v2, and a massive real scalar field of mass m2
H=−2µ2 = 2λv2,

the Higgs field.

It is interesting to note that the total counting of degrees of freedom
(d.o.f.) before the original U(1) symmetry is spontaneously broken and after
the breaking has occurred is the same. Indeed, one goes from a theory with
one massless vector field (two d.o.f.) and one complex scalar field (two d.o.f.)
to a theory with one massive vector field (three d.o.f.) and one real scalar
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field (one d.o.f.), for a total of four d.o.f. in both cases. This is what is
colorfully described by saying that each gauge boson has eaten up one scalar
degree of freedom, becoming massive.

We can now easily generalize the previous discussion to the case of a
non-abelian Yang-Mills theory. LA in Eq. (4) now becomes:

LA = −
1

4
F a,µνF aµν with F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (10)

where the latin indices are group indices and fabc are the structure constants
of the Lie Algebra associated to the non abelian gauge symmetry Lie group,
defined by the commutation relations of the Lie Algebra generators ta:
[ta, tb]= ifabctc.

Let us also generalize the scalar Lagrangian to include several scalar fields
φi which we will in full generality consider as real:

Lφ =
1

2
(Dµφi)

2 − V (φ) where V (φ) = µ2φ2
i +

λ

2
φ4
i , (11)

where the sum over the index i is understood and Dµ=∂µ − igtaAaµ. The
Lagrangian of Eq. (4) is invariant under a non-abelian gauge transformation
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of the form:

φi(x) → (1 + iαa(x)ta)ijφj , (12)

Aaµ(x) → Aaµ(x) +
1

g
∂µα

a(x) + fabcAbµ(x)αc(x) .

When µ2<0 the potential develops a degeneracy of minima described by the
minimum condition: φ2 =φ2

0 =−µ2/λ, which only fixes the magnitude of the
vector φ0 = (φ1, φ2, . . . , ).

By arbitrarily choosing the direction of φ0, the degeneracy is removed. The
Lagrangian can be expanded in a neighborhood of the chosen minimum and
mass terms for the gauge vector bosons emerge as in the abelian case, i.e.:

1

2
(Dµφi)

2 −→ . . . +
1

2
g2(taφ)i(t

bφ)iA
a
µA

bµ + . . . (13)

φmin=φ0−→ . . . +
1

2
g2(taφ0)i(t

bφ0)i︸ ︷︷ ︸
m2
ab

AaµA
bµ + . . .

Upon diagonalization of the mass matrix m2
ab in Eq. (13), all gauge vector

bosons Aaµ for which taφ0 6= 0 become massive, and to each of them
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corresponds a Goldstone particle, i.e. an unphysical massless particle like the
χ field of the abelian example. The remaining scalar degrees of freedom
become massive, and correspond to the Higgs field H of the abelian example.

The Higgs mechanism can be very elegantly generalized to the case of
a quantum field theory when the theory is quantized via the path integral
method1. In this context, the quantum analog of the potential V (φ) is the
effective potential Veff(ϕcl), defined in term of the effective action Γ[φcl]
(the generating functional of the 1PI connected correlation functions) as:

Veff(ϕcl) = −
1

V T
Γ[φcl] for φcl(x) = constant = ϕcl , (14)

where V T is the space-time extent of the functional integration and φcl(x) is
the vacuum expectation value of the field configuration φ(x):

φcl(x) = 〈Ω|φ(x)|Ω〉 . (15)

The stable quantum states of the theory are defined by the variational
1Here I assume some familiarity with path integral quantization and the properties of various generating functionals

introduced in that context. The detailed explanation of the formalism used would take us too far away from our main track
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condition:

δ

δφcl
Γ[φcl]

∣∣∣∣
φcl=ϕcl

= 0 −→
∂

∂ϕcl
Veff(ϕcl) = 0 , (16)

which identifies in particular the states of minimum energy of the theory, i.e.
the stable vacuum states. A system with spontaneous symmetry breaking
has several minima, all with the same energy. Specifying one of them, as in
the classical case, breaks the original symmetry of the vacuum. The relation
between the classical and quantum case is made even more transparent by
the perturbative form of the effective potential. Indeed, Veff(ϕcl) can be
organized as a loop expansion and calculated systematically order by order in
h̄:

Veff(ϕcl) = V (ϕcl) + loop effects , (17)

with the lowest order being the classical potential in Eq. (3). Quantum
corrections to Veff(ϕcl) affect some of the properties of the potential and
therefore have to be taken into account in more sophisticated studies of the
Higgs mechanism for a spontaneously broken quantum gauge theory. Time
permitting, will see how this can be important when we discuss how the mass
of the SM Higgs boson is related to the energy scale at which we expect new
physics effects to become relevant in the SM.
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Finally, let us observe that at the quantum level the choice of gauge
becomes a delicate issue. For example, in the unitarity gauge of Eq. (8) the
particle content of the theory becomes transparent but the propagator of a
massive vector field Aµ turns out to be:

Πµν(k) = −
i

k2 −m2
A

(
gµν −

kµkν

m2
A

)
, (18)

and has a problematic ultra-violet behavior, which makes it more difficult to
consistently define and calculate ultraviolet-stable scattering amplitudes and
cross sections. Indeed, for the very purpose of studying the renormalizability
of quantum field theories with spontaneous symmetry breaking, the so called
renormalizable or renormalizability gauges (Rξ gauges) are introduced. If we
consider the abelian Yang-Mills theory of Eqs. (2)-(4), the renormalizable
gauge choice is implemented by quantizing with a gauge condition G of the
form:

G =
1
√
ξ
(∂µA

µ + ξgvφ2) , (19)

in the generating functional

Z[J ] = C

∫
DADφ1Dφ2 exp

[
i

∫
(L −

1

2
G2)

]
det

(
δG

δα

)
, (20)
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where C is an overall factor independent of the fields, ξ is an arbitrary
parameter, and α is the gauge transformation parameter in Eq. (5). After
having reduced the determinant in Eq. (20) to an integration over ghost fields
(c and c̄), the gauge plus scalar fields Lagrangian looks like:

L −
1

2
G2 + Lghost = −

1

2
Aµ

(
−gµν∂2 +

(
1−

1

ξ

)
∂µ∂ν − (gv)2gµν

)
Aν

+
1

2
(∂µφ1)

2 −
1

2
m2
φ1
φ2

1 +
1

2
(∂µφ2)

2 −
ξ

2
(gv)2φ2

2 + · · ·

+ c̄

[
−∂2 − ξ(gv)2

(
1 +

φ1

v

)]
c , (21)

such that:

〈Aµ(k)Aν(−k)〉 =
−i

k2 −m2
A

(
gµν −

kµkν

k2

)
+

−iξ
k2 − ξm2

A

(
kµkν

k2

)
,

〈φ1(k)φ1(−k)〉 =
−i

k2 −m2
φ1

, (22)

〈φ2(k)φ2(−k)〉 = 〈c(k)c̄(−k)〉 =
−i

k2 − ξm2
A

,
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where the vector field propagator now has a safe ultraviolet behavior. Moreover
we notice that the φ2 propagator has the same denominator as the longitudinal
component of the gauge vector boson propagator. This shows in a more formal
way the relation between the φ2 degree of freedom and the longitudinal
component of the massive vector field Aµ, upon spontaneous symmetry
breaking.
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The Higgs sector of the Standard Model

The Standard Model is a spontaneously broken Yang-Mills theory based on
the SU(2)L × U(1)Y non-abelian symmetry group. The Higgs mechanism is
implemented in the Standard Model by introducing a complex scalar field φ
which is a doublet of SU(2) with hypercharge Yφ = 1/2

φ =

(
φ+

φ0

)
, (23)

with Lagrangian

Lφ = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2 , (24)

where Dµφ = (∂µ− igAaµτa− ig′YφBµ), and τa=σa/2 (for a=1, 2, 3) are
the SU(2) Lie Algebra generators, proportional to the Pauli matrix σa. The
gauge symmetry of the Lagrangian is broken to U(1)em when a particular
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vacuum expectation value is chosen, e.g.:

〈φ〉 =
1
√

2

(
0
v

)
with v =

(−µ2

λ

)1/2

(µ2 < 0, λ > 0) . (25)

Upon spontaneous symmetry breaking the kinetic term in Eq. (24) gives origin
to the SM gauge boson mass terms. Indeed, specializing Eq. (13) to the
present case, and using Eq. (25), one gets:

(D
µ
φ)
†
Dµφ −→ · · · +

1

8
(0 v)

(
gA

a
µσ

a
+ g

′
Bµ

) (
gA

bµ
σ
b

+ g
′
B
µ
)( 0

v

)
+ · · ·

−→ · · · +
1

2

v2

4

[
g

2
(A

1
µ)

2
+ g

2
(A

2
µ)

2
+ (−gA3

µ + g
′
Bµ)

2
]

+ · · ·

(26)

One recognizes in Eq. (26) the mass terms for the charged gauge bosons
W±µ :

W±µ =
1
√

2
(A1

µ ±A
2
µ) −→ MW = g

v

2
, (27)
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and for the neutral gauge boson Zµ:

Zµ =
1√

g2 + g′2
(gA3

µ − g
′Bµ) −→ MZ =

√
g2 + g′2

v

2
, (28)

while the orthogonal linear combination of A3
µ and Bµ remains massless and

corresponds to the photon field (Aµ):

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ) −→ MA = 0 , (29)

the gauge boson of the residual U(1)em gauge symmetry.
The content of the scalar sector of the theory becomes more transparent

if one works in the unitary gauge and eliminates the unphysical degrees of
freedom using gauge invariance. In analogy to what we wrote for the abelian
case in Eq. (8), this amounts to parametrize and rotate the φ(x) complex
scalar field as follows:

φ(x) =
e
i
v~χ(x)·~τ
√

2

(
0

v +H(x)

)
SU(2)−→ φ(x) =

1
√

2

(
0

v +H(x)

)
,

(30)
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after which the scalar potential in Eq. (24) becomes:

Lφ = µ2H2 − λvH3 −
λ

4
H4 = −

1

2
M2
HH

2 −
√
λ

2
MHH

3 −
1

4
λH4 . (31)

Three degrees of freedom, the χa(x) Goldstone bosons, have been reabsorbed
into the longitudinal components of the W±µ and Zµ weak gauge bosons. One

real scalar field remains, the Higgs boson H, with mass M2
H=−2µ2 = 2λv2

and self-couplings:

H

H

H = −3i
M2
H
v

H

H

H

H

= −3i
M2
H
v2

Furthermore, some of the terms that we omitted in Eq. (26), the terms
linear in the gauge bosons W±µ and Zµ, define the coupling of the SM Higgs
boson to the weak gauge fields:

V
µ

V
ν

H = 2i
M2
V
v
gµν

V
µ

V
ν

H

H

= 2i
M2
V
v2 g

µν
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We notice that the couplings of the Higgs boson to the gauge fields are
proportional to their mass. Therefore H does not couple to the photon at
tree level. It is important, however, to observe that couplings that are absent
at tree level may be induced at higher order in the gauge couplings by loop
corrections. Particularly relevant to the SM Higgs boson phenomenology that
will be discussed later are the couplings of the SM Higgs boson to pairs of
photons, and to a photon and a Zµ weak boson:

H

γ,Z

γ

H

γ,Z

γ

as well as the coupling to pairs of gluons:

H

g

g
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The analytical expressions for the Hγγ, HγZ, and Hgg one-loop vertices
are somewhat involved and will be given later. As far as the Higgs boson
tree level couplings go, we observe that they are all expressed in terms of just
two parameters, either λ and µ appearing in the scalar potential of Lφ (see
Eq. 24)) or, equivalently, MH and v, the Higgs boson mass and the scalar
field vacuum expectation value. Since v is measured in muon decay to be
v= (

√
2GF )−1/2 = 246 GeV, the physics of the SM Higgs boson is actually

just a function of its mass MH.

The Standard Model gauge symmetry also forbids explicit mass terms for
the fermionic degrees of freedom of the Lagrangian, since mass terms mix
right- and left-handed spinors which are in doublet and singlet representations
of the SU(2) group respectively. One needs to bring in another doublet
somehow and the Higgs doublet is perfect for the job. The fermion mass
terms can be (and in the SM are assumed to be) generated via gauge invariant
renormalizable Yukawa couplings to the scalar field φ:

LYukawa = −Γiju Q̄
i
Lφ

cujR − Γijd Q̄
i
Lφd

j
R − Γije L̄

i
Lφl

j
R + h.c. (32)

where φc=−iσ2φ?, and Γf (f = u, d, l) are matrices of couplings arbitrarily
introduced to realize the Yukawa coupling between the field φ and the
fermionic fields of the SM. QiL and LiL (where i = 1, 2, 3 is a generation
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index) represent quark and lepton left handed doublets of SU(2)L, while uiR,
diR and liR are the corresponding right handed singlets. When the scalar
fields φ acquires a non zero vacuum expectation value through spontaneous
symmetry breaking, each fermionic degree of freedom coupled to φ develops
a mass term with mass parameter

mf = Γf
v
√

2
, (33)

where the process of diagonalization from the current eigenstates in Eq. (32)
to the corresponding mass eigenstates is understood, and Γf are therefore
the elements of the diagonalized Yukawa matrices corresponding to a given
fermion f . The Yukawa couplings of the f fermion to the Higgs boson (yf)
is proportional to Γf :

f

f

H = −imf

v
= −i Γf√

2
= −iyf

As long as the origin of fermion masses is not better understood in some
more general context beyond the Standard Model, the Yukawa couplings yf
represent free parameters of the SM Lagrangian.
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The mechanism through which fermion masses are generated in the
Standard Model, although related to the mechanism of spontaneous symmetry
breaking, clearly requires further assumptions and involves a larger degree of
arbitrariness as compared to the gauge boson sector of the theory. So, one
has to take with a grain of salt the often made public statement that the
Higgs boson is responsible for the masses of all the elementary particles.
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Unitarity and the Higgs

Unitarity plays a crucial role in our understanding of why we need a Higgs
boson. Let us first discuss the general partial wave formulation of unitarity.

For 2→ 2 scattering we have the standard formula

dσ

dΩ
=

1

64π2s
|M|2 . (34)

If we do the partial wave decomposition (the form employed assumes I am
dealing with spin-0 particles — effectively the longitudinally polarized W ’s
that I will be discussing can be thought of as spin-0 objects)

M = 16π

∞∑
J=0

(2J + 1)PJ(cos θ)aJ (35)

and recall the standard orthogonality relation∫ 1

−1

dxPJ(x)PJ ′(x) =
2

2J + 1
∂J,J ′ (36)
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we obtain

σ =
8π

s

∞∑
J=0

(2J + 1)
∞∑
J ′=0

(2J ′ + 1)aJa
∗
J ′

∫ 1

−1

d cos θPJ(cos θ)PJ ′(cos θ)

=
16π

s

∞∑
J=0

(2J + 1)|aJ|2 . (37)

Meanwhile, the optical theorem says that

sσ = ImM(θ = 0) = 16π

∞∑
J=0

(2J + 1)ImaJ . (38)

If a single partial wave is dominant, we end up with the requirement that

ImaJ = |aJ|2 . (39)

In fact, this equation applies for every value of J even if more than one partial
wave is present (requires more work to show explicitly — see short appendix
— but is basically a statement of angular momentum conservation for the
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elastic process). However, the above equality requires that the only process
contributing to the total cross section be the 2→ 2 process. Normally, there
are many inelastic channels such as 2 → 2′, 2 → 3, 2 → 4, ..... The ImaJ

must take into account all these extra channels. In short, what we really have
is

ImaJ ≥ |aJ|2 = (ImaJ)
2 + (ReaJ)

2 , (40)

When the equality holds, we can write

aJ = ei∂J sin ∂J , (41)

which form automatically satisfies ImaJ = |aJ|2 and makes it clear that
|aJ|2 = sin2 ∂J ≤ 1 with maximum value of 1 when aJ is purely imaginary,
∂J = π/2.

It is useful to have a graphical picture. On the unitarity circle, we can
rewrite ImaJ = |aJ|2 as

1

4
= (ImaJ − 1

2
)2 + (ReaJ)

2 . (42)
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so that in the complex plane aJ will lie on a “unitarity” circle of radius 1/2.

−1/2 1/20

Im A

Re A

1/2
η/2

1

al
2δ

Figure 2: The partial wave unitarity circle.

Allowing for the presence of inelasticity, we can write

1

4
≥ (ImaJ − 1

2
)2 + (ReaJ)

2 , (43)
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implying that aJ will lie inside the unitarity circle. In this case, we can write

aJ =
ηJe

2i∂J − 1

2i
, (44)

since ImaJ − 1
2

= −1
2
ηJ cos 2∂J and ReaJ = 1

2
ηJ sin 2∂J so that

(ImaJ − 1
2
)2 + (ReaJ)

2 =
1

4
η2

J (45)

which will be ≤ 1
4

if ηJ ≤ 1. The quantity ηJ is called the inelasticity. To
repeat, ηJ ≤ 1 is required in order for aJ to be within the unitarity circle.

As a point of reference, you are presumably familiar with the standard
spin-J resonance form of

aJ = a =
−mΓel

s−m2 + imΓtot
(46)

which saturates the unitarity circle when Γel = Γtot. You will notice that
when the latter is true then at s = m2 one finds aJ = i so that one is at
the top of the circle. As one starts from low s � m2 with ReaJ > 0, passes
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through s = m2 with ReaJ = 0 and on to s � m2 with ReaJ < 0 one is
rotating in a counter-clockwise sense about the unitarity circle.

The important final result is that the largest value of |ReaJ| that is possible
if on the “unitarity” circle is |ReaJ| = 1

2
. And, if there is inelasticity then we

have our final constraint of
|ReaJ| ≤ 1

2
. (47)

Usually it is the J = 0 constraint that is the strongest for a typical process of
interest to us.

We now wish to apply this to WW →WW scattering where the W ’s all
have longitudinal polarization.

In the SM, the partial wave amplitudes take the asymptotic form

aJ = AJ

(
s

m2
W

)2

+BJ

(
s

m2
W

)
+ CJ , (48)

where s is the center-of-mass energy squared. Contributions that are divergent
in the limit s→∞ appear only for J = 0, 1, 2. The A-terms vanish by virtue
of gauge invariance, while, and here enters the Higgs boson, the B-term for
J = 1 and 0 (B2 = 0) arising from gauge interaction diagrams is canceled by
Higgs-boson exchange diagrams. In the high-energy limit, the result is that
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aJ asymptotes to an mh-dependent constant. Imposing the unitarity limit of
|ReaJ| < 1/2 implies the Lee-Quigg-Thacker bound for the Higgs boson mass:
mh <∼ 870 GeV.

What happens if mh is increased beyond 870 GeV is that the perturbatively
calculated aJ violates unitarity at lower and lower s values. This is not to say
that the theory actually violates unitarity. When aJ approaches the unitarity
bound, the theory becomes strongly interacting and we are no longer able to
calculate the consequences of the theory perturbatively. At the moment we
do not have any means of computing what actually happens. Nonetheless,
the theory cannot actually violate unitarity since unitarity is guaranteed simply
by the hermiticity of the Hamiltonian that we began with. In other words,
mh = 870 GeV is the largest value for which a perturbative approach to
computing in the theory is possible.

Alternatively, if aJ reaches the unitarity limit at some value of s, we can
hope that some beyond-the-SM physics enters that will be such that we can
compute perturbatively in the extended model. The value of s at which the
SM violates unitarity then sets the upper bound on the scale at which such
new BSM physics must enter.

Anyway, let us give some more details on the perturbative SM calculation.
In detail, we have the following. (In my normalization, v = 246 GeV and
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mW = gv
2

. And, GF√
2

= g2

8m2
W

= 1
2v2.) The various contributions to the

amplitude are given in Table 1. From the table, we see that the gauge boson
contributions and Higgs exchange contributions cancel at O(s2) and O(s1).

diagram O(s
2

v4) O(s
1

v2)

γ, Z s-channel − s2

g2v44 cos θ − s
v2 cos θ

γ, Z t-channel − s2

g2v4(−3 + 2 cos θ + cos2 θ) − s
v2

3
2
(1− 5 cos θ)

WWWW contact − s2

g2v4(3− 6 cos θ − cos2 θ) − s
v22(−1 + 3 cos θ)

h s-channel 0 − s
v2

h t-channel 0 − s
v2
−1+cos θ

2

Sum 0 0

Table 1: The leading contributions toM(W+
LW

−
L →W+

LW
−
L ) amplitude — whereM

is defined in the convention Sfi = ∂fi + i(2π)4∂4(pf − pi)Mfi.

The cancellation of the O(s2) contributions in Table 1 between the contact
term and s- and t-channel gauge-boson exchange diagrams is guaranteed by
gauge invariance. The Higgs or something like it is required for cancelling the
s1 terms.

The easiest of the amplitudes above to derive is that from the WWWW

J. Gunion 250Higgs, U.C. Davis, 30



contact interaction. First, we need to write down the polarization vector for
a massive, longitudinally-polarized W of momentum p. If we start with a
massive vector boson with momentum kµ = (m, 0, 0, 0), then the 3 orthgonal
polarizations are

εµ = (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) . (49)

If we now boost along the z direction, the first two (the transverse
polarizations) remain unchanged. The third (the longitudinal polarization)
boosts to (k ≡ kz)

εµL(k) =

(
k

m
, 0, 0,

Ek

m

)
(50)

which generalizes for arbitrary direction to

εµL(~k) =

(
|~k|
m
,
~k

|~k|
E~k
m

)
∼
kµ

m
+O

(
m

E~k

)
(51)

(Note that the first, exact form on the rhs of the equation is explicitly
orthogonal to kµ = (E~k,

~k).) It is the proportionality of the longitudinal
polarization to the momentum which makes longitudinally polarized W ’s so
“dangerous”. Of course, for our case of W ’s, m→ mW .
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Meanwhile, the WWWW contact interaction takes the familiar form
in the all outgoing convention (and Sfi = ∂fi + (2π)4∂4(pf − pi)iMfi

convention):

iMabcd
αβγ∂(p, q, r, s) = −ig2

ceabcecd
(
g
αγ
g
βδ − gαδgβγ

)

+ c
eac
c
edb

(
g
αδ
g
γβ − gαβgγδ

)

+ c
ead

c
ebc
(
g
αβ
g
γδ − gαγgβδ

) , (52)

which, for the SU(2) group and a, b, c, d index choices corresponding to
(a = W+)(d = W−) → (b = W+)(c = W−) scattering reduces to2

(after noting that the incoming W+W− should be converted to outgoing
(a = W−)(d = W+) to apply the “all-outgoing” vertex)

−ig2(gα∂gβγ + gγ∂gαβ − 2gβ∂gαγ) (53)

where the first two terms are s and t channel-like (outgoing W−W+) and
2A convenient reference for electroweak theory Feynman rules is the book “Gauge Theories of the Strong, Weak and

Electromagnetic Interactions” by Chris Quigg, pages 113-16, or Appendix B of Cheng and Li.
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the last is u channel-like (outgoing W−W−) and thus comes with a larger
coefficient and opposite sign.

To see how this works in the case of the WWWW vertex starting with

the general result of Eq. (52), we first recall that W± = W 1∓iW 2
√

2
. So, what

we are interested in is (using a shorthand)

a =
1 + i2
√

2
, b =

1− i2
√

2
, c =

1 + i2
√

2
, d =

1− i2
√

2
, (54)

where we used the fact that, for example,

W aa 3W 11 +W 22 =
W 1 − iW 2

√
2

1 + i2
√

2
+
W 1 + iW 2

√
2

1− i2
√

2

= W+1 + i2
√

2
+W−

1− i2
√

2
, (55)

where the W− field operator either annihilates a W− or creates a W+. So,
if we want to create an outgoing b = W+ we connect to b = 1−i2√

2
and if we

want to connect to an outgoing a = W− we should use a = 1+i2√
2

. Thus, the
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general vertex of Eq. (52) reduces for the case of interest to

iMabcd
αβγ∂(p, q, r, s) = −ig2

ce
1+i2√

2

1−i2√
2 c

e1+i2√
2

1−i2√
2
(
g
αγ
g
βδ − gαδgβγ

)

+ c
e1+i2√

2
1+i2√

2 c
e1−i2√

2

1−i2√
2
(
g
αδ
g
γβ − gαβgγδ

)

+ c
e1+i2√

2

1−i2√
2 c

e1−i2√
2

1+i2√
2
(
g
αβ
g
γδ − gαγgβδ

) , (56)

Now, for SU(2) we have cabc = εabc so that for the 1st term we have the
form

c
e1+i2√

2

1−i2√
2 c

e1+i2√
2

1−i2√
2 =

(
−2i

(
√

2)2
ε
e12

)(
−2i

(
√

2)2
ε
e12

)
= −1 . (57)

The 2nd term is 0 because of the antisymmetry of the ε’s and the 3rd term
has the order switched on the last c and thus gives +1. The net result for
the vertex is then:

iM = −ig2
[
−
(
gαγgβδ − gαδgβγ

)
+
(
gαβgγδ − gαγgβδ

)]
= −ig2(gα∂gβγ + gγ∂gαβ − 2gβ∂gαγ) (58)
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Now we can return to using this form for the scattering process of interest.
We simply multiply M by the polarization vectors which in leading order
means we multiply by

pα

mW

qβ

mW

rγ

mW

s∂

mW

, (59)

yielding

M(W+
LW

−
L →W+

LW
−
L ) ∼ −

g2

m4
W

(p · sq · r+ r · sp · q − 2p · rq · s) . (60)

Now, one goes to the center of mass frame where (all outgoing convention)

p = −
√
s

2
(1, 0, 0, βW )

s = −
√
s

2
(1, 0, 0,−βW )

q =

√
s

2
(1, 0, βW sin θ, βW cos θ)

r =

√
s

2
(1, 0,−βW sin θ,−βW cos θ) (61)
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with βW =
√

1− 4m2
W/s. In this frame, one easily finds

2p · s = 2q · r = s− 2m2
W ,

2p · q = 2r · s = t− 2m2
W = −

s

2
(1− cos θ)− 2m2

W cos θ ,

2p · r = 2q · s = u− 2m2
W = −

s

2
(1 + cos θ) + 2m2

W cos θ (62)

Substituting and collecting the leading terms of order s2 one obtains

M(W+
LW

−
L →W+

LW
−
L ) 3 −

g2

m4
W

s2

16
(3− 6 cos θ − cos2 θ) (63)

which agrees with the O(s2) result in the table for the contact interaction
term after substituting mW = gv/2.

To get the O(s) term of the table, the exact forms of the polarization
vectors must be used.

The Higgs exchange diagrams are, of course, easier. For example for the
s-channel Higgs exchange diagram, remembering that the Feynman rule for
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the hWµWν vertex is igmWgµν, we find

iM =
i

s−m2
h

(igmW )2εp · εs εq · εr

' −ig2m2
W

1

s−m2
h

(
p · s q · r
m4
W

)
'
−i4m4

W

v2

1

s−m2
h

(
1
4
s2

m4
W

)
= −i

1

v2

s2

s−m2
h

= −i
1

v2

(
s+

sm2
h

s−m2
h

)
. (64)

The first term is listed as the O(s) term for this diagram and the 2nd term
will appear below

In any case, after including the Higgs diagrams and summing everything
together, we are left with a constant behavior for the amplitude. In the limit
where s,m2

h� m2
W ,m

2
Z we find:

M(W+
LW

−
L →W+

LW
−
L ) = −

m2
h

v2

[
s

s−m2
h

+
t

t−m2
h

]
. (65)

J. Gunion 250Higgs, U.C. Davis, 37



This is too naive if s is near m2
h; one must include the Higgs width

appropriately. For now, we only consider s� m2
h or s� m2

h.
The above result can also be derived using the Goldstone Equivalence

theorem. It states that in the limit of m2
h � m2

W interactions of enhanced
strength, O

(
GFm

2
h

)
, arise only from diagrams in which the internal particles

are also Goldstone bosons or the Higgs boson. The relevant interactions are
summarized by the Lagrangian:

L = −λ
(
w

+
w
−

+ 1
2z

2
+ 1

2h
2

+ vh + 1
2v

2 −
µ2

2λ

)2

(66)

where h is the Higgs field, the w’s, z are the charged and neutral Goldstone
bosons, respectively, v is the usual vev related to mW as above and λ is the
bare coupling of the λφ4 theory.

Crudely, one can arrive at this result as follows. First, we note that using

m2
h = 2λv2 and mW = gv/2 one finds λ = g2 m2

h

8m2
W

. When m2
h� m2

W , λ is

large and the Higgs self coupling term in V (φ) = λ(φ†φ)2 − µ2(φ†φ) is the
source of the strongest interactions. Writing φ = (h+, 1√

2
(v + h + ia)) the

two terms of V (φ) are

λ(φ
†
φ)

2
= λ

(
(h
−
,

1
√

2
(v + h− ia)), (h

+
,

1
√

2
(v + h + ia))

)
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= λ
(

(h
+
h
−

) + 1
2[(v + h)

2
+ a

2
]
)2

−µ2
(φ
†
φ) = −µ2

(
(h

+
h
−

) + 1
2[(v + h)

2
+ a

2
]
)
. (67)

It is the h± and a fields that are eaten and become the longitudinal modes
of the W± and Z. Thus, we denote them by w± and z. In this notation,
L 3 −V = µ2(φ†φ) − λ(φ†φ)2 takes the form of Eq. (66) after including
a conventional constant such that V = 0 at the tree-level minimum where
∂V
∂h
|h=0 = 0 requiring λv2 = µ2.

Although the last two terms in Eq. (66) cancel at tree level, they
more generally yield a tadpole counterterm which is fixed at each order
in perturbation theory in such a way that the physical Higgs field has zero
vev. This extra counter term can be ignored for our present purposes.

The Lagrangian of Eq. (66) generates the Feynman rules of Fig. 3. For
example, the upper left Feynman rule comes from the −2λvw+w−h cross
term coming from the square using

−2λv = −2
g2m2

h

8m2
W

2mW

g
= −

gm2
h

2mW

(68)

and supplying the usual i from expanding exp[iL].
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Figure 3: Feynman rules from Eq. (66).

J. Gunion 250Higgs, U.C. Davis, 40



The Feynman rule just below comes from the −λw+w−w+w− term of

L after substituting λ =
g2m2

h

8m2
W

, taking account of the fact that there are

two possible ways to contract the w+w+ with two such external states and
similarly for w−w− — thereby leading to a net contraction counting factor of
4, and supplying the standard i.

In these Feynman rules, we have effectively chosen to work in the Landau
gauge where the w± and z propagators have zero mass and the W± and
Z propagators (not given explicitly) are proportional to gµν − kµkν/k2. In
this way, gauge-boson-scalar mixing is avoided, since any such interaction
is proportional to the gauge-boson four momentum kµ. Furthermore, we
can neglect diagrams with internal W± and Z propagators since they are
suppressed by m2

W/m
2
h in this gauge. Thus, the Landau gauge is the simplest

and most natural gauge in which to employ the Goldstone-boson equivalence
theorem.

For ww → ww scattering there are diagrams with s-channel h exchange,
t-channel h exchange and the wwww contact interaction diagram. The result
for the amplitude is (in agreement with the earlier-stated result)

iM(ww → ww) =

(
−ig

m2
h

2mW

)2
i

s−m2
h

+

(
−ig

m2
h

2mW

)2
i

t−m2
h

− ig2 m
2
h

2m2
W
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= −i
g2m2

h

4m2
W

(
m2
h

s−m2
h

+
m2
h

t−m2
h

+ 2

)
= −i

m2
h

v2

(
s

s−m2
h

+
t

t−m2
h

)
. (69)

Let us now take the partial wave projection of M(ww → ww),

aJ =
1

32π(2J + 1)

∫
d cos θPJ(cos θ)M (70)

to obtain (using t = −s
2
(1 − cos θ) implying 2

s
dt = d cos θ and the next to

last form for the parenthesis in M above):

a0 =
1

16πs

∫ 0

−s
dtM(W+

LW
−
L →W+

LW
−
L )

= −
1

16π

m2
h

v2

[
2 +

m2
h

s−m2
h

−
m2
h

s
log

(
1 +

s

m2
h

)]
. (71)

Now let us consider some interesting limits:
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1. s� m2
h� m2

W ,m
2
Z:

We get

a0 → −
m2
h

8πv2
. (72)

Requiring |Rea0| ≤ 1
2

this gives

m2
h ≤ 4πv2 = (872 GeV)2, . (73)

This is the absolute upper limit on mh in order that unitarity hold for
all s. If we consider a full coupled channel analysis (which includes
ZLZL → W+

LW
−
L , hh → hh, hh → W+

LW
−
L , . . .) then this limit gets

reduced to
m2
h
<∼ (700 GeV)2 . (74)

2. m2
W ,m

2
Z � s� m2

h:

By carefully expanding the log to 2nd order in the (small) ratio s/m2
h we

find
a0 →

s

32πv2
. (75)
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Requiring |Rea0| ≤ 1
2

this gives

s ≤ 16πv2 . (76)

An even better bound emerges by considering the (properly normalized)
isospin zero channel

√
1/6(2W+

LW
−
L + ZLZL) and is

s ≤ 8πv2 = (1233 GeV)2 . (77)

The interpretation of this limit is that if the Higgs is very heavy, then the
SM can only be valid (in the sense of satisfying unitarity perturbatively)
if
√
s < 1.23 TeV. After that energy, new physics must enter or the

W+
LW

−
L →W+

LW
−
L , . . . sector must become strongly interacting.

If one does a full treatment, then the kind of plot for Rea0(W+
L W−L →

W+
L W−L ) as a function of

√
s that emerges is that below (only look at the

SM curves which are for mh = 870 GeV and 1000 GeV). Note how near
the Higgs resonance Rea0 goes positive, but not so positive as to violate the
unitarity limit. This is the result obtained after including the Higgs width
in the formula for a0; basically m2

h → m2
h − imhΓh. Near the resonance,

one is inside the Argand circle that typifies a resonance. η0 < 1 in the case
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of W+
LW

−
L → W+

LW
−
L because Γh includes “inelastic” channels such as

h→ ZLZL as well as h→W+
LW

−
L .
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However, for s� m2
h, Rea0 asymptotes towards −1

2
in the mh = 870 GeV

case and falls much below −1
2

for mh = 1000 GeV. As mh is increased
further, the

√
s value at which a0 falls below −1/2 decreases slowly,

ultimately reaching the value of
√
s =
√

2 × 1.233 TeV (the
√

2 because
this figure does not include the full coupled channel analysis). If mh is
decreased below mh = 870 GeV, the SM a0 curve for W+

LW
−
L →W+

LW
−
L

asymptotes to a less negative value for
√
s→∞ following Eq. (72).

Well, this is only a brief introduction to all this. There are endless
ramifications of unitarity in the context of every new physics model. It
might turn out that the WLWL, hh, ZLZL sector simply becomes strongly
interacting and the LHC job will be to sort out exactly what kind of theory
is describing these strong interactions.

This is closely analogous to the old situation in which we had strong
interactions in the ππ scattering and related channels and only after much
misery figured out that the π’s were bound states of quarks.

In the strongly interacting WW -scattering scenario, the LHC will have a
very tough time in sorting things out. The energy and luminosity are not
quite up to the job. The old SSC was designed at higher energy precisely
to cover adequately this unpleasant scenario. The problem is that there is a
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huge background coming from the scattering of transversely polarized W ’s,
such as WTWT → WTWT , WLWL → WTWT , WTWT → WLWL, . . .
from which it is very difficult to extract the W+

LW
−
L →W+

LW
−
L scattering

of interest.
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Partial Wave Appendix

Starting from the most general unitarity statement, Eq. (??) repeated
below,

[−iM(k1k2 → p1p2) + iM∗(p1p2 → k1k2)]

=
∑
n

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
×M∗(p1p2 → {qi})M(k1k2 → {qi})(2π)4∂4(k1 + k2 −

∑
i

qi)

(78)

we consider only the same two-body final state as the initial state (i.e. n = 2).
We imagine that ~k1 (= −~k2) in the com is along the z axis and that ~p1 is in
the x − z plane at location θ, φ = 0. The two particle intermediate state is
defined to have ~q1 (= −~q2) defined by location θ′, φ′. The angle between ~p1

and ~q1 we define to be γ.
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Two-body phase space in the massless limit reduces to∫
d3q1

(2π)32E1

d3q2

(2π)32E2

(2π)4∂4(k1+k2−q1−q2) =
1

32π2

∫
d cos θ′dφ′ . (79)

So, now let us do partial wave expansions of all the M’s (implicitly I am
assuming spin-0 equivalent as appropriate for WL scattering)

M(k1k2 → p1p2) = 16π
∑
J

(2J + 1)PJ(cos θ)aJ

M∗(p1p2 → k1k2) = 16π
∑
J

(2J + 1)PJ(cos θ)a∗J

M(k1k2 → q1q2) = 16π
∑
J

(2J + 1)PJ(cos θ′)aJ

M∗(p1p2 → q1q2) = 16π
∑
J

(2J + 1)PJ(cos γ)a∗J (80)

Inserting into Eq. (78), we get

32π
∑
J

(2J + 1)PJ(cos θ)ImaJ =
1

32π2

∫
d cos θ

′
dφ
′

×(256π
2
)
∑
J′

(2J
′
+ 1)PJ′(cos θ

′
)aJ′

∑
J′′

(2J
′′

+ 1)PJ′′(cos γ)a
∗
J′′ (81)
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So, now let us write (the standard addition theorem from Jackson)

PJ ′′(cos γ) =
4π

2J ′′ + 1

∑
m

Y ∗J ′′m(θ′, φ′)YJ ′′m(θ, φ = 0) (82)

The
∫
dφ′ simply gives∫
dφ
′
PJ′′(cos γ) = (2π)

4π

2J ′′ + 1
Y
∗
J′′0(θ

′
)YJ′′0(θ)

= (2π)
4π

2J ′′ + 1

[√
2J ′′ + 1

4π

]2

PJ′′(cos θ
′
)PJ′′(cos θ)

= (2π)PJ′′(cos θ
′
)PJ′′(cos θ) . (83)

Eq. (81) then reduces to∑
J

(2J + 1)PJ(cos θ)ImaJ

= 1
2

∫
d cos θ

′∑
J′

(2J
′
+ 1)PJ′(cos θ

′
)aJ′

∑
J′′

(2J
′′

+ 1)PJ′′(cos θ
′
)PJ′′(cos θ)a

∗
J′′

= 1
2

∑
J′

(2J
′
+ 1)aJ′

∑
J′′

(2J
′′

+ 1)
2

2J ′ + 1
∂J′,J′′PJ′′(cos θ)a

∗
J′′

=
∑
J′

(2J
′
+ 1)PJ′(cos θ)aJ′a

∗
J′ (84)
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from which we immediately conclude that

ImaJ = aJa∗J (85)

if only the same two-body intermediate state is present as in the initial and
final states (equivalent to there being no inelastic scattering).
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Triviality and vacuum stability

The argument of triviality in a λφ4 theory goes as follows. The dependence
of the quartic coupling λ on the energy scale (Q) is regulated by the
renormalization group equation

dλ(Q)

dQ2
=

3

4π2
λ2(Q) . (86)

This equation states that the quartic coupling λ decreases for small energies
and increases for large energies.

Therefore,

• in the low energy regime the coupling vanishes and the theory becomes
trivial, i.e. non-interactive.

• In the large energy regime, on the other hand, the theory becomes non-
perturbative, since λ grows, and it can remain perturbative only if λ is set
to zero, i.e. only if the theory is made trivial.
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The situation in the Standard Model is more complicated, since the running
of λ is governed by more interactions. Including the lowest orders in all the
relevant couplings, we can write the equation for the running of λ(Q) with
the energy scale as follows:

32π2dλ

dt
= 24λ2−(3g′2+9g2−24y2

t)λ+
3

8
g′4+

3

4
g′2g2+

9

8
g4−24y4

t+· · · (87)

where t=ln(Q2/Q2
0) is the logarithm of the ratio of the energy scale and some

reference scale Q0 square, yt=mt/v is the top-quark Yukawa coupling, and
the dots indicate the presence of higher order terms that have been omitted.
We see that when MH becomes large, λ also increases (since M2

H = 2λv2)
and the first term in Eq. (87) dominates. The evolution equation for λ can
then be easily solved and gives:

λ(Q) =
λ(Q0)

1− 3
4π2λ(Q0) ln

(
Q2

Q2
0

) . (88)

When the energy scale Q grows, the denominator in Eq. (88) may vanish, in
which case λ(Q) hits a pole, becomes infinite, and a triviality condition needs
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to be imposed. This is avoided imposing that the denominator in Eq. (88)
never vanishes, i.e. that λ(Q) is always finite and 1/λ(Q) > 0. This condition
gives an explicit upper bound on MH. Requiring

3

4π2
λ(Q0) ln

(
Q2

Q2
0

)
< 1 , with Q2 = Λ2, Q0 = v, λ(v) =

M2
H

2v2
(89)

we obtain the constraint

M2
H <

8π2v2

3 log
(

Λ2

v2

) . (90)

Λ is the scale at which new physics must enter and alter the evolution of λ.

• If we wanted to retain perturbativity all the way up to Λ = 1016 GeV, this
would require mhSM

<∼ 160 GeV.

• For perturbativity only up to Λ = 3 TeV, we would have the much weaker
bound of mhSM

<∼ 600 GeV.
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• If we keep the terms of order λ in the RGE equation Eq. (87), then we
have

dλ

dt
∼

λ

16π2

[
12λ+ 12y2

t −
3

2
(3g2 + g′

2
)

]
(91)

We see that there is a critical value of the coupling, and associated
mc
hSM
≡
√

2λcv,

λc =
1

8
(3g2 + g′

2
)− y2

t (92)

for which the quartic coupling stops evolving. If mhSM
> mc

hSM
then

quartic coupling becomes infinite at some scale and the theory goes non-
perturbative. If we require that the theory be perturbative (i.e. the Higgs
quartic coupling be finite) then an upper bound on on the Higgs mass is
obtained as a function of mt.

• To get a fairly precise value for mc
hSM

, the evolution of the gauge coupling
constants and of yt must also be included in a series of coupled differential
equations.

One finds that for mt = 175 GeV, the bound is mhSM
< 170 GeV.

If the Higgs boson had been found above this bound, it would have required
that there be some new physics below the unification scale.
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However, since mhSM
∼ 126 GeV, this upper bound does not come into

play.

• On the other hand, for small λ, i.e. small MH, the RGE equation takes the
approximate form

dλ

dt
'

1

16π2

[
−12y2

t +
3

16
(2g4 + (g2 + g′

2
)2)

]
(93)

which is easily solved to give

λ(Λ) = λ(v) +
1

16π2

[
−12y4

t +
3

16
(2g4 + (g2 + g′

2
)2)

]
ln

(
Λ2

v2

)
. (94)

• To assure the stability of the vacuum state of the theory we need to require

that λ(Λ)> 0 and this gives a lower bound for MH. Using λ(v) =
M2
H

2v2

and keeping the dominant y4
t term, we find:

λ(Λ) > 0 −→ M2
H >

3v2

2π2
y4
t log

(
Λ2

v2

)
. (95)
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More accurate analyses include higher order quantum corrections in the
scalar potential and use a 2-loop renormalization group improved effective
potential, Veff , whose nature and meaning was briefly sketched earlier in
these notes. The net result is that for Λ = 1016 GeV we require

mhSM
( GeV) > 130.5 + 2.1(mt − 174) . (96)

If the SM need only be valid up to 1 TeV, then the limit is much weaker:

mhSM
( GeV) > 71 + 0.74(mt − 174)], . (97)

• Note that the observed mass, ∼ 126 GeV, is such that the SM could be
valid as an effective theory almost all (maybe all) the way up to the Planck
scale once a mestable vacuum at high Λ is allowed for.

After all the important higher order corrections and coupled channel analysis
is done, we end up with the plot of Fig. 4.
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Figure 4: Triviality and stability bounds on mhSM
as a function of the energy scale up to

which we hope the SM is valid as an effective theory.
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Indirect bounds from electroweak precision
measurements

• Once a Higgs field is introduced in the Standard Model, its virtual excitations
contribute to several physical observables, from the mass of the W boson,
to various leptonic and hadronic asymmetries, to many other electroweak
observables that are usually considered in precision tests of the Standard
Model.

In particular, there is a correction to the ρ parameter that looks like

ρ = 1−
11g2

96π2
tan2 θW ln

(
mhSM

mW

)
. (98)

Note that the dependence on mhSM
is only logarithmic, implying that limits

on mhSM
are very sensitive to the precision of the electroweak fits to ρ and

other quantities.

• In practice, it is the relationship between mW and mt arising from radiative
corrections that depend somewhat sensitively on mhSM

that gives the best
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constraint. We have(
m2
W

m2
Z cos2 θW

)
= 1−

πα
√

2GFm
2
W (1− δr)

(99)

where δr is a function of m2
t and ln(mhSM

). The result, see below, is that
quite a low value of mhSM

is preferred.

• Now that the Higgs boson mass is directly determined it is interesting to
ask how consistent the observed 126 GeV value is with that extracted
indirectly from precision fits of all the measured electroweak observables,
within the fit uncertainty.

This is actually one of the most important results that was obtained from
precision tests of the Standard Model and greatly illustrates the predictivity
of the Standard Model itself.

• I show some plots available from the PDG web page. For more details on
this, see the mini-review there. Basically, in the SM context we expected
a somewhat lighter Higgs mass than that seen. The discrepancy can be
resolved within the Supersymmetric context.
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The correlation between the Higgs boson mass MH, the W boson mass
MW , the top-quark mass mt, and the precision data is illustrated in the
above figures. Apart from the impressive agreement existing between the
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indirect determination of MW and mt and their experimental measurements
we see that the 68% CL contours, from just the LEP, SLD, and Tevatron
measurements, selected a SM Higgs boson mass region roughly below
200 GeV. Therefore, assuming no physics beyond the Standard Model at
the weak scale, all available electroweak data demanded a light Higgs
boson.

This is summarized by the famous “blue-band” plot showing the ∆χ2

(relative to the minimum) for fitting all electroweak constraints as a
function of MH. We see a distinct minimum at about 95− 100 GeV. We
also observe that at 95% CL MH was predicted to lie below 152 GeV.

Thus, it was no surprise that the Higgs was discovered at a modest mass
of 126 GeV, which is only a little way up the ∆χ2 curve.
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Fine-tuning

• One aspect of the Higgs sector of the Standard Model that is traditionally
perceived as problematic is that higher order corrections to the square of
the Higgs boson mass contain quadratic ultraviolet divergences.

• This is expected in a λφ4 theory and it does not pose a renormalizability
problem, since a λφ4 theory is renormalizable.

• However, although per se renormalizable, these quadratic divergences leave
the inelegant feature that the square of the Higgs boson renormalized
mass has to result from the adjusted or fine-tuned balance between a bare
Higgs boson mass squared and a counterterm that is proportional to the
ultraviolet cutoff squared.

If the physical Higgs mass has to live at the electroweak scale, this can
cause a fine-tuning of several orders of magnitude when the scale of new
physics Λ (the ultraviolet cutoff of the Standard Model interpreted as an
effective low energy theory) is well above the electroweak scale.
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• Ultimately this is related to a symmetry principle, or better to the absence
of a symmetry principle.

Indeed, setting to zero the masses of the scalar fields in the Lagrangian of
the Standard Model does not restore any symmetry to the model. Hence,
the masses of the scalar fields are not protected against large corrections.

• Models of new physics beyond the Standard Model should address this
fine-tuning problem and propose a more satisfactory mechanism to obtain
the mass of the Higgs particle(s) around the electroweak scale.

Supersymmetric models, for instance, have the remarkable feature that
fermionic and bosonic degrees of freedom conspire to cancel the Higgs
mass quadratic loop divergence, when the symmetry is exact.

Other non supersymmetric models, like little Higgs models, address the
problem differently, by interpreting the Higgs boson as a Goldstone boson
of some global approximate symmetry.

In both cases the Higgs mass turns out to be proportional to some small
deviation from an exact symmetry principle, and therefore intrinsically small.

• As just stated, quantum corrections to the Higgs mass-squared lead to
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severe quadratic-divergence fine-tuning unless new physics enters at a low
scale.

• Let us gives some details:

After including the one loop corrections we have

m2
hSM

= µ2 +
3Λ2

32π2v2
(2m2

W +m2
Z +m2

hSM
− 4m2

t) (100)

where µ2 = 2λv2
SM , and λ is the quartic coupling in the Higgs potential.

The µ2 and Λ2 terms have entirely different sources, and so a value of
mhSM

∼ mZ should not arise by fine-tuned cancellation between the two
terms.

And, even if you do have a fine-tuned cancellation the theory is out of
control for large Λ since large µ2 requires large λ.

Although you can never cure the quadratic fine-tuning problem without new
physics, there are some tactics for delaying it to quite large Λ values.
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Purely Higgs sector approaches for delaying
fine-tuning from quadratic divergences

1. mhSM
could obey the “Veltman” condition,

m2
hSM

= 4m2
t − 2m2

W −m
2
Z ∼ (317 GeV)2 . (101)

At higher loop order, one must carefully coordinate the value of mhSM
with

the value of Λ.

Just as we do not want to have a fine-tuned cancellation of the two terms
in Eq. (100), we also do not want to insist on too fine-tuned a choice for
mhSM

(in the SM, there is no symmetry that predicts this value).

⇒ cannot continue the game to too high a Λ.
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Figure 5: Fine-tuning constraints on Λ, from Kolda + Murayama, hep-ph/0003170.

The upper bound for Λ at which new physics must enter is largest for
mhSM

∼ 200 GeV where the SM fine-tuning would be 10% if Λ ∼ 30 TeV.
At this point, one would have to introduce some kind of new physics.
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However, we already know that there is a big problem with this approach
— namely the Higgs mass is about 126 GeV.

2. There is the “multi-doublet” approach.

In the simplest case where all hi have the same top quark Yukawa, but
rescaled by vi/vSM , each hi has its top quark loop mass correction scaled

by f2
i ≡

v2
i

v2
SM

and thus

F it = f2
i Ft(mi) = Kf2

i

Λ2
t

m2
i

(102)

i.e. significantly reduced.

Thus, multiple mixed Higgs allow a much larger Λt for a given maximum
acceptable common F it .

One should note one possibly good feature of delaying new physics:

large Λt implies significant corrections to low-E phenomenology from Λt-
scale physics are less likely.
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A model with 4 doublets can allow Λt ∼ 5 TeV before the hierarchy
fine-tuning problem becomes significant.

• However, in the end, there is always going to be a Λ or Λt for which we
get into trouble.

⇒ Ultimately we will need new physics.

So, why not have it right away (i.e. at Λ <∼ 1 TeV) and avoid the above
somewhat ad hoc games.

This is the approach of supersymmetry, which (unlike Little Higgs or UED
or ....) solves the hierarchy problem once and for all.

• As we have seen, following in more detail Ref. [28], the no fine-tuning
condition in the Standard Model can be softened and translated into a
maximum amount of allowed fine-tuning, that can be directly related to the
scale of new physics.

• As derived earlier, upon spontaneous breaking of the electroweak symmetry,
the SM Higgs boson mass at tree level is given by M2

H=−2µ2, where µ2

is the coefficient of the quadratic term in the scalar potential.
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Higher order corrections to M2
H can therefore be calculated as loop

corrections to µ2, i.e. by studying how the effective potential in Eq. (17)
and its minimum condition are modified by loop corrections.

If we interpret the Standard Model as the electroweak scale effective limit
of a more general theory living at a high scale Λ, then the most general
form of µ2 including all loop corrections is:

µ̄2 = µ2 + Λ2
∞∑
n=0

cn(λi) logn(Λ/Q) , (103)

where Q is the renormalization scale, λi are a set of input parameters
(couplings) and the cn coefficients can be deduced from the calculation of
the effective potential at each loop order. h

• As noted originally by Veltman, there would be no fine-tuning problem if
the coefficient of Λ2 in Eq. (103) were zero, i.e. if the loop corrections to
µ2 had to vanish.

This condition, known as Veltman condition, is usually over constraining,
since the number of independent cn (set to zero by the Veltman condition)
can be larger than the number of inputs λi.
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However the Veltman condition can be relaxed, by requiring that only the
sum of a finite number of terms in the coefficient of Λ2 is zero, i.e. requiring
that:

nmax∑
0

cn(λi) logn(Λ/MH) = 0 , (104)

where the renormalization scale µ has been arbitrarily set to MH and the
order n has been set to nmax, fixed by the required order of loop in the
calculation of Veff .

This is based on the fact that higher orders in n come from higher loop
effects and are therefore suppressed by powers of (16π2)−1.

Limiting n to nmax, Eq. (104) can now have a solution. Indeed, if the
scale of new physics Λ is not too far from the electroweak scale, then the
Veltman condition in Eq. (104) can be softened even more by requiring
that:

nmax∑
0

cn(λi) logn(Λ/MH) <
v2

Λ2
. (105)

This condition determines a value of Λmax such that for Λ ≤ Λmax the
stability of the electroweak scale does not require any dramatic cancellation
in µ̄2.
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In other words, for Λ ≤ Λmax the renormalization of the SM Higgs boson
mass does not require any fine-tuning.

As an example, for nmax=0,

c0 =(32π2v2)−13(2M2
W +M2

Z +M2
H − 4m2

t) , (106)

and the stability of the electroweak scale is assured up to Λ of the order of
4πv ' 2 TeV.

For nmax = 1 the maximum Λ is pushed up to Λ ' 15 TeV and for
nmax=2 up to Λ ' 50 TeV.

So, just going up to 2-loops assures us that we can consider the SM Higgs
sector free of fine-tuning up to scales that are well beyond where we would
hope to soon discover new physics.
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Figure 6: The SM Higgs boson mass MH as a function of the scale of new physics Λ, with

all the constraints derived from unitarity, triviality, vacuum stability, electroweak precision fits,

and the requirement of a limited fine-tuning. The empty region is consistent with all the

constraints and less than 1 part in 10 fine-tuning. From Ref. [28]. But, it is not consistent

with MH = 126 GeV unless finetuning much worse than 1% is allowed.
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For each value of nmax, and for each corresponding Λmax, MH becomes
a function of the cutoff Λ, and the amount of fine-tuning allowed in the
theory limits the region in the (Λ,MH) plane allowed to MH(Λ).

This is well represented in Fig. 6, where also the constraints from the
conditions of unitarity, triviality, vacuum stability and electroweak precision
fits are summarized.

• Finally, the main lesson we take away from this plot is that if a Higgs boson
is discovered new physics is just around the corner and should manifest
itself at the LHC.

But, we have not yet seen new physics at the expected scale — these
considerations are pushing us into an uncomfortable corner.
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The Higgs sector of the MSSM

• In the supersymmetric extension of the Standard Model, the electroweak
symmetry is spontaneously broken via the Higgs mechanism.

However, in supersymmetry the Higgs sector must contain an even number
of doublets, as required by holomorphy and anomaly cancellation.

The minimal number of 2 doublets defines the MSSM.

• The dynamics of the Higgs mechanism works pretty much unchanged with
respect to the Standard Model case, although the form of the scalar
potential is more complex and its minimization more involved.

• As a result, the W± and Z weak gauge bosons acquire masses that depend
on the parameterization of the supersymmetric model at hand.

• At the same time, fermion masses are generated by coupling the two scalar
doublets to the fermions via Yukawa interactions.
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• A supersymmetric model is therefore a natural reference to compare
the Standard Model to, since it is a theoretically sound extension of
the Standard Model, still fundamentally based on the same electroweak
symmetry breaking mechanism.

• Far from being a simple generalization of the SM Higgs sector, the scalar
sector of a supersymmetric model can be theoretically more satisfactory
because:

1. spontaneous symmetry breaking is radiatively induced (i.e. the sign of the
quadratic term in the Higgs potential is driven from positive to negative)
mainly by the evolution of the top-quark Yukawa coupling from the scale
of supersymmetry-breaking to the electroweak scale, and

2. higher order corrections to the Higgs mass do not contain quadratic
divergences, since they cancel when the contribution of both scalars and
their super-partners is considered.

• At the same time, the fact of having a supersymmetric theory and two scalar
doublets modifies the phenomenological properties of the supersymmetric
physical scalar fields dramatically.

• In what follows, we will review only the most important properties of the
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Higgs sector of the MSSM, so that we can compare the physics of the SM
Higgs boson to that of the MSSM Higgs bosons.

• Let us start by recalling some general properties of a Two Higgs Doublet
Model and then specify the discussion to the case of the MSSM.

• Following this, we will review the form of the couplings of the MSSM Higgs
bosons to the SM gauge bosons and fermions, including the impact of the
most important supersymmetric higher order corrections.

1. About Two Higgs Doublet Models

The most popular and simplest extension of the Standard Model is obtained
by considering a scalar sector made of two instead of one complex scalar
doublets.

These models, dubbed Two Higgs Doublet Models (2HDM), have a richer
spectrum of physical scalar fields.

Indeed, after spontaneous symmetry breaking, only three of the eight
original scalar degrees of freedom (corresponding to two complex doublets)
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are reabsorbed in transforming the originally massless vector bosons into
massive ones.

The remaining five degrees of freedom correspond to physical degrees of
freedom in the form of: two neutral scalars, one neutral pseudoscalar, and
two charged scalar fields.

At the same time, having multiple scalar doublets in the Yukawa Lagrangian
(see Eq. (32)) allows for scalar flavor changing neutral currents.

Indeed, when generalized to the case of two scalar doublet φ1 and φ2,
Eq. (32) becomes (quark case only):

LY ukawa = −
∑
k=1,2

Γuij,kQ̄
i
LΦk,cujR −

∑
k=1,2

Γdij,kQ̄
i
LΦkdjR + h.c. , (107)

where each pair of fermions (i, j) couple to a linear combination of the
scalar fields φ1 and φ2.

When, upon spontaneous symmetry breaking, the fields φ1 and φ2 acquire
vacuum expectation values

〈Φk〉 =
vk
√

2
for k = 1, 2 , (108)

J. Gunion 250Higgs, U.C. Davis, 80



the reparameterization of LY ukawa of Eq. (107) in the vicinity of the
minimum of the scalar potential, with Φk = Φ′k + vk (for k = 1, 2), gives:

LY ukawa = −ūiL
∑
k

Γuij,k
vk
√

2︸ ︷︷ ︸
Mu
ij

ujR−d̄
i
L

∑
k

Γdij,k
vk
√

2︸ ︷︷ ︸
Md
ij

djR+h.c.+FC couplings ,

(109)
where the fermion mass matrices Mu

ij and Md
ij are now proportional to a

linear combination of the vacuum expectation values of φ1 and φ2.

The diagonalization of Mu
ij and Md

ij does not imply the diagonalization of

the couplings of the φ′k fields to the fermions, and Flavor Changing (FC)
couplings arise.

This is perceived as a problem in view of the absence of experimental
evidence to support neutral flavor changing effects.

If present, these effects have to be tiny in most processes involving in
particular the first two generations of quarks, and a safer way to build a
2HDM is to forbid them all together at the Lagrangian level.

This is traditionally done by requiring either that u-type and d-type quarks
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couple to the same doublet (Model I) or that u-type quarks couple to one
scalar doublet while d-type quarks to the other (Model II).

Indeed, these two different realizations of a 2HDM can be justified by
enforcing on LY ukawa the following ad hoc discrete symmetry:

{
Φ1 → −Φ1 and Φ2 → Φ2

di→ −di and uj → ±uj (110)

The case in which FC scalar neutral currents are not forbidden (Model III)
has also been studied in detail.

In this case both up and down-type quarks can couple to both scalar
doublets, and strict constraints have to be imposed on the FC scalar
couplings, in particular between the first two generations of quarks.

2HDMs have a very rich phenomenology that has been extensively studied.

In what follows here, however, I will only compare the SM Higgs boson
phenomenology to the phenomenology of the Higgs bosons of the MSSM,
a particular kind of 2HDM that will be discussed in the following.
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2. The MSSM Higgs sector: introduction

The Higgs sector of the MSSM is actually a Model II 2HDM. It contains
two complex SU(2)L scalar doublets:

Φ1 =

(
φ+

1

φ0
1

)
, Φ2 =

(
φ0

2

φ−2

)
, (111)

with opposite hypercharge (Y = ±1), as needed to make the theory
anomaly-free3. Φ1 couples to the up-type and Φ2 to the down-type quarks
respectively. Correspondingly, the Higgs part of the potential can be written
as:4

VH = (|µ|2 +m2
1)|Φ1|2 + (|µ|2 +m2

2)|Φ2|2 − µBεij(Φi1Φ
j
2 + h.c.)

+
g2 + g′2

8

(
|Φ1|2 − |Φ2|2

)2
+
g2

2
|Φ†1Φ2|2 , (112)

3Another reason for the choice of a 2HDM is that in a supersymmetric model the superpotential should be expressed
just in terms of superfields, not their conjugates. So, one needs to introduce two doublets to give mass to fermion fields
of opposite weak isospin. The second doublet plays the role of φc in the Standard Model (see Eq. (32)), where φc has
opposite hypercharge and weak isospin with respect to φ.

4 For further details, see the Appendix which gives a more theoretical treatment of the MSSM Higgs sector.
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in which we can identify three different contributions [29, 298]:

(i) the so called D terms, containing the quartic scalar interactions, which
for the Higgs fields Φ1 and Φ2 correspond to:

g2 + g′2

8

(
|Φ1|2 − |Φ2|2

)2
+
g2

2
|Φ†1Φ2|2 , (113)

with g and g′ the gauge couplings of SU(2)L and U(1)Y respectively;
(ii) the so called F terms, corresponding to:

|µ|2(|Φ1|2 + |Φ2|2) ; (114)

(iii) the soft SUSY-breaking scalar Higgs mass and bilinear terms, corresponding
to:

m2
1|Φ1|2 +m2

2|Φ2|2 − µBεij(Φi1Φ
j
2 + h.c.) . (115)

Overall, the scalar potential in Eq. (112) depends on three independent
combinations of parameters, |µ|2 + m2

1, |µ|2 + m2
2, and µB. One basic

difference with respect to the SM case is that the quartic coupling has
been replaced by gauge couplings. This reduced arbitrariness will play an
important role in the following.
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Upon spontaneous symmetry breaking, the neutral components of Φ1 and
Φ2 acquire vacuum expectation values

〈Φ1〉 =
1
√

2

(
0
v1

)
, 〈Φ2〉 =

1
√

2

(
v2

0

)
, (116)

and the Higgs mechanism proceeds as in the Standard Model except that
now one starts with eight degrees of freedom, corresponding to the two
complex doublets Φ1 and Φ2. Three degrees of freedom are absorbed in
making the W± and the Z massive.

Note: The convention for v1 and v2 above is opposite the Higgs Hunters
Guide. What is important is that in the present notation v1 is responsible
for up quark masses and v2 responsible for down quark and lepton masses
— see upcoming material.

The W mass is given by: M2
W = g2(v2

1 + v2
2)/4 = g2v2/4, and this fixes

the normalization of v2
1 + v2

2, leaving only two independent parameters to
describe the entire MSSM Higgs sector. The remaining five degrees of
freedom are physical and correspond to two neutral scalar fields

h = −(
√

2Reφ0
2 − v2) sinα+ (

√
2Reφ0

1 − v1) cosα (117)
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H = (
√

2Reφ0
2 − v2) cosα+ (

√
2Reφ0

1 − v1) sinα ,

one neutral pseudoscalar field

A =
√

2
(
Imφ0

2 sinβ + Imφ0
1 cosβ

)
, (118)

and two charged scalar fields

H± = φ±2 sinβ + φ±1 cosβ , (119)

where α and β are mixing angles, and tanβ = v1/v2. At tree level,
the masses of the scalar and pseudoscalar degrees of freedom satisfy the
following relations:

M2
H± = M2

A +M2
W , (120)

M2
H,h =

1

2

(
M2
A +M2

Z ± ((M2
A +M2

Z)2 − 4M2
ZM

2
A cos2 2β)1/2

)
,

making it natural to pick MA and tanβ as the two independent parameters
of the Higgs sector.

J. Gunion 250Higgs, U.C. Davis, 86



Eq. (120) provides the famous tree level upper bound on the mass of one
of the neutral scalar Higgs bosons, h:

M2
h ≤M

2
Z cos 2β ≤M2

Z , (121)

which contradicted the experimental lower bound set by LEP II: Mh >∼
114 GeV, and is in clear disagreement with the measured 126 GeV value.

The contradiction is lifted by including higher order radiative corrections to
the Higgs spectrum, in particular by calculating higher order corrections to
the neutral scalar mass matrix.

A huge effort has been dedicated to the calculation of the full one-
loop corrections and of several leading and sub-leading sets of two-loop
corrections, including resummation of leading and sub-leading logarithms
via appropriate renormalization group equation (RGE) methods.

A detailed discussion of this topic can be found in the reviews [8, 30, 31]
and in the original literature referenced therein.

For the purpose of these lectures, let us just observe that, qualitatively, the
impact of radiative corrections on Mmax

h can be seen by just including the
leading two-loop corrections proportional to y2

t , the square of the top-quark
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Yukawa coupling, and applying RGE techniques to resum the leading orders
of logarithms.

In this case, the upper bound on the light neutral scalar in Eq. (121) is
modified as follows:

M2
h ≤M

2
Z +

3g2m2
t

8π2M2
W

[
log

(
M2
S

m2
t

)
+
X2
t

M2
S

(
1−

X2
t

12M2
S

)]
, (122)

where M2
S = (M2

t̃1
+M2

t̃2
)/2 is the average of the two top-squark masses,

mt is the running top-quark mass (to account for the leading two-loop
QCD corrections), and Xt is the top-squark mixing parameter defined by
the top-squark mass matrix:(

M2
Qt

+m2
t +Dt

L mtXt

mtXt M2
Rt

+m2
t +Dt

R

)
, (123)

with Xt ≡ At − µ cotβ (At being one of the top-squark soft SUSY
breaking trilinear coupling), Dt

L = (1/2 − 2/3 sin θW )M2
Z cos 2β, and

Dt
R = 2/3 sin2 θWM

2
Z cos 2β.

Examination of the result Eq. (122) shows that the largest value of Mh as a
function of Xt is achieved for Xt/MS =

√
6, although some studies taking
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two-loop effects into account suggest that the largest mixing contribution
occurs closer to |Xt/MS| ∼ 2. Values larger than about

√
6 = 2.45 will

induce charge and and color-breaking minima in the scalar potential and
should be avoided.

Fig. 7 illustrates the behavior of Mh as a function of tanβ, in the case
of minimal and maximal mixing. For large tanβ a plateau (i.e. an upper
bound) is clearly reached. The green bands represent the variation of Mh

as a function of mt when mt=175± 5 GeV.
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Figure 7: The mass of the light neutral scalar Higgs boson, h, as a function of tanβ, in

the minimal mixing and maximal mixing scenario. The green bands are obtained by varying

the top-quark mass in the mt=175± 5 GeV range. The plot is built by fixing MA=1 TeV

and MSUSY ≡MQ=MU =MD=1 TeV. From Ref. [8].

If top-squark mixing is maximal, the upper bound on Mh is approximately
Mmax
h ' 135 GeV5. The behavior of both Mh,H and MH± as a function

of MA and tanβ is summarized in Fig. 8, always for the case of maximal
mixing. It is interesting to notice that for all values of MA and tanβ one

5This limit is obtained for mt=175 GeV, and it can go up to Mmax
h '144 GeV for mt=178 GeV.
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has MH>M
max
h . Also we observe that, in the limit of large tanβ,

i) for MA<M
max
h : Mh 'MA and MH 'Mmax

h , while

ii) for MA>M
max
h : MH 'MA and Mh 'Mmax

h .

Figure 8: The mass of the light (h) and heavy (H) neutral scalar Higgs bosons, and of the

charged scalar Higgs boson (H±) as a function of the neutral pseudoscalar mass MA, for two

different values of tanβ (tanβ= 3, 30). The top-quark mass is fixed to mt = 174.3 GeV

and MSUSY ≡MQ =MU =MD = 1 TeV. The maximal mixing scenario is chosen. From

Ref. [8].
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3. MSSM Higgs boson couplings to electroweak gauge bosons

The Higgs boson couplings to the electroweak gauge bosons are obtained
from the kinetic term of the scalar Lagrangian, in strict analogy to what we
have explicitly seen in the case of the SM Higgs boson.

Here, we would like to state the form of the HiV V and HiHjV couplings
(for Hi=h,H,A,H

±, and V =W±, Z) that are most important in order
to understand the main features of the MSSM plots that will be shown
when we discuss phenomenology.

First of all, the couplings of the neutral scalar Higgs bosons to both W±

and Z can be written as:

ghV V = gVMV sin(β − α)gµν , gHV V = gVMV cos(β − α)gµν ,
(124)

where gV =2MV /v, while the AV V and H±V V couplings vanish because
of CP-invariance. As in the SM case, since the photon is massless, there
are no tree level γγHi and γZHi couplings.

Moreover, in the neutral Higgs sector, only the HAZ and HAZ couplings
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are allowed and they are given by:

ghAZ =
g cos(β − α)

2 cos θW
(ph−pA)µ , gHAZ = −

g sin(β − α)

2 cos θW
(pH−pA)µ ,

(125)
where all momenta are incoming. We also have several HiHjV couplings
involving the charged Higgs boson, namely:

gH+H−Z = −
g

2 cos θW
cos 2θW (pH+ − pH−)µ , (126)

gH+H−γ = −ie(pH+ − pH−)µ ,

gH∓hW± = ∓i
g

2
cos(β − α)(ph − pH∓)µ ,

gH∓HW± = ±i
g

2
sin(β − α)(pH − pH∓)µ ,

gH∓AW± =
g

2
(pA − pH±)µ .

At this stage it is interesting to introduce the so called decoupling limit,
i.e. the limit of MA � MZ, and to analyze how masses and couplings
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behave in this particular limit. MH± in Eq. (120) is unchanged, while
Mh,H become:

Mh 'Mmax
h and MH 'M2

A +M2
Z sin2 2β . (127)

Moreover, as one can derive from the diagonalization of the neutral scalar
Higgs boson mass matrix:

cos2(β − α) =
M2
h(M2

Z −M2
h)

M2
A(M2

H −M2
h)

M2
A�M

2
Z−→

M4
Z sin2 4β

4M4
A

. (128)

From the previous equations we then deduce that, in the decoupling limit,
the only light Higgs boson is h with mass Mh ' Mmax

h , while MH '
MH± ' MA � MZ, and because cos(β − α) → 0 (sin(β − α) → 1)),
the couplings of h to the gauge bosons tend to the SM Higgs boson limit.
This is to say that, in the decoupling limit, the light MSSM Higgs boson
will be hardly distinguishable from the SM Higgs boson.

Finally, we need to remember that the tree level couplings may be modified
by radiative corrections involving both loops of SM and MSSM particles,
among which loops of third generation quarks and squarks dominate. The
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very same radiative corrections that modify the Higgs boson mass matrix,
thereby changing the definition of the mass eigenstates, also affect the
couplings of the corrected mass eigenstates to the gauge bosons. This can
be reabsorbed into the definition of a renormalized mixing angle α or a
radiatively corrected value for cos(β−α) (sin(β−α)). Using the notation
of Ref. [8], the radiatively corrected cos(β − α) can be written as:

cos(β − α) = K

[
M2
Z sin 4β

2M2
A

+O
(
M4
Z

M4
A

)]
, (129)

where

K ≡ 1 +
δM2

11 − δM2
22

2M2
Z cos 2β

−
δM2

12

M2
Z sin 2β

, (130)

and δMij are the radiative corrections to the corresponding elements of
the CP-even Higgs squared-mass matrix (see Ref. [8]).

It is interesting to notice that on top of the traditional decoupling limit
introduced above (MA � MZ), there is now also the possibility that
cos(β−α)→ 0 if K → 0, and this happens independently of the value of
MA.
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4. MSSM Higgs boson couplings to fermions

As anticipated, Φ1 and Φ2 have Yukawa-type couplings to the up-type and
down-type components of all SU(2)L fermion doublets. For example, the
Yukawa Lagrangian corresponding to the third generation of quarks reads:

LY ukawa = −ht
[
t̄Rφ

0
1tL − t̄Rφ

+
1 bL

]
− hb

[
b̄Rφ

0
2bL − b̄Rφ

−
2 tL

]
+ h.c.

(131)
Upon spontaneous symmetry breaking LY ukawa leads to corresponding
quark masses:

mt = ht
v1√

2
= ht

v sinβ
√

2
and mb = hb

v2√
2

= hb
v cosβ
√

2
, (132)

and the corresponding Higgs-quark couplings:

ghtt̄ =
cosα

sinβ
yt = [sin(β − α) + cotβ cos(β − α)] yt , (133)

ghbb̄ = −
sinα

cosβ
yb = [sin(β − α)− tanβ cos(β − α)] yb ,
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gHtt̄ =
sinα

sinβ
yt = [cos(β − α)− cotβ sin(β − α)] yt ,

gHbb̄ =
cosα

cosβ
yb = [cos(β − α) + tanβ sin(β − α)] yb ,

gAtt̄ = cotβ yt , gAbb̄ = tanβ yb ,

gH±tb̄ =
g

2
√

2MW

[mt cotβ(1− γ5) +mb tanβ(1 + γ5)] ,

where yq = mq/v (for q = t, b) are the SM couplings. It is interesting
to notice that in the MA � MZ decoupling limit, as expected, all the h
couplings in Eq. (133) reduce to the SM limit, while all the H couplings
become like their A counterparts.

The Higgs boson-fermion couplings are also modified directly by one-loop
radiative corrections (squarks-gluino loops for quarks couplings and slepton-
neutralino loops for lepton couplings). A detailed discussion can be found in
Ref. [8, 298] and in the literature referenced therein. Of particular relevance
are the corrections to the couplings of the third quark generation. These
can be parameterized at the Lagrangian level by writing the radiatively
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corrected effective Yukawa Lagrangian as:

LeffY ukawa = −εij
[
(hb + δhb)b̄RQ

j
LΦi2 + (ht + δht)t̄RQ

i
LΦj1

]
(134)

− ∆htt̄RQ
k
LΦk∗2 −∆hbb̄RQ

k
LΦk∗1 + h.c. ,

where we notice that radiative corrections induce a small coupling between
Φ1 and down-type fields and between Φ2 and up-type fields. Moreover the
tree level relation between hb, ht, mb and mt are modified as follows:

mb =
hbv√

2
cosβ

(
1 +

δhb

hb
+

∆hb tanβ

hb

)
≡
hbv√

2
cosβ(1 + ∆b) ,(135)

mt =
htv√

2
sinβ

(
1 +

δht

ht
+

∆ht tanβ

ht

)
≡
htv√

2
sinβ(1 + ∆t) ,

where the leading corrections are proportional to ∆hb and turn out to
also be tanβ enhanced. Meanwhile, the couplings between Higgs mass
eigenstates and third generation quarks given in Eq. (133) are corrected as
follows:

ghtt̄ =
cosα

sinβ
yt

[
1−

1

1 + ∆t

∆ht

ht
(cotβ + tanα)

]
, (136)
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ghbb̄ = −
sinα

cosβ
yb

[
1 +

1

1 + ∆b

(
δhb

hb
−∆b

)
(1 + cotα cotβ)

]
,

gHtt̄ =
sinα

sinβ
yt

[
1−

1

1 + ∆t

∆ht

ht
(cotβ − cotα)

]
,

gHbb̄ =
cosα

cosβ
yb

[
1 +

1

1 + ∆b

(
δhb

hb
−∆b

)
(1− tanα cotβ)

]
,

gAtt̄ = cotβ yt

[
1−

1

1 + ∆t

∆ht

ht
(cotβ + tanβ)

]
,

gAbb̄ = tanβ yb

[
1 +

1

(1 + ∆b) sin2 β

(
δhb

hb
−∆b

)]
,

gH±tb̄ '
g

2
√

2MW

{
mt cotβ

[
1−

1

1 + ∆t

∆ht

ht
(cotβ + tanβ)

]
(1 + γ5)

+ mb tanβ

[
1 +

1

(1 + ∆b) sin2 β

(
δhb

hb
−∆b

)]
(1− γ5)

}
,

where the last coupling is given in the approximation of small isospin
breaking effects, since interactions of this kind have been neglected in the
Lagrangian of Eq. (134).
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Fine-tuning II and Hints suggesting extending the
MSSM

• Returning to the scalar potential involving only the neutral Higgs fields, but
with a switch of notation to Hu for the higgs associated with giving the
top quark mass and Hd the Higgs responsible for the bottom quark and
lepton masses, we have:

V = (|µ|2 +m2
Hu

)|H0
u|

2 + (|µ|2 +m2
Hd

)|H0
d|

2 − (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|
2 − |H0

d|
2)2, (137)

let us write
vu = 〈H0

u〉, vd = 〈H0
d〉. (138)

These VEVs are related to the known mass of the Z boson and the
electroweak gauge couplings (I have changed my convention so that v =
vprevious/

√
2.):

v2
u + v2

d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2. (139)
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The ratio of the VEVs is traditionally written as

tanβ ≡ vu/vd. (140)

The value of tanβ is not fixed by present experiments, but it depends on
the Lagrangian parameters of the MSSM in a calculable way.

Since vu = v sinβ and vd = v cosβ were taken to be real and positive by
convention, we have 0 < β < π/2, a requirement that will be sharpened
below.

Now one can write down the conditions ∂V/∂H0
u = ∂V/∂H0

d = 0 under
which the potential Eq. (363) will have a minimum satisfying Eqs. (365)
and (366):

m2
Hu

+ |µ|2 − b cotβ − (m2
Z/2) cos(2β) = 0, (141)

m2
Hd

+ |µ|2 − b tanβ + (m2
Z/2) cos(2β) = 0. (142)

These equations allow us to eliminate two of the Lagrangian parameters b
and |µ| in favor of tanβ, but do not determine the phase of µ.
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Taking |µ|2, b, m2
Hu

and m2
Hd

as input parameters, and m2
Z and tanβ as

output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (143)

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu
−m2

Hd
− 2|µ|2. (144)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually
assumed, then cos(2β) is negative; otherwise it is positive.)

Eqs. (369) and (370) highlight what is called the “µ problem”.

– Without miraculous cancellations, all of the input parameters ought to
be within an order of magnitude or two of m2

Z.
– However, in the MSSM, µ is a supersymmetry-respecting parameter

appearing in the superpotential, while b, m2
Hu

, m2
Hd

are supersymmetry-
breaking parameters.

– This has lead to a widespread belief that the MSSM must be extended
at very high energies to include a mechanism that relates the effective
value of µ to the supersymmetry-breaking mechanism in some way.
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– Even if the value of µ is set by soft supersymmetry breaking, the
cancellation needed by Eq. (370) is often very substantial (⇒ finetuning)
when evaluated in specific model frameworks, after constraints from
direct searches for the Higgs bosons and superpartners are taken into
account.

– For example, expanding for large tanβ, Eq. (370) becomes

m2
Z = −2(m2

Hu
+ |µ|2) +

2

tan2 β
(m2

Hd
−m2

Hu
) +O(1/ tan4 β). (145)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much
larger than m2

Z, so that significant cancellation is needed.
– In particular, large top squark squared masses, needed to avoid having

the Higgs boson mass turn out too small compared to 126 GeV will feed
into m2

Hu
.

The cancellation needed in the minimal model may therefore be at the
fraction of a per cent level. It is impossible to objectively characterize
whether this should be considered worrisome, but it could be taken as a
weak hint in favor of non-minimal models.
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The NMSSM

1. Introduction

Supersymmetric extensions of the Standard Model (SM) are motivated by
a solution of the hierarchy problem [75, 76, 77, 78, 79], an automatic
unification of the running gauge couplings at a Grand Unified (GUT) scale
MGUT [80, 81, 82, 83], and the possibility to explain the dark matter relic
density in terms of a stable neutral particle [84, 85].

It is well known that a supersymmetric extension of the Higgs sector of the
SM [86, 87] requires the introduction of two Higgs SU(2)-doublets Hu

and Hd, where vacuum expectation values (vevs) of Hu and Hd generate
masses for up-type quarks and down-type quarks and charged leptons,
respectively. The model with this minimal field content in the Higgs sector
is denoted as the Minimal Supersymmetric Standard Model (MSSM) (for
reviews see, e. g., [88, 89, 90]). The Lagrangian of the MSSM must contain
a supersymmetric (SUSY) mass term µ for Hu and Hd, which has to be of
the order of the SUSY breaking scale MSUSY for phenomenological reasons
(see below). This spoils a potentially attractive property of supersymmetric
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extensions of the SM: the electroweak scale generated by the Higgs vevs
could depend only on MSUSY, which would be the only scale asking for an
explanation to why it is far below MGUT or the Planck scale MPlanck. The
question how a supersymmetric mass parameter µ can assume a value of
the order of MSUSY is denoted as the “µ-problem” [91] of the MSSM.

A simple and elegant way to solve this problem consists in generating an
effective (supersymmetric) mass term µ in a way similar to the generation
of quark and lepton masses in the SM: the mass term µ is replaced by
a Yukawa coupling of Hu and Hd to a scalar field, and the vev of the
scalar field – induced by the soft SUSY breaking terms – is of the desired
order. Since the µ parameter carries no SU(3)×SU(2)×U(1)Y quantum
numbers, the field to be introduced has to be a singlet S (the complex
scalar component of a chiral superfield Ŝ), and the resulting model is the
Next-to-Minimal Supersymmetric Standard Model (NMSSM), sometimes
also denoted as the (M+1)SSM.

In fact, already the first attempts to construct supersymmetric extensions
of the SM employed such a singlet field [86, 87, 92]. A singlet was
also present in most of the first globally supersymmetric GUT models
[79, 93, 94, 95, 96]. Then one realised that spontaneous supersymmetry
breaking in the framework of supergravity (SUGRA) leads in a simple way
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to the desired soft SUSY breaking terms in the Lagrangian; see [88] for an
early review. Within SUGRA, a µ term of the order of MSUSY can actually
be generated if one assumes the presence of a particular Higgs-dependent
structure in the Kähler potential [97]. Still, the first locally supersymmetric
extensions of the SM [98, 99, 100] as well as most GUT models within
SUGRA [101, 102, 103, 104, 105, 106, 107, 108] used a singlet field in
the Higgs sector leading to variants of the NMSSM at the weak or SUSY
breaking scale <∼ 1 TeV. (See also SUGRA models motivated by string
theory [109, 110, 111, 112, 113, 114, 115, 116, 117, 118].)

Expanding around the vacuum with non-vanishing vevs of the neutral CP-
even components of Hu, Hd and S, one finds that the scalar components
of Ŝ mix with the neutral scalar components of Ĥu and Ĥd leading,
in the absence of complex parameters (corresponding to the absence of
explicit CP violation), to three CP-even and two CP-odd neutral scalars (see
[119, 120, 121] for some reviews). Likewise, the fermionic superpartner of Ŝ

mixes with the neutral fermionic superpartners of Ĥu, Ĥd (and the neutral
electroweak gauginos) leading to five neutralinos. As a consequence, both
the Higgs and the neutralino sectors of the NMSSM can get considerably
modified compared to the MSSM.

In the Higgs sector, important alterations with respect to the MSSM
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are a possibly larger mass of the Higgs scalar with SM-like couplings to
gauge bosons, and additional possibly light states with reduced couplings
to gauge bosons. Notably a light CP-odd scalar with vanishing couplings to
two gauge bosons like all CP-odd scalars (but with possibly even enhanced
couplings to quarks and leptons) can appear in the Higgs spectrum, allowing
for new Higgs-to-Higgs decays. Under these circumstances, the detection
of Higgs bosons at colliders can become considerably more complicated. A
priori this means that it is not even guaranteed that a single Higgs scalar
can be observed at the LHC within the NMSSM. However, now that we
have seen the 126 GeV Higgs, we know that this kind of situation is not
dominant (but might still be present at some level). In addition, a light
CP-odd scalar can affect “low energy” observables in B physics, Υ physics
and the anomalous magnetic moment of the muon.

The modifications within the neutralino sector are particularly relevant if
the additional singlet-like neutralino is the lightest one and, simultaneously,
the lightest supersymmetric particle (LSP). This would have an important
impact on all decay chains of supersymmetric particles (sparticles), and
hence on their signatures at colliders. For instance, the next-to-lightest
supersymmetric particle (NLSP) can have a long life time leading to
displaced vertices. Also, the LSP relic density has to be reconsidered in this
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case.

Given the strong theoretical motivations for the NMSSM, its phenomenological
consequences must be worked out in order not to miss (or misinterpret)
both Higgs and sparticles signals – or the absence thereof – at past, present
and future colliders.

Here, we review theoretical and phenomenological aspects of the NMSSM:
Most notably, those related to the Higgs sector. There are many other
aspects of the NMSSM of interest, but these must be deferred to a different
course.

2. The µ problem

Let us go into more detail regarding the arguments for a µ parameter of
the order of MSUSY, whose necessity constitutes the main motivation for
the NMSSM: both complex Higgs scalars Hu and Hd of the MSSM have
to be components of chiral superfields which contain, in addition, fermionic
SU(2)-doublets ψu and ψd. The Lagrangian of the MSSM can contain
supersymmetric mass terms for these fields, i.e. identical positive masses
squared µ2 for |Hu|2 and |Hd|2, and a Dirac mass µ for ψu and ψd. In
the presence of a SUSY mass term ∼ µ in the Lagrangian, a soft SUSY
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breaking mass term BµHuHd can also appear, where the soft SUSY
breaking parameter B has the dimension of a mass.

For various reasons the mass parameter µ cannot vanish. First, a Dirac mass
µ for ψu and ψd is required for phenomenological reasons: both fermionic
SU(2)-doublets ψu and ψd contain electrically charged components.
Together with with the fermionic superpartners of the W± bosons, they
constitute the so-called chargino sector (two charged Dirac fermions) of
SUSY extensions of the SM. Due to the fruitless searches for a chargino
at LEP, the lighter chargino has to have a mass above ∼ 103 GeV [122].
Analysing the chargino mass matrix, one finds that this lower limit implies
that the Dirac mass µ for ψu and ψd – for arbitrary values of the other
parameters – has to satisfy the constraint |µ| >∼ 100 GeV.

Second, an analysis of the Higgs potential shows that a non-vanishing term
BµHuHd is a necessary condition for that both neutral components of
Hu and Hd are non-vanishing at the minimum. This, in turn, is required in
order to generate masses for up-type quarks, down-type quarks and leptons
by the Higgs mecanism. Moreover, the numerical value of the product Bµ
should be roughly of the order of the electroweak scale (M2

Z).

Third, µ = 0 would generate a Peccei-Quinn symmetry in the Higgs sector,
and hence an unacceptable massless axion [91].
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However, |µ| must not be too large: the Higgs potential must be unstable
at its origin Hu = Hd = 0 in order to generate the electroweak symmetry
breaking. Whereas the soft SUSY breaking mass terms for Hu and Hd

of the order of the SUSY breaking scale MSUSY can generate such a
desired instability, the µ-induced masses squared for Hu and Hd are always
positive, and must not dominate the negative soft SUSY breaking mass
terms. Consequently the µ parameter must obey |µ| <∼ MSUSY. Hence,
both “natural” values µ = 0 and very large µ (∼MGUT or ∼MPlanck) are
ruled out, and the need for an explanation of µ ≈MSUSY is the µ-problem.

Within the NMSSM, where µ is generated by the vev 〈S〉 of a singlet S,
〈S〉 has to be of the order of MSUSY; this is easy to obtain with the help
of soft SUSY breaking negative masses squared (or trilinear couplings) of
the order of MSUSY for S. Then, MSUSY is the only scale in the theory.
In this sense, the NMSSM is the simplest supersymmetric extension of the
SM in which the weak scale is generated by the supersymmetry breaking
scale MSUSY only.

3. Lagrangian of the general NMSSM

The Next to Minimal Supersymmetric Standard Model (NMSSM [612, 613,
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614, 615, 617, 618, 619, 620, 621, 622, 623]) provides a very elegant solution
to the µ problem of the MSSM via the introduction of a singlet superfield
Ŝ. For the simplest possible scale invariant form of the superpotential, the
scalar component of Ŝ acquires naturally a vacuum expectation value of
the order of the Susy breaking scale, giving rise to a value of µ of order the
electroweak scale. The NMSSM is actually the simplest supersymmetric
extension of the standard model in which the electroweak scale originates
from the Susy breaking scale only.

In addition, the NMSSM renders the “little fine tuning problem” of the
MSSM, originating from the non-observation of a neutral CP-even Higgs
boson at LEP II, less severe [613].

A possible cosmological domain wall problem [614] can be avoided by
introducing suitable non-renormalizable operators [615] that do not generate
dangerously large singlet tadpole diagrams [616].

Hence, the phenomenology of the NMSSM deserves to be studied at
least as fully and precisely as that of the MSSM. Its particle content
differs from the MSSM by the addition of one CP-even and one CP-odd
state in the neutral Higgs sector (assuming CP conservation), and one
additional neutralino. Thus, the physics of the Higgs bosons – masses,
couplings and branching ratios [612, 617, 618, 619, 620, 621, 622, 623]
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can differ significantly from the MSSM. The purpose of the Fortran code
NMHDECAY (Non Minimal Higgs Decays), that accompanies the present
paper, is an accurate computation of these properties of the Higgs bosons
in the NMSSM in terms of the parameters in the Lagrangian. As its name
suggests, the Fortran code uses to some extent – for MSSM-like processes
– parts of the code HDECAY that is applicable to the Higgs sector of the
MSSM [624].

We define the NMSSM in terms of its parameters at the Susy breaking
scale. No assumption on the soft terms (like universal soft terms at a GUT
scale) are made. The parameters in the Higgs sector are chosen as follows:

a) Apart from the usual quark and lepton Yukawa couplings, the scale
invariant superpotential is

λ ŜĤuĤd +
κ

3
Ŝ3 (146)

depending on two dimensionless couplings λ, κ beyond the MSSM.
(Hatted capital letters denote superfields, and unhatted capital letters
will denote their scalar components).
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b) The associated trilinear soft terms are

λAλSHuHd +
κ

3
AκS

3 . (147)

c) The final two input parameters are

tanβ = 〈Hu〉 / 〈Hd〉 , µeff = λ 〈S〉 . (148)

These, along with MZ, can be viewed as determining the three
Susy breaking masses squared for Hu, Hd and S through the three
minimization equations of the scalar potential.

Thus, as compared to two independent parameters in the Higgs sector
of the MSSM (often chosen as tanβ and MA), the Higgs sector of the
NMSSM is described by the six parameters

λ , κ , Aλ , Aκ, tanβ , µeff . (149)

We will choose sign conventions for the fields such that λ and tanβ are
positive, while κ, Aλ, Aκ and µeff should be allowed to have either sign.

J. Gunion 250Higgs, U.C. Davis, 113



For any choice of these parameters – as well as of the values for the
gaugino masses and of the soft terms related to the squarks and sleptons
that contribute to the radiative corrections in the Higgs sector

4. General Conventions for the NMSSM

Below, we define our conventions for the tree level Lagrangian of the
NMSSM. The superpotential for the Higgs fields, the quarks and the
leptons of the 3rd generation is

W = htQ̂·ĤuT̂
c
R−hbQ̂·ĤdB̂

c
R−hτ L̂·ĤdL̂

c
R+λŜĤu·Ĥd+

1

3
κŜ3 . (150)

Hereafter, hatted capital letters denote superfields, and unhatted capital
letters the corresponding (complex) scalar components. The SU(2)
doublets are

Q̂ =

(
T̂L
B̂L

)
, L̂ =

(
ν̂τL
τ̂L

)
, Ĥu =

(
Ĥ+
u

Ĥ0
u

)
, Ĥd =

(
Ĥ0
d

Ĥ−d

)
.

(151)
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Products of two SU(2) doublets are defined as, e.g.,

Ĥu · Ĥd = Ĥ+
u Ĥ
−
d − Ĥ

0
uĤ

0
d . (152)

For the soft Susy breaking terms we take

−Lsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2 +m2
Q|Q2|+m2

T |T 2
R|

+m2
B|B2

R|+m2
L|L2|+m2

τ |L2
R|

+(htAt Q ·HuT
c
R − hbAb Q ·HdB

c
R − hτAτ L ·HdL

c
R

+λAλ Hu ·HdS + 1
3
κAκ S

3 + h.c.) . (153)

5. Higgs Sector at Tree Level

For completeness, we list here the Higgs potential, tree level Higgs masses
and our conventions for the mixing angles. The tree level Higgs potential
is given by
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V = λ2(|Hu|2|S|2 + |Hd|2|S|2 + |Hu ·Hd|2) + κ2|S2|2

+λκ(Hu ·HdS
∗2 + h.c.) +

1

4
g2(|Hu|2 − |Hd|2)2

+
1

2
g2

2|H
+
uH

0∗
d +H0

uH
−∗
d |

2 +m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|
2

+(λAλHu ·HdS +
1

3
κAκ S

3 + h.c.) (154)

where

g2 =
1

2
(g2

1 + g2
2) . (155)

Assuming vevs hu, hd and s such that

H0
u = hu+

HuR + iHuI√
2

, H0
d = hd+

HdR + iHdI√
2

, S = s+
SR + iSI√

2
(156)
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eq. (154) simplifies to

V = λ2(h2
us

2 + h2
ds

2 + h2
uh

2
d) + κ2s4 − 2λκhuhds

2 − 2λAλ huhds

+
2

3
κAκs

3 +m2
Hu
h2
u +m2

Hd
h2
d +m2

Ss
2 +

1

4
g2(h2

u − h
2
d)

2 . (157)

The sign conventions for the fields can be chosen such that the Yukawa
couplings λ, ht, hb, the vevs hu, hd (and hence tanβ) as well as the soft
gaugino masses Mi are all positive. Then, the Yukawa coupling κ, the
trilinear soft terms Ai, and the vev s (and hence µeff) can all be either
positive or negative.

CP-even neutral states

In the basis Sbare = (HuR,HdR, SR) and using the minimization equations
in order to eliminate the soft masses squared, one obtains the following
mass-squared matrix entries:

M2
S,11 = g2h2

u + λs
hd

hu
(Aλ + κs),
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M2
S,22 = g2h2

d + λs
hu

hd
(Aλ + κs),

M2
S,33 = λAλ

huhd

s
+ κs(Aκ + 4κs),

M2
S,12 = (2λ2 − g2)huhd − λs(Aλ + κs),

M2
S,13 = 2λ2hus− λhd(Aλ + 2κs),

M2
S,23 = 2λ2hds− λhu(Aλ + 2κs). (158)

After diagonalization by an orthogonal matrix Sij one obtains 3 CP-even
states (ordered in mass) hi = SijS

bare
j , with masses denoted by mhi.

In the MSSM limit (λ, κ → 0, and parameters such that h3 ∼ SR) the
elements of the first 2×2 sub-matrix of Sij are related to the MSSM angle
α as

S11 ∼ cosα , S21 ∼ sinα ,

S12 ∼ − sinα , S22 ∼ cosα . (159)
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Rotating the upper left 2× 2 submatrix by an angle β, one finds that one
of its diagonal elements reads

M2
Z

(
cos2 2β +

λ2

g2
sin2 2β

)
(160)

which constitutes an upper bound on the lightest eigenvalue of M2
S. The

additional positive contribution ∼ λ2 sin2 2β (as compared to the MSSM) in
the NMSSM is highly welcome in view of the observed mass of ∼ 126 GeV.

However, this additional contribution is relevant only for not too large
tanβ; in fact, the expression inside the parenthesis in (160) is larger than
one only for λ2 > g2, in which case it is maximal for small tanβ. Moreover,
the actual lightest eigenvalue of M2

S is smaller than the value given in
(160) in general.

CP-odd neutral states

In the basis P bare = (HuI,HdI, SI) and using the minimization equations
in order to eliminate the soft masses squared, one obtains the following
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mass-squared matrix entries:

M2
P,11 = λs

hd

hu
(Aλ + κs),

M2
P,22 = λs

hu

hd
(Aλ + κs),

M2
P,33 = 4λκhuhd + λAλ

huhd

s
− 3κAκs,

M2
P,12 = λs(Aλ + κs),

M2
P,13 = λhd(Aλ − 2κs),

M2
P,23 = λhu(Aλ − 2κs). (161)

The diagonalization of this mass matrix is performed in two steps. First,
one rotates into a basis (Ã, G̃, SI), where G̃ is a massless Goldstone mode:
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 HuI

HdI

SI

 =

 cosβ − sinβ 0
sinβ cosβ 0

0 0 1

 Ã

G̃
SI

 (162)

where tanβ = hu/hd. Dropping the Goldstone mode, the remaining 2× 2
mass matrix in the basis (Ã, SI) has the matrix elements

M2
P,11 = λs

h2
u + h2

d

huhd
(Aλ + κs),

M2
P,22 = 4λκhuhd + λAλ

huhd

s
− 3κAκs,

M2
P,12 = λ

√
h2
u + h2

d (Aλ − 2κs). (163)

It can be diagonalized by an orthogonal 2 × 2 matrix P ′ij such that the
physical CP-odd states ai (ordered in mass) are

a1 = P ′11Ã+ P ′12SI
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= P ′11(cosβHuI + sinβHdI) + P ′12SI,

a2 = P ′21Ã+ P ′22SI

= P ′21(cosβHuI + sinβHdI) + P ′22SI, (164)

and, for completeness,

G̃ = − sinβHuI + cosβHdI . (165)

The decomposition of the bare states in terms of physical states reads

HuI = cosβ(P ′11a1 + P ′21a2)− sinβG̃ ,

HdI = sinβ(P ′11a1 + P ′21a2) + cosβG̃ ,

SI = P ′12a1 + P ′22a2 . (166)

(In principle, since the matrix P ′ij is orthogonal, it could be parameterized
by one angle.) Eqs. (166) suggest the introduction of a 2 × 3 matrix Pij
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with
Pi1 = cosβP ′i1, Pi2 = sinβP ′i1, Pi3 = P ′i2 (167)

such that, omitting the Goldstone boson,

HuI = P11a1 + P21a2 ,

HdI = P11a1 + P21a2 ,

SI = P13a1 + P23a2 . (168)

Charged states

In the basis (H+
u , [H

−
d ]∗ = H+

d ), the charged Higgs mass matrix is given
by

M2
± =

(
λs(Aλ + κs) + huhd(

g2
2

2
− λ2)

)(
cotβ 1

1 tanβ

)
. (169)

This gives one eigenstate H± of mass TrM2
± and one massless goldstone
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mode G± with

H±u = cosβH± − sinβG± ,

H±d = sinβH± + cosβG± . (170)

The physical charged Higgs eigenstate then has mass

M2
± = M2

A + v2(
g2

2

2
− λ2) = M2

A +m2
W − λ

2v2 . (171)

where

M2
A ≡M

2
P,11 =

2λs(Aλ + κs)

sin 2β
(172)

is usually close to the mass of the heavier a2.

Due to the term ∼ −λ2, the charged Higgs mass in the NMSSM can
be somewhat smaller than in the MSSM. In contrast to the MSSM it is
not even guaranteed within the NMSSM that U(1)em remains unbroken:
the expression for the charged Higgs mass squared becomes negative for
s = µeff = 0, λ2 > g2

2/2, indicating a possible minimum in field space
where the charged Higgs has a vev. Although radiative corrections have
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to be added and the depth of this minumum has to be compared to the
physical one with s 6= 0, the above implies that λ is bounded from above
by the absence of a charged Higgs vev.

6. SUSY Particles

Neutralinos

Denoting the U(1)Y gaugino by λ1 and the neutral SU(2) gaugino by λ3
2,

the mass terms in the Lagrangian read

L =
1

2
M1λ1λ1 +

1

2
M2λ

3
2λ

3
2

+λ(sψ0
uψ

0
d + huψ

0
dψs + hdψ

0
uψs)− κsψsψs

+
ig1√

2
λ1(huψ

0
u − hdψ

0
d)−

ig2√
2
λ3

2(huψ
0
u − hdψ

0
d). (173)

In the basis ψ0 = (−iλ1,−iλ2, ψ
0
u, ψ

0
d, ψs) one can rewrite

L = −
1

2
(ψ0)TM0(ψ

0) + h.c. (174)
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where

M0 =


M1 0 g1hu√

2
−g1hd√

2
0

M2 −g2hu√
2

g2hd√
2

0

0 −µ −λhd
0 −λhu

2κs

 . (175)

(Recall that here µ = µeff = λs). One obtains 5 eigenstates (ordered in
mass) χ0

i = Nijψ
0
j , with Nij real, with masses mχ0

i
that are real, but not

necessarily positive.

Charginos

The charged SU(2) gauginos are λ− = 1√
2

(
λ1

2 + iλ2
2

)
, λ+ = 1√

2

(
λ1

2 − iλ2
2

)
.

Defining

ψ+ =

(
−iλ+

ψ+
u

)
, ψ− =

(
−iλ−
ψ−d

)
(176)
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the Lagrangian can be written as

L = −
1

2
(ψ+, ψ−)

(
0 XT

X 0

)(
ψ+

ψ−

)
+ h.c. (177)

with

X =

(
M2 g2hu
g2hd µ

)
. (178)

The mass eigenstates are χ+ = V ψ+, χ− = Uψ−, with

U =

(
cos θU sin θU
− sin θU cos θU

)
, V =

(
cos θV sin θV
− sin θV cos θV

)
. (179)

Defining

γ =
√

Tr(XTX)− 4det(XTX) (180)

one has

tan θU =
g2

2(h2
d − h2

u) + µ2 −M2
2 − γ

2g2(M2hu + µhd)
,
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tan θV =
g2

2(h2
u − h2

d) + µ2 −M2
2 − γ

2g2(M2hd + µhu)
(181)

where −π/2 ≤ θU , θV ≤ π/2 are such that MD = UXV T is diagonal,
but not necessarily positive. The masses with |mχ̃1| < |mχ̃2| are given by

mχ̃1 = cos θU(M2 cos θV + g2hu sin θV ) + sin θU(g2hd cos θV + µ sin θV ),

mχ̃2 = sin θU(M2 sin θV − g2hu cos θV )− cos θU(g2hd sin θV − µ cos θV ).

(182)

In terms of 4 component Dirac spinors Ψi =

(
χ+
i

χ −i

)
one can rewrite the

Lagrangian as

L = −χ−MDχ
+ + h.c. = −mχ̃1Ψ1Ψ1 −mχ̃2Ψ2Ψ2 . (183)

Top and Bottom Squarks
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To complete the consequences of our conventions above, we give here
the top and bottom squark mass-squared matrices (without the D-term
contributions). Below, tL, tcR, bL and bcR denote the two component quark
spinors.

Top squarks:

TR TL
T ∗R
T ∗L

(
m2
T + h2

th
2
u ht(Athu − λshd)

ht(Athu − λshd) m2
Q + h2

th
2
u

)
(184)

Bottom squarks:

BR BL
B∗R
B∗L

(
m2
B + h2

bh
2
d hb(Abhd − λshu)

hb(Abhd − λshu) m2
Q + h2

bh
2
d

)
(185)

7. Feynman rules for the Higgs Couplings

Higgs-Quarks
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The couplings are obtained by expanding the quark mass matrices in the
(properly normalized) physical Higgs fields hi, ai and H±. Below, we use
v2 = h2

u + h2
d, and consider the quarks of the third generation.

hitLt
c
R :

mt√
2v sinβ

Si1

hibLb
c
R :

mb√
2v cosβ

Si2

aitLt
c
R : i

mt√
2v sinβ

Pi1

aibLb
c
R : i

mb√
2v cosβ

Pi2

H+bLt
c
R : −

mt

v
cotβ

H−tLb
c
R : −

mb

v
tanβ (186)

Higgs-Gauge Bosons
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These couplings are obtained from the kinetic terms in the Lagrangian:

hiZµZν : gµν
g2

1 + g2
2√

2
(huSi1 + hdSi2)

hiW
+
µW

−
ν : gµν

g2
2√
2
(huSi1 + hdSi2)

hi(p)H+(p′)W−µ :
g2

2
(cosβSi1 − sinβSi2)(p− p′)µ

ai(p)H+(p′)W−µ : i
g2

2
(cosβPi1 + sinβPi2)(p− p′)µ

hi(p)aj(p
′)Zµ : i

g
√

2
(Si1Pj1 − Si2Pj2)(p− p′)µ

H+(p)H−(p′)Zµ :
g2

1 − g2
2√

g2
1 + g2

2

(p− p′)µ (187)

Higgs-Neutralinos/Charginos

As in the case of the Higgs-Quark couplings, these couplings are obtained
by expanding the corresponding mass matrices:
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haχ
+
i χ
−
j :

λ
√

2
Sa3Ui2Vj2 +

g2√
2
(Sa1Ui1Vj2 + Sa2Ui2Vj1)

aaχ
+
i χ
−
j : i

(
λ
√

2
Pa3Ui2Vj2 −

g2√
2
(Pa1Ui1Vj2 + Pa2Ui2Vj1)

)
H+χ−i χ

0
j : λ cosβUi2Nj5 −

sinβ
√

2
Ui2(g1Nj1 + g2Nj2) + g2 sinβUi1Nj4

H−χ+
i χ

0
j : λ sinβVi2Nj5 +

cosβ
√

2
Vi2(g1Nj1 + g2Nj2) + g2 cosβVi1Nj3

haχ
0
iχ

0
j :

λ
√

2
(Sa1Π

45
ij + Sa2Π

35
ij + Sa3Π

34
ij)−

√
2κSa3Ni5Nj5

−
g1

2
(Sa1Π

13
ij − Sa2Π

14
ij) +

g2

2
(Sa1Π

23
ij − Sa2Π

24
ij)

aaχ
0
iχ

0
j : i

(
λ
√

2
(Pa1Π

45
ij + Pa2Π

35
ij + Pa3Π

34
ij)−

√
2κPa3Ni5Nj5

+
g1

2
(Pa1Π

13
ij − Pa2Π

14
ij)−

g2

2
(Pa1Π

23
ij − Pa2Π

24
ij)

)
(188)
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where Πab
ij = NiaNjb +NibNja.

Triple Higgs Interactions

The trilinear Higgs self-couplings are obtained by expanding the scalar
potential.

hahbhc :
λ2

√
2

(
hu(Π122

abc + Π133
abc) + hd(Π

211
abc + Π233

abc) + s(Π311
abc + Π322

abc)
)

−
λκ
√

2
(huΠ323

abc + hdΠ
313
abc + 2sΠ123

abc) +
√

2κ2sΠ333
abc

−
λAλ√

2
Π123
abc +

κAκ

3
√

2
Π333
abc

+
g2

2
√

2

(
hu(Π111

abc −Π122
abc)− hd(Π

211
abc −Π222

abc)
)

(189)

where

Πijk
abc = SaiSbjSck + SaiScjSbk + SbiSajSck
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+SbiScjSak + SciSajSbk + SciSbjSak . (190)

haabac :
λ2

√
2

(
hu(Π122

abc + Π133
abc) + hd(Π

211
abc + Π233

abc) + s(Π311
abc + Π322

abc)
)

+
λκ
√

2

(
hu(Π233

abc − 2Π323
abc) + hd(Π

133
abc − 2Π313

abc)

+2s(Π312
abc −Π123

abc −Π213
abc)

)
+
√

2κ2sΠ333
abc

+
λAλ√

2
(Π123

abc + Π213
abc + Π312

abc)−
κAκ√

2
Π333
abc

+
g2

2
√

2

(
hu(Π111

abc −Π122
abc)− hd(Π

211
abc −Π222

abc)
)

(191)

where

Πijk
abc = Sai(PbjPck + PcjPbk) . (192)
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haH
+H− :

λ2

√
2
(s(Π311

a + Π322
a )− huΠ212

a − hdΠ
112
a )

+
√

2λκsΠ312
a +

λAλ√
2

Π312
a

+
g2

1

4
√

2

(
hu(Π111

a −Π122
a ) + hd(Π

222
a −Π211

a )
)

(193)

+
g2

2

4
√

2

(
hu(Π111

a + Π122
a + 2Π212

a ) + hd(Π
211
a + Π222

a + 2Π112
a )

)

where

Πijk
a = 2SaiCjCk (194)

with C1 = cosβ, C2 = sinβ.
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Radiative corrections and the mass of the lightest
CP-even NMSSM Higgs boson

An approximate formula for the mass MSM of the SM-like Higgs scalar in
the NMSSM in the limit κs � |Aκ|, |Aλ| (corresponding to a heavy singlet-
like scalar), including the dominant top/stop radiative corrections, is given by

M2
SM ' M2

Z cos2 2β + λ2v2 sin2 2β −
λ2

κ2
v2(λ− κ sin 2β)2

+
3m4

t

4π2v2

(
ln

(
m2
T

m2
t

)
+
A2
t

m2
T

(
1−

A2
t

12m2
T

))
(195)

where v = 174 GeV, the soft SUSY breaking stop masses squared in (??)
are assumed to satisfy m2

T ∼ m2
Q3
� m2

t, At is the stop trilinear coupling

assumed to satisfy |At| � mt, µeff; the terms ∼ λ2 are specific to the
NMSSM, and the last term in the first line originates from the mixing with
the singlet-like scalar.

In the MSSM, where λ = 0, the 126 GeV observed value of MSM implies
that tanβ has to be large such that cos 2β ∼ 1, and mT must be above
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∼ 600 GeV for maximal mixing (A2
t ∼ 6m2

T , maximizing the second line in
(195)), or >∼ 1 TeV otherwise.

In order to maximize MSM in the NMSSM, λ should be as large as possible,
and tanβ should be small in order to avoid a suppression from sin2 2β. (As
discussed before, λ is bounded from above by λ <∼ 0.7 − 0.8 if one requires
the absence of a Landau singularity below the GUT scale.)

However, the negative contribution from the mixing with the singlet-like
scalar should vanish. If we keep terms involving Aλ, the relevant mixing term
is proportional to (λ− sin 2β(κ+Aλ/(2s)))

2 [178]. If this expression is not
small, a larger value of λ can even generate a decrease of the mass of the
Higgs scalar with SM-like couplings to the Z boson in the NMSSM.

The resulting upper bound on the lightest CP-even Higgs mass in the
NMSSM has been studied in the leading log approximation in [177, 179, 156,
157, 158, 180, 181, 182, 183]. Full one-loop calculations of the corresponding
upper bound involving top/bottom quark/squark loops have been carried out
in [184, 159, 160, 185, 186, 187, 146, 188, 189, 190, 191]. (Analyses at
large values of tanβ have been performed in [192, 193, 194], and upper
bounds for more general supersymmetric Higgs sectors have been considered
in [195, 196, 197].)

At present, additional known radiative corrections to the Higgs mass
matrices in the NMSSM include MSSM-like electroweak together with the
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NMSSM-specific Higgs one-loop contributions [198, 199] and dominant two-
loop terms [200, 147, 161, 201, 199]. In order to discuss these in detail, it
is convenient to separate the quantum corrections involving scales Q2 with
Q2 >∼M2

SUSY from those with scales Q2 <∼M2
SUSY.

The electroweak and NMSSM specific Higgs one-loop contributions, and
the two-loop contributions ∝ h2

t αs, have recently been computed in [199]
without an expansion in large logarithms.

Taking many one and two loop corrections into account, and requiring
perturbative running Yukawa couplings ht, λ and κ below the GUT scale, the
upper bound on the lightest CP-even Higgs mass has been studied in [178]
as a function of tanβ and for different values of mt in the NMSSM, and
compared to the MSSM with the result shown in Fig. 9. (In Fig. 9, the upper
bound is denoted as mmax.)

The squark mass terms (and hence MSUSY) have been chosen as 1 TeV;
the upper bound would still increase slowly (logarithmically) with MSUSY.

In order to maximize the one-loop top/bottom (s)quark contributions to
the lightest CP-even Higgs mass for these squark masses, the trilinear soft
couplings are chosen as At = Ab = 2.5 TeV.

The threshold effects depend somewhat on the gaugino masses, which are
M1 = 150 GeV, M2 = 300 GeV and M3 = 1 TeV; the remaining parameters
λ, κ, Aλ, Aκ and µeff of the Z3-invariant NMSSM have been chosen such that
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the upper bound is maximized, subject to avoiding Landau singularities. The
maximum is achieved for the largest λ which is possible without singularities
being encountered, the latter requiring that κ be as small as possible, subject
to constraints such as an unstable potential, which forbids κ→ 0.

The lower dashed lines in Fig. 9 refer to the MSSM, where the mass of the
CP-odd scalar MA – which can be chosen as the other independent parameter
in the Higgs sector apart from tanβ – is set to MA = 1 TeV. The other
parameters (and approximations) are the same as described above. In the
MSSM, the increase of the upper bound with tanβ originates from the tree
level term (the first term ∼ cos2 2β in (195)), according to which mmax is
maximised for large tanβ. Due to the one-loop top (s)quark contributions,
the upper bound mmax increases with mt. Numerically, a variation ∆mt of
mt implies nearly the same variation ∆mmax for large tanβ.
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Figure 9: Upper bound on the lightest Higgs mass in the NMSSM as a function of tanβ

for mt = 178 GeV (MA arbitrary: thick full line, MA = 1 TeV: thick dotted line) and

mt = 171.4 GeV (thin full line: MA arbitrary, thick dotted line: MA = 1 TeV) and in the

MSSM (with MA = 1 TeV) for mt = 178 GeV (thick dashed line) and mt = 171.4 GeV

(thin dashed line). Squark and gluino masses are 1 TeV and At = Ab = 2.5 TeV. (From

[178].)
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In the NMSSM, the second term ∼ sin2 2β in the tree level expression
(195) dominates the first one for sufficiently large λ, and accordingly mmax is
maximal for low values of tanβ.

On the other hand, the absence of a Landau singularity for λ below the
GUT scale implies a decrease of the maximally allowed value of λ at MSUSY

with increasing ht, i. e. with increasing mt and decreasing tanβ.

(At large tanβ, arbitrary variations of the NMSSM parameters λ, κ, Aλ,
Aκ and µeff can imply a mass MA of the MSSM-like CP-odd scalar far
above 1 TeV. For comparison with the MSSM, mmax in the NMSSM with
MA ≤ 1 TeV is depicted as dotted lines in Fig. 9.)

Finally, mmax in the NMSSM obviously increases if one allows for larger
values of λ [202, 203]. This would have implied a Landau singularity below
MGUT for the particle content of the NMSSM. But, for the observed Higgs
mass of 126 GeV, we don’t need really large λ values. Thus, we can avoid
having to consider modifications of the theory at larger energy scales below
MGUT.
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Phenomenology of the Higgs Boson

1. Standard Model Higgs boson decay branching ratios

In this section, we approach the physics of the SM Higgs boson by
considering its branching ratios for various decay modes. Earlier, we have
derived the SM Higgs couplings to gauge bosons and fermions.

Therefore we know that, at the tree level, the SM Higgs boson can decay
into pairs of electroweak gauge bosons (H → W+W−, ZZ), and into
pairs of quarks and leptons (H → QQ̄, l+l−); while at one-loop it can also
decay into two photons (H → γγ), two gluons (H → gg), or a γZ pair
(H → γZ).

Fig. 10 shows all the decay branching ratios of the SM Higgs boson as
functions of its mass MH.
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Figure 10: SM Higgs decay branching ratios as a function of MH. The blue curves

represent tree-level decays into electroweak gauge bosons, the red curves tree level decays

into quarks and leptons, the green curves one-loop decays. From Ref. [6].

Fig. 10 shows that a light Higgs boson (MH ≤ 130 − 140 GeV) behaves
very differently from a heavy Higgs boson (MH ≥ 130− 140 GeV).

Indeed, a light SM Higgs boson mainly decays into a bb̄ pair, followed
hierarchically by all other pairs of lighter fermions.
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Loop-induced decays also play a role in this region. H → gg is dominant
among them, and it is actually larger than many tree level decays.
Unfortunately, this decay mode is almost useless, in particular at hadron
colliders, because of background limitations.

Among radiative decays, H → γγ is tiny, but it is actually phenomenologically
very important because the two photon signal can be seen over large
hadronic backgrounds.

On the other hand, for larger Higgs masses, the decays to W+W− and
ZZ dominates.

All decays into fermions or loop-induced decays are suppressed, except
H → tt̄ for Higgs masses above the tt̄ production threshold.

Note the intermediate region, from around 120 GeV to 130 GeV, i.e. well
below the W+W− and ZZ threshold, where many different decays are
significant, including the decays into WW ∗ and ZZ∗ (i.e. one of the two
gauge bosons is off-shell).

These three-body decays of the Higgs boson start to dominate over the
H → bb̄ two-body decay mode when the large sizes of the HWW or
HZZ couplings compensate for their phase space suppression6.

6Actually, even four-body decays, corresponding toH →W ∗W ∗, Z∗Z∗ may become important in the intermediate
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The different decay pattern of a light vs a heavy Higgs boson influences the
role played, in each mass region, by different Higgs production processes at
hadron and lepton colliders.

�(H) [GeV℄

MH [GeV℄ 1000700500300200160130100

10001001010.10.010.001
Figure 11: SM Higgs total decay width as a function of MH. From Ref. [6].

The SM Higgs boson total width, i.e. the sum of all the partial widths
Γ(H → XX), is represented in Fig. 11. Note how small the width is
for MH ∼ 126 GeV. ⇒ a non-SM channel can have a big impact: e.g.
H → aa, H → LSP + LSP .

mass region and are indeed accounted for in Fig. 10.
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The curves in Fig. 10 are obtained by including all available QCD and
electroweak (EW) radiative corrections. Indeed, the problem of computing
the relevant orders of QCD and EW corrections for Higgs decays has been
thoroughly explored and the results are nowadays available in public codes
like HDECAY [32], which has been used to produce Fig. 10.

It would actually be more accurate to represent each curve as a band,
obtained by varying the parameters that enters both at tree level and in
particular through loop corrections within their uncertainties. This is shown,
for a light and intermediate mass Higgs boson, in Fig. 12 where each band
has been obtained including the uncertainty from the quark masses and
from the strong coupling constant.
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Figure 12: SM Higgs boson decay branching ratios in the low and intermediate Higgs

boson mass range including the uncertainty from the quark masses mt = 178 ± 4.3 GeV,

mb = 4.88 ± 0.07 GeV, and mc = 1.64 ± 0.07 GeV, as well as from

αs(MZ)=0.1172± 0.002. From Ref. [6].

In the following, we will briefly review the various SM Higgs decay channels.
Giving a schematic but complete list of all available radiative corrections
goes beyond the purpose of these lectures. Therefore we will only discuss
those aspects that can be useful as a general background.

J. Gunion 250Higgs, U.C. Davis, 147



In particular, below are some comments on the general structure of radiative
corrections to Higgs decays and more details on QCD corrections to
H → QQ̄ (Q = heavy quark).

For a detailed review of QCD corrections in Higgs decays see Ref. [33].
Ref. [6] also contains an excellent summary of both QCD and EW radiative
corrections to Higgs decays.

General properties of radiative corrections to Higgs decays

All Higgs boson decay rates are modified by both EW and QCD radiative
corrections.

QCD corrections are particularly important for H → QQ̄ decays, where
they mainly amount to a redefinition of the Yukawa coupling by shifting the
mass parameter in it from the pole mass value to the running mass value,
and for H → gg.

EW corrections can be further separated into:

i) corrections due to fermion loops,

ii) corrections due to the Higgs boson self-interaction, and
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iii) other EW corrections.

Both corrections of type (ii) and (iii) are in general very small except for
large Higgs boson masses, i.e. for MH �MW .

On the other hand, corrections of type (i) are very important over the entire
Higgs mass range, and are particularly relevant for MH � 2mt, where the
top-quark loop corrections play a leading role.

Indeed, for MH � 2mt, the dominant corrections for both Higgs decays
into fermion and gauge bosons come from the top-quark contribution to
the renormalization of the Higgs wave function and vacuum expectation
value.

Several higher order radiative corrections to Higgs decays have been
calculated in the large mt limit, specifically in the limit when MH � 2mt.

In this limit, results can be derived by applying some very powerful low
energy theorems. The idea is that, for an on-shell Higgs field (p2

H=M2
H),

the limit of small masses (MH � 2mt) is equivalent to a pH → 0 limit, in
which case the Higgs couplings to the fermion fields can be simply obtained
by substituting

m0
i → m0

i

(
1 +

H

v0

)
(196)
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in the (bare) Yukawa Lagrangian, for each massive particle i. In Eq. (196)
H is a constant field and the upper zero indices indicate that all formal
manipulations are done on bare quantities. This induces a simple relation
between the bare matrix element for a process with (X → Y + H) and
without (X → Y ) a Higgs field, namely

lim
pH→0

A(X → Y +H) =
1

v0

∑
i

m0
i

∂

∂m0
i

A(X → Y ) . (197)

When the theory is renormalized, the only actual difference is that the
derivative operation in Eq. (197) needs to be modified as follows

m0
i

∂

∂m0
i

−→
mi

1 + γmi

∂

∂mi

(198)

where γmi
is the mass anomalous dimension of fermion fi. This accounts for

the fact that the renormalized Higgs-fermion Yukawa coupling is determined
through the Z2 and Zm counterterms, and not via the Hff̄ vertex function
at zero momentum transfer (as used in the pH → 0 limit above).

The theorem summarized by Eq. (197) is valid also when higher order
radiative corrections are included. Therefore, outstanding applications of
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Eq. (197) include the determination of the one-loop Hgg and Hγγ vertices
from the gluon or photon self-energies, as well as the calculation of several
orders of their QCD and EW radiative corrections.

Indeed, in the mt→∞ limit, the loop-induced Hγγ and Hgg interactions
can be seen as effective vertices derived from an effective Lagrangian of
the form:

Leff =
αs

12π
F (a)µνF (a)µν

H

v
(1 + O(αs)) , (199)

where F (a)
µν is the field strength tensor of QED (for the Hγγ vertex) or

QCD (for the Hgg vertex). The calculation of higher order corrections to
the H → γγ and H → gg decays is then reduced by one order of loops!
Since these vertices start as one-loop effects, the calculation of the first
order of corrections would already be a strenuous task, and any higher order
effect would be a formidable challenge. Thanks to the low energy theorem
above, QCD NNLO corrections have indeed been calculated.
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Higgs boson decays to gauge bosons: H →W+W−, ZZ

The tree level decay rate for H → V V (V =W±, Z) can be written as:

Γ(H → V V ) =
GFM

3
H

16
√

2π
δV

(
1− τV +

3

4
τ 2
V

)
βV , (200)

where βV =
√

1− τV , τV = 4M2
V /M

2
H, and δW,Z=2, 1.

Below the W+W− and ZZ threshold, the SM Higgs boson can still decay
via three (or four) body decays mediated by WW ∗ (W ∗W ∗) or ZZ∗

(Z∗Z∗) intermediate states.

As we can see from Fig. 10, the off-shell decays H →WW ∗ and H → ZZ∗

are relevant in the intermediate mass region around MH ' 160 GeV, where
they compete and overcome the H → bb̄ decay mode.

The decay rates for H → V V ∗→ V fif̄j (V =W±, Z) are given by:

Γ(H →WW ∗) =
3g4MH

512π3
F

(
MW

MH

)
, (201)
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Γ(H → ZZ∗) =
g4MH

2048(1− s2
W )2π3

(
7−

40

3
s2
W +

160

9
s4
W

)
F

(
MZ

MH

)
,

where sW = sin θW is the sine of the Weinberg angle and the function
F (x) is given by

F (x) = −(1− x2)

(
47

2
x2 −

13

2
+

1

x2

)
− 3

(
1− 6x2 + 4x4

)
ln(x)

+ 3
1− 8x2 + 20x4

√
4x2 − 1

arccos

(
3x2 − 1

2x3

)
. (202)

Higgs boson decays to fermions: H → QQ̄, l+l−

The tree level decay rate for H → ff̄ (f =Q, l, Q =quark, l =lepton)
can be written as:

Γ(H → ff̄) =
GFMH

4
√

2π
Nf
cm

2
fβ

3
f , (203)
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where βf =
√

1− τf , τf = 4m2
f/M

2
H, and (Nc)

l,Q = 1, 3. QCD
corrections dominate over other radiative corrections and they modify
the rate as follows:

Γ(H → QQ̄)QCD =
3GFMH

4
√

2π
m̄2
Q(MH)β3

q [∆QCD + ∆t] , (204)

where ∆t represents specifically QCD corrections involving a top-quark
loop. ∆QCD and ∆t have been calculated up to three loops and are given
by:

∆QCD = 1 + 5.67
αs(MH)

π
+ (35.94− 1.36NF )

(
αs(MH)

π

)2

+(205)

(164.14− 25.77NF + 0.26N2
F )

(
αs(MH)

π

)3

,

∆t =

(
αs(MH)

π

)2
[
1.57−

2

3
ln
M2
H

m2
t

+
1

9
ln2

m̄2
Q(MH)

M2
H

]
,

where αs(MH) and m̄Q(MH) are the renormalized running QCD coupling
and quark mass in the MS scheme. It is important to notice that using the
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MS running mass in the overall Yukawa coupling square of Eq. (204)is very
important in Higgs decays, since it reabsorbs most of the QCD corrections,
including large logarithms of the form ln(M2

H/m
2
Q). Indeed, for a generic

scale µ, m̄Q(µ) is given at leading order by:

m̄Q(µ)LO = m̄Q(mQ)

(
αs(µ)

αs(mQ)

)2b0
γ0

(206)

= m̄Q(mQ)

(
1−

αs(µ)

4π
ln

(
µ2

m2
Q

)
+ · · ·

)
,

where b0 and γ0 are the first coefficients of the β and γ functions of QCD,
while at higher orders it reads:

m̄Q(µ) = m̄Q(mQ)
f (αs(µ)/π)

f (αs(mQ)/π)
, (207)

where, from renormalization group techniques, the function f(x) is of the
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form:

f(x) =

(
25

6
x

)12
25

[1 + 1.014x+ . . .] for mc<µ<mb , (208)

f(x) =

(
23

6
x

)12
23

[1 + 1.175x+ . . .] for mb<µ<mt ,

f(x) =

(
7

2
x

)4
7

[1 + 1.398x+ . . .] for µ>mt .

As we can see from Eqs. (207) and (208), by using the MS running mass,
leading and subleading logarithms up to the order of the calculation are
actually resummed at all orders in αs.

The overall mass factor coming from the quark Yukawa coupling square is
actually the only place where we want to employ a running mass.

For quarks like the b quark this could indeed have a large impact, since, in
going from µ 'MH to µ ' mb, m̄n(µ) varies by almost a factor of two,
which yields almost a factor of four reduction at the rate level.

All other mass corrections, in the matrix element and phase space entering

J. Gunion 250Higgs, U.C. Davis, 156



the calculation of the H → QQ̄ decay rate, can in first approximation be
safely neglected.

Loop induced Higgs boson decays: H → γγ, γZ, gg

As mentioned earlier, the Hγγ and HγZ couplings are induced at one
loop via both a fermion loop and a W-loop. At the lowest order the decay
rate for H → γγ can be written as:

Γ(H → γγ) =
GFα

2M3
H

128
√

2π3

∣∣∣∣∣∣
∑
f

Nf
cQ

2
fA

H
f (τf) +AHW (τW )

∣∣∣∣∣∣
2

, (209)

where Nf
c = 1, 3 (for f = l, q respectively), Qf is the charge of the f

fermion species, τf = 4m2
f/M

2
H, the function f(τ ) is defined as:

f(τ ) =

 arcsin2 1√
τ

τ ≥ 1

−1
4

[
ln 1+

√
1−τ

1−
√

1−τ − iπ
]2

τ < 1 ,
(210)
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and the form factors AHf and AHW are given by:

AHf = 2τ [1 + (1− τ )f(τ )]→ 4/3 for τ →∞ , (211)

AHW (τ ) = − [2 + 3τ + 3τ (2− τ )f(τ )]→ −7 for τ →∞, .

The decay rate for H → γZ is given by:

Γ(H → γZ) =
G2
FM

2
WαM

3
H

64π4

(
1−

M2
Z

M2
H

)3
∣∣∣∣∣∣
∑
f

A
H
f (τf, λf) +A

H
W (τW , λW )

∣∣∣∣∣∣
2

,

(212)

where τi=4M2
i /M

2
H and λi=4M2

i /M
2
Z (i=f,W ), and the form factors

AHf (τ, λ) and AHW (τ, λ) are given by:

AHf (τ, λ) = 2Nf
c

Qf(I3f − 2Qf sin2 θW )

cos θW
[I1(τ, λ)− I2(τ, λ)] ,(213)

AHW (τ, λ) = cos θW

{[(
1 +

2

τ

)
tan2 θW −

(
5 +

2

τ

)]
I1(τ, λ)
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+ 4
(
3− tan2 θW

)
I2(τ, λ)

}
, (214)

where Nf
c and Qf are defined after Eq. (209), and If3 is the weak isospin

of the f fermion species. Moreover:

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ2

2(τ − λ)2
[f(τ )− f(λ)] +

τ 2λ

(τ − λ)2
[g(τ )− g(λ)] ,

I2(τ, λ) = −
τλ

2(τ − λ)
[f(τ )− f(λ)] , (215)

and

g(τ ) =

{ √
τ − 1 arcsin 1√

τ
τ ≥ 1

√
1−τ
2

[
ln 1+

√
1−τ

1−
√

1−τ − iπ
]
τ < 1

(216)

while f(τ ) is defined in Eq. (210). QCD and EW corrections to both
Γ(H → γγ) and Γ(H → γZ) are pretty small and for their explicit
expression we refer the interested reader to the literature [33, 6].

As far as H → gg is concerned, this decay can only be induced by a fermion
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loop, and therefore its rate, at the lowest order, can be written as:

Γ(H → gg) =
GFα

2
sM

3
H

64
√

2π3

∣∣∣∣∣∣
∑
q

AHq (τq)

∣∣∣∣∣∣
2

, (217)

where τq = 4m2
q/M

2
H, f(τ ) is defined in Eq.(210) and the form factor

AHq (τ ) is given in Eq. (213). QCD corrections to H → gg have been
calculated up to NNLO in the mt → ∞ limit, as explained in Section 1.
At NLO the expression of the corrected rate is remarkably simple

Γ(H → gg(g), qq̄g) = ΓLO(H → gg)

[
1 + E(τQ)

α(NL)
s

π

]
, (218)

where

E(τQ)
M2
H�4m2

q−→
95

4
−

7

6
NL +

33− 2NF

6
log

(
µ2

M2
H

)
. (219)

When compared with the fully massive NLO calculation (available in this
case), the two calculations display an impressive 10% agreement, as
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illustrated in Fig. 13, even in regions where the light Higgs approximation is
not justified. This is actually due to the presence of large constant factors
in the first order of QCD corrections.

Figure 13: The QCD correction factor for the partial width Γ(H → gg) as a function

of the Higgs boson mass, in the full massive case with mt = 178 GeV (dotted line) and

in the heavy-top-quark limit (solid line). The strong coupling constant is normalized at

αs(MZ)=0.118. From Ref. [6].

J. Gunion 250Higgs, U.C. Davis, 161



We also observe that the first order of QCD corrections has quite a large
impact on the lowest order cross section, amounting to more than 50%
of ΓLO on average. This has been indeed the main reason to prompt for
a NNLO QCD calculation of Γ(H → gg). The result, obtained in the
heavy-top approximation, has shown that NNLO QCD corrections amount
to only 20% of the NLO cross section, therefore pointing to a convergence
of the Γ(H → gg) perturbative series. We will refer to this discussion
when dealing with the gg → H production mode, since its cross section
can be easily related to Γ(H → gg).

2. MSSM Higgs boson branching ratios

The decay patterns of the MSSM Higgs bosons are many and diverse,
depending on the specific choice of supersymmetric parameters.

In particular they depend on the choice ofMA and tanβ, which parameterize
the MSSM Higgs sector, and they are clearly sensitive to the choice of
other supersymmetric masses (gluino masses, squark masses, etc.) since this
determines the possibility for the MSSM Higgs bosons to decay into pairs
of supersymmetric particles and for the radiative induced decay channels
(h,H → gg, γγ, γZ) to receive supersymmetric loop contributions.
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Figure 14: Branching ratios for the h and H MSSM Higgs bosons, for tanβ=3, 30. The

range of MH corresponds to MA=90 GeV− 1 TeV, in the MSSM scenario discussed in the

text, with maximal top-squark mixing. The vertical line in the left hand side plots indicates

the upper bound on Mh, which, for the given scenario is Mmax
h = 115 GeV (tanβ = 3) or

Mmax
h =125.9 GeV (tanβ = 30). So, only the latter is relevant in practice. From Ref. [8].
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In order to be more specific, let us assume that all supersymmetric masses
are large enough to prevent the decay of the MSSM Higgs bosons into
pairs of supersymmetric particles (a good choice could be Mg̃ =MQ ==
MU=MD=1 TeV).

Then, we only need to examine the decays into SM particles and compare
with the decay patterns of a SM Higgs boson to identify any interesting
difference.

From the study of the MSSM Higgs boson couplings in Sections 3 and 4,
we expect that:

i) in the decoupling regime, when MA � MZ, the properties of the h
neutral Higgs boson are very much the same as the SM Higgs boson; while
away from the decoupling limit

ii) the decay rates of h and/or H to electroweak gauge bosons are
suppressed with respect to the SM case, in particular for large Higgs masses
(MH),

iii) the A→ V V (V = W±, Z) decays are absent,

iv) the decay rates of h and/or H to τ+τ− and bb̄ are enhanced for large
tanβ,
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v) even for not too large values of tanβ, due to ii) above, the h,H → τ+τ−

and h,H → bb̄ decay are large up to the tt̄ threshold, when the decay
H → tt̄ becomes dominant,

vi) for the charged Higgs boson, the decay H+ → τ+ντ dominates over
H+ → tb̄ below the tb̄ threshold, and vice versa above it.

As far as QCD and EW radiative corrections go, what we have seen in
Sections 1-1 for the SM case applies to the corresponding MSSM decays
too.

Moreover, the truly MSSM corrections discussed in Sections 3 and 4 need
to be taken into account and are included in Figs. 14 and 15.
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Figure 15: Branching ratios for the A and H+ MSSM Higgs bosons, for tanβ = 3, 30.

The range of MH± corresponds to MA=90 GeV− 1 TeV, in the MSSM scenario discussed

in the text, with maximal top-squark mixing. From Ref. [8].
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How do we see the Higgs boson?

• Since the Higgs field gives mass, the Higgs boson H couples to elementary
particles proportionally to their mass:

L = g

[
CV

(
mWWµW

µ
+

mZ

cos θW
ZµZ

µ

)
−CU

mt

2mW

t̄t− CD
mb

2mW

b̄b− CD
mτ

2mW

τ̄ τ

]
H . (220)

where CU = CD = CV = 1 in the SM.

• In addition to these “tree-level” couplings there are also loop-induced
couplings gg → H and γγ → H, the former dominated by the top-quark
loop and the latter dominated by the W loop with a smaller and opposite
contribution from a top-quark loop.

• Because of the Higgs mass being ∼ 125 GeV, there is a remarkable mixture
of observable Higgs decays and observable cross sections.
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The most important ones for the initial discovery were those with very
excellent mass resolution — the H → γγ final state and the H → ZZ →
4` final state.

In these final states you can actually see the resonance peak — see later.

• The four key production and decay processes for the initial discovery were:

gg fusion: ggF gg → H → γγ; gg → H → ZZ → 4`

WW,ZZ fusion: VBF WW → H → γγ; WW → H → ZZ → 4` ,(221)

the gg induced processes having the highest rate. Sample diagrams for
two of these processes are given below.
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Figure 16: Note the loops for the gg and γγ couplings in the upper figure.
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Gordy Kane, Jose Wudka and I anticipated the importance of these channels
back in 1985 and pushed the detectors to have excellent electromagnetic
calorimeters so that they could actually see the resonance peaks. 80 million
dollars later we see:
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Diagnosing the Nature of the 125-126 GeV LHC
Higgs-like signal

Higgs couplings Collaborators: Belanger, Beranger, Ellwanger, Kraml

1. “Status of invisible Higgs decays” G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and
S. Kraml. arXiv:1302.5694 [hep-ph]

2. “Higgs Couplings at the End of 2012” G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion
and S. Kraml. arXiv:1212.5244 [hep-ph]

NMSSM Collaborators: G. Belanger, U. Ellwanger, Y. Jiang, S. Kraml, J.
Schwarz

1. “Higgs Bosons at 98 and 125 GeV at LEP and the LHC” G. Belanger, U. Ellwanger,
J. F. Gunion, Y. Jiang, S. Kraml and J. H. Schwarz. arXiv:1210.1976 [hep-ph]

2. “Two Higgs Bosons at the Tevatron and the LHC?” G. Belanger, U. Ellwanger, J. F. Gunion,
Y. Jiang and S. Kraml. arXiv:1208.4952 [hep-ph]

3. “Diagnosing Degenerate Higgs Bosons at 125 GeV” J. F. Gunion, Y. Jiang and S. Kraml.
arXiv:1208.1817 [hep-ph]

4. “Could two NMSSM Higgs bosons be present near 125 GeV?” J. F. Gunion, Y. Jiang and
S. Kraml. arXiv:1207.1545 [hep-ph]

5. “The Constrained NMSSM and Higgs near 125 GeV” J. F. Gunion, Y. Jiang and S. Kraml.
arXiv:1201.0982 [hep-ph] Phys. Lett. B 710, 454 (2012)
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2HDM Collaborators: Alexandra Drozd, Bohdan Grzadkowski, Yun Jiang

1. “Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs” A. Drozd, B. Grzadkowski,
J. F. Gunion and Y. Jiang. arXiv:1211.3580 [hep-ph]
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Basic Features of the Higgs-like LHC Excesses at
125− 126 GeV

• It is conventional to reference the SM expectations by defining
the R ratios, called µ ratios by the experimentalists:

R
h
Y (X) =

σ(pp→ Y → h)BR(h→ X)

σ(pp→ Y → hSM)BR(hSM → X)
, R

h
(X) =

∑
Y

R
h
Y , (222)

where Y = gg, V V , V h or tth. The notation µ ≡ R is
employed by the experimental groups.
A brief summary:
– ATLAS sees µggF(γγ) > 1 and µVBF(γγ) > 1.
– CMS MVA analysis finds µggF(γγ) < 1, although still within errors of

the SM value of 1. However, they do find µVBF(γγ) > 1.
– ATLAS sees µggF(4`) > 1 and µVBF(4`) > 1.
– CMS MVA analysis yields very SM-like values for the ZZ → 4` rates in

ggF and VBF.

Sample plots are:
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On the other hand there is a 2nd CMS analysis that gives a
larger γγ signal. Compare:
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Figure 19: Left: MVA analysis results with overall µ = 0.78. Right: CiC (cut-based)

analysis results. CiC analysis shows overall enhancement in γγ of µ = 1.11. CMS quotes a

discrepancy of 1.8σ between the two analyses.
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• The big questions:

1. If the deviations from a single SM Higgs survive what is the
model?
And, how far beyond the ”standard” model must we go to
describe them?

2. If all results become SM-like, how can we be sure that we
are seeing just a SM-like Higgs boson?
Yes, there are complicated Higgs models that can give SM-
like rates for most, or even all, channels.
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Higgs coupling fits

• Suppose the signal derives from just one Higgs boson — we
assume 0+.

• The structure we will test is that given earlier:

L = g
[
CV

(
mWWµW

µ +
mZ

cos θW
ZµZ

µ

)
−CU

mt

2mW

t̄t− CD
mb

2mW

b̄b− CD
mτ

2mW

τ̄ τ
]
H .(223)

In general, the CI can take on negative as well as positive
values; there is one overall sign ambiguity which we fix by
taking CV > 0.

• We will be fitting the data summarized earlier (using CMS
MVA analysis results for γγ).
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• In addition to the tree-level couplings given above, the H has
couplings to gg and γγ that are first induced at one loop and
are completely computable in terms of CU , CD and CV if only
loops containing SM particles are present.

We define Cg and Cγ to be the ratio of these couplings so
computed to the SM (i.e. CU = CD = CV = 1) values.

• However, in some of our fits we will also allow for additional
loop contributions ∆Cg and ∆Cγ from new particles; in this
case Cg = Cg + ∆Cg and Cγ = Cγ + ∆Cγ.

• The largest set of independent parameters that we might wish
to consider is thus:

CU , CD, CV , ∆Cg, ∆Cγ . (224)
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• Fit I: CU = CD = CV = 1, ∆Cg and ∆Cγ free.

Figure 20: Two parameter fit of ∆Cγ and ∆Cg, assuming CU = CD = CV = 1 (Fit I).

The red, orange and yellow ellipses show the 68%, 95% and 99.7% CL regions, respectively.

The white star marks the best-fit point. Looking quite SM-like when all ATLAS and CMS

data are combined.
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• Fit II: varying CU , CD and CV (∆Cγ = ∆Cg = 0)

Figure 21: Two-dimensional χ2 distributions for the three parameter fit, Fit II, of CU , CD,

CV with Cγ = Cγ and Cg = Cg as computed in terms of CU, CD, CV . Unlike earlier fits

that did not include CMS MVA γγ results, CU > 0 is now preferred since overall there is

no γγ enhancement in ggF after “averaging” ATLAS and CMS.

J. Gunion 250Higgs, U.C. Davis, 181



• There is no improvement in χ2/d.o.f. as freedom is introduced,
i.e. the lowest p value is achieved in the SM!

Allowing all five parameters, CU , CD, CV ,∆Cγ,∆Cg to vary
again worsens the p value, unlike earlier “end of 2012” fits.

• Thus, perhaps there is no need for a mechanism that would
yield enhanced µ = R values.

However, the fits above only reflect some average properties
and it could be that individual channels (e.g. the VBF→ H →
γγ) will in the end turn out to be enhanced.
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Multiple Higgs Models

• Let us suppose that the “final” results for the Higgs signals
cannot be fit by the SM Higgs.

At the moment there are many hints that this could be the
case despite the fact that the average result is close to SM-like.

• This would make it natural to consider models in which there is
more than one Higgs boson. Some Higgs could dominate one
kind of signal and other Higgs could dominate another kind of
signal. Such models include:

1. Two-Higgs Doublet Models (2HDM)
In this model the one-doublet complex Higgs field of the SM
is replicated and each of the neutral components of the two
doublet fields acquires a vacuum expectation value: we have
v1 and v2.
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An important parameter of such a model is is tanβ = v2/v1

— v2
1 + v2

2 = v2 = (246 GeV)2 is required to get the W,Z
masses right.
2 complex doublets have 8 degrees of freedom, of which only
3 are absorbed or “eaten” in giving the W±, Z their masses.
The remaining 5 d.o.f. become physical scalar particles:

CP-even : h,H , CP-odd : A , charged pair : H±

(225)

2. Minimal Supersymmetric Model (MSSM)
The Higgs sector is just a constrained version of the 2HDM
model category. No additional Higgs bosons. However,
the SUSY constraints are such that it hard to get a CP-
even Higgs boson with SM-like properties without going to
extremes.

3. Adding additional doublets to the 2HDM or MSSM
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Makes a mess of gauge coupling unification in the MSSM
case.

4. Adding additional singlets to a 2HDM or the MSSM
Every additional complex singlet yields one more CP-even H
and one more CP-odd A.
No impact on gauge unification since it is a singlet that is
being added.

– A particularly attractive version is the Next-to-Minimal
Supersymmetric Model (NMSSM).
Getting the lightest CP-even Higgs to be as heavy as
125 GeV does not require extremes. It is an altogether
beautiful model.
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Enhanced Higgs signals in the NMSSM

• NMSSM=MSSM+Ŝ.

• The extra complex S component of Ŝ ⇒ the NMSSM has
h1, h2, h2, a1, a2.

• The new NMSSM parameters of the superpotential (λ and κ)
and scalar potential (Aλ and Aκ) appear as:

W 3 λŜĤuĤd +
κ

3
Ŝ3 , Vsoft 3 λAλSHuHd +

κ

3
AκS

3

(226)

• 〈S〉 6= 0 is generated by SUSY breakng and solves µ problem:
µeff = λ〈S〉.
• First question: Can the NMSSM give a Higgs mass as large as

125 GeV?

Answer: Yes, so long as parameters at the GUT scale are
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not fully unified. For our studies, we employed universal
m0, except for NUHM (m2

Hu
, m2

Hd
, m2

S
free), universal

At = Ab = Aτ = A0 but allow Aλ and Aκ to vary freely. Of
course, λ > 0 and κ are scanned demanding perturbativity up
to the GUT scale.

• Can this model achieve rates in γγ and 4` that are >SM?

Answer: It depends on whether or not we require a good
prediction for the muon anomalous magnetic moment, aµ.

• The possible R(γγ) > 1 mechanism (arXiv:1112.3548, Ellwanger) is to
reduce the bb width of the mainly SM-like Higgs by giving it
some singlet component. The gg and γγ couplings are less
affected.

• Typically, this requires mh1 and mh2 to have similar masses (for
singlet-doublet mixing) and large λ (to enhance Higgs mass).

Large λ (by which we mean λ > 0.1) is only possible while
retaining perturbativity up to MP if tanβ is modest in size.
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In the semi-unified model we employ, enhanced rates and/or
large λ cannot be made consistent with decent δaµ. (J. F. Gunion,

Y. Jiang and S. Kraml.arXiv:1201.0982 [hep-ph])

• Some illustrative Rgg results from (J. F. Gunion, Y. Jiang and S. Kraml.

arXiv:1207.1545):
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• If we ignore δaµ, then Rgg(γγ) > 1.2 (even > 2) is possible
while satisfying all other constraints provided h1 and h2 are
close in mass, especially in the case wheremh2 ∈ [123, 128] GeV

window.

• This raises the issue of scenarios in which both mh1 and mh2

are in the [123, 128] GeV window where the experiments see
the Higgs signal.

The ideas and issues related to degeneracy:

– If h1 and h2 are sufficiently degenerate, the experimentalists
might not have resolved the two distinct peaks, even in the
γγ channel.

– The rates for the h1 and h2 could then add together to give
an enhanced γγ signal.

– The apparent width or shape of the γγ mass distribution
could be altered.

– There is more room for an apparent mismatch between the
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γγ channel and other channels, such as bb or 4`, than in
non-degenerate situation.
In particular, the h1 and h2 will generally have different gg
and V V production rates and branching ratios.
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Degenerate NMSSM Higgs Scenarios:
(arXiv:1207.1545, JFG, Jiang, Kraml)

• For the numerical analysis, we used NMSSMTools version 3.2.0,
which has improved convergence of RGEs in the case of large
Yukawa couplings.

• The precise constraints imposed are the following.

1. Basic constraints: proper RGE solution, no Landau pole,
neutralino LSP, Higgs and SUSY mass limits as implemented
in NMSSMTools-3.2.0.

2. B physics:
3. Dark Matter: Ωh2 < 0.136 — allows for scenarios in which

the relic density arises in part from some other source.
However, we single out points with 0.094 ≤ Ωh2 ≤ 0.136,
which is the ‘WMAP window’ defined in NMSSMTools-3.2.0.

4. 2011 XENON100: spin-independent LSP–proton scattering
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cross section bounds implied by the neutralino-mass-dependent
XENON100 bound. (2012 XENON100 has little additional
impact.)

5. δaµ ignored: impossible to satisfy for scenarios studied here.
• Compute the effective Higgs mass in given production and final

decay channels Y and X, respectively, and Rhgg as

m
Y
h (X) ≡

R
h1
Y (X)mh1 + R

h2
Y (X)mh2

R
h1
Y (X) + R

h2
Y (X)

R
h
Y (X) = R

h1
Y (X) + R

h2
Y (X) . (227)

• The extent to which it is appropriate to combine the rates from
the h1 and h2 depends upon the degree of degeneracy and
the experimental resolution. Very roughly, one should probably
think of σres ∼ 1.5 GeV or larger. The widths of the h1 and
h2 are very much smaller than this resolution.

• We only display points which pass constraints listed earlier, and

have 123 GeV < mh1,mh2 < 128 GeV.
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• Many of the displayed points have Rh1
gg(γγ) +Rh2

gg(γγ) > 1.
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Figure 25: Correlation of gg → (h1, h2) → γγ signal strengths when both h1 and h2
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Probably green and cyan points can be resolved in mass.
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Now combine the h1 and h2 signals. Color code:

1. red for mh2 −mh1 ≤ 1 GeV;
2. blue for 1 GeV < mh2 −mh1 ≤ 2 GeV;
3. green for 2 GeV < mh2 −mh1 ≤ 3 GeV.

• For current statistics and σres >∼ 1.5 GeV we estimate that the
h1 and h2 signals will not be seen separately for mh2−mh1 ≤
2 GeV.

• In Fig. 26, we show results for Rhgg(X) for X = γγ, V V, bb̄.
Enhanced γγ and V V rates from gluon fusion are very
common.

• The bottom-right plot shows that enhancement in V h with
h→ bb rate is also natural, though not as large as the best fit
value suggested by the new Tevatron analysis.

• Diamond points (i.e. those in the WMAP window) are rare,
but typically show enhanced rates.
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Figure 26: Rh
gg(X) for X = γγ, V V, bb, and Rh

VBF(bb) versus mh. For application to

the Tevatron, note that Rh
VBF(bb) = Rh

V ∗→V h(bb).
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Figure 27: Left: correlation between the gluon fusion induced γγ and V V rates relative

to the SM. Right: correlation between the gluon fusion induced γγ rate and the V V fusion

induced bb rates relative to the SM; the relative rate for V ∗ → V h with h→ bb (relevant

for the Tevatron) is equal to the latter.

• Comments on Fig. 27:

1. Left-hand plot shows the strong correlation between Rhgg(γγ)

and Rhgg(V V ).
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Note that if Rhgg(γγ) ∼ 1.3 (as for ATLAS) then in this

model Rhgg(V V ) ≥ 1.
2. The right-hand plot shows the (anti) correlation between
Rhgg(γγ) and RhV ∗→V h(bb) = RhVBF(bb).

In general, the larger Rhgg(γγ) is, the smaller the value of

RhV ∗→V h(bb).
3. It is often the case that one of the h1 or h2 dominates
Rhgg(γγ) while the other dominates RhV ∗→V h(bb).
However, a significant number of the points are such that
either the γγ or the bb signal receives substantial contributions
from both the h1 and the h2.
We did not find points where the γγ and bb final states both

receive substantial contributions from both the h1 and h2.
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Figure 28: Left: effective Higgs masses obtained from different channels: mgg
h (γγ) versus

mgg
h (V V ). Right: γγ signal strength Rh

gg(γγ) versus effective coupling to bb̄ quarks

(Ch
bb̄

)2. Here, Ch
bb̄

2 ≡
[
Rh1
gg(γγ)C

h1
bb̄

2
+ Rh2

gg(γγ)C
h2
bb̄

2]
/
[
Rh1
gg(γγ) + Rh2

gg(γγ)
]

.

Comments on Fig. 28

1. The mh values for the gluon fusion induced γγ and V V

cases are also strongly correlated — in fact, they differ by
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no more than a fraction of a GeV and are most often much
closer, see the left plot of Fig. 28.

2. The right plot of Fig. 28 illustrates the mechanism behind
enhanced rates, namely that large net γγ branching ratio is
achieved by reducing the average total width by reducing the
average bb coupling strength.

• Although we have emphasized that degeneracy can easily lead
to enhanced signals, it is equally true that a pair of degenerate
Higgs could easily yield a SM-like signal.

For example, points with Rgg(γγ) ∼ 1 are easily found in
Fig. 25. And, Fig. 26 shows that other rates will often be
SM-like at the same time.

• Either way, an important question is: how can we check for
underlying degeneracy? This will be discussed later.
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Separate Mass Peaks for ZZ vs. γγ
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• h1 should have mh1 ∼ 124.2 GeV and ZZ rate not too much
smaller than SM-like rate, but suppressed γγ rate.

• h2 should have mh2 ∼ 126.5 GeV, enhanced γγ rate and
somewhat suppressed ZZ rate.
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• The kind of extreme apparently seen by ATLAS is hard to
arrange in the NMSSM.

This is because the mechanism for getting enhanced γγ

(suppression of bb partial width through mixing) automatically
also enhances ZZ. Recall the correlation plot given earlier

• To assess a bit more quantitatively, we compute mh(V V )

vs. mh(γγ) using previous formula involving weighting by
Rh1,h2
gg (ZZ) andRh1,h2

gg (γγ) and accepting points with 121 GeV ≤
mh1,mh2 ≤ 128 GeV.

Or, selecting points with 122 GeV < mh1 < 124 GeV and
125 GeV < mh2 < 127 GeV.
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Figure 29: mh obtained in ZZ vs. γγ final state when

scanning and requiring: 121 GeV ≤ mh1,mh2 ≤ 128 GeV (Left) or
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Figure 30: Too much correlation between V V and γγ channels for the h1 and h2
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Diagnosing the presence of degenerate Higgses
(J. F. Gunion, Y. Jiang and S. Kraml. arXiv:1208.1817)

• Given that enhanced Rhgg is very natural if there are degenerate
Higgs mass eigenstates, how do we detect degeneracy if closely
degenerate? Must look at correlations among different Rh’s.
• In the context of any doublets plus singlets model not all the
Rhi’s are independent; a complete independent set of Rh’s
can be taken to be:

R
h
gg(V V ), R

h
gg(bb), R

h
gg(γγ), R

h
V BF (V V ), R

h
V BF (bb), R

h
V BF (γγ) .

(228)

• Let us now look in more detail at a given RhY (X). It takes the
form

RhY (X) =
∑
i=1,2

(C
hi
Y )2(C

hi
X )2

C
hi
Γ

(229)

where ChiX for X = γγ,WW,ZZ, . . . is the ratio of the hiX
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to hSMX coupling and C
hi
Γ is the ratio of the total width of

the hi to the SM Higgs total width.
• The diagnostic tools that can reveal the existence of a

second, quasi-degenerate (but non-interfering in the small
width approximation) Higgs state are the double ratios:

I):
RhV BF (γγ)/Rhgg(γγ)

RhV BF (bb)/Rhgg(bb)
, II):

RhV BF (γγ)/Rhgg(γγ)

RhV BF (V V )/Rhgg(V V )
, III):

RhV BF (V V )/Rhgg(V V )

RhV BF (bb)/Rhgg(bb)
, (230)

each of which should be unity if only a single Higgs boson is
present but, due to the non-factorizing nature of the sum in
Eq. (229), are generally expected to deviate from 1 if two (or
more) Higgs bosons are contributing to the net h signals.

• In a doublets+singlets model all other double ratios that are
equal to unity for single Higgs exchange are not independent
of the above three.

• Of course, the above three double ratios are not all independent.

Which will be most useful depends upon the precision with
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which the Rh’s for different initial/final states can be measured.

E.g measurements of Rh for the bb final state may continue
to be somewhat imprecise and it is then double ratio II) that
might prove most discriminating.

Or, it could be that one of the double ratios deviates from
unity by a much larger amount than the others, in which case
it might be most discriminating even if the Rh’s involved are
not measured with great precision.

• In Fig. 31, we plot the numerator versus the denominator of
the double ratios I) and II), [III) being very like I) due to
the correlation between the Rhgg(γγ) and Rhgg(V V ) values
discussed earlier].

• We observe that any one of these double ratios will often, but
not always, deviate from unity (the diagonal dashed line in the
figure).

• The probability of such deviation increases dramatically if we
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require (as apparently preferred by ATLAS data) Rhgg(γγ) > 1,
see the solid (vs. open) symbols of Fig. 31.

• This is further elucidated in Fig. 32 where we display the double
ratios I) and II) as functions of Rhgg(γγ) (left plots).

For the NMSSM, it seems that the double ratio I) provides the
greatest discrimination between degenerate vs. non-degenerate
scenarios with values very substantially different from unity
(the dashed line) for the majority of the degenerate NMSSM
scenarios explored in the earlier section of this talk that have
enhanced γγ rates.

Note in particular that I), being sensitive to the bb final state,
singles out degenerate Higgs scenarios even when one or the
other of h1 or h2 dominates the gg → γγ rate, see the top
right plot of Fig. 32.

In comparison, double ratio II) is most useful for scenarios with
Rhgg(γγ) ∼ 1, as illustrated by the bottom left plot of Fig. 32.
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• Thus, as illustrated by the bottom right plot of Fig. 32, the
greatest discriminating power is clearly obtained by measuring
both double ratios.

In fact, a close examination reveals that there are no points
for which both double ratios are exactly 1!

Of course, experimental errors may lead to a region containing
a certain number of points in which both double ratios are
merely consistent with 1 within the errors.
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Figure 31: Comparisons of pairs of event rate ratios that should be equal if only a single Higgs

boson is present. The color code is green for points with 2 GeV < mh2 −mh1 ≤ 3 GeV,

blue for 1 GeV < mh2 −mh1 ≤ 2 GeV, and red for mh2 −mh1 ≤ 1 GeV. Large

diamond points have Ωh2 in the WMAP window of [0.094, 0.136], while circular points

have Ωh2 < 0.094. Solid points are those with Rh
gg(γγ) > 1 and open symbols have

Rh
gg(γγ) ≤ 1. Current experimental values for the ratios from CMS data along with their

1σ error bars are also shown.
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Figure 32: Double ratios I) and II) of Eq. (230) as functions of Rh
gg(γγ) (on the left).

On the right we show (top) double ratio I) vs. max
[
Rh1
gg(γγ), Rh2

gg(γγ)
]
/Rh

gg(γγ) and

(bottom) double ratio I) vs. double ratio II) for the points displayed in Fig. 31. Colors and

symbols are the same as in Fig. 31.
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• What does current LHC data say about these various double
ratios?

The central values and 1σ error bars for the numerator and
denominator of double ratios I) and II) obtained from CMS
data (CMS-PAS-HIG-12-020) are also shown in Fig. 31.

Obviously, current statistics are inadequate to discriminate
whether or not the double ratios deviate from unity.

About 100 times increased statistics will be needed. This will
not be achieved until the

√
s = 14 TeV run with ≥ 100fb−1

of accumulated luminosity.

Nonetheless, it is clear that the double-ratio diagnostic tools
will ultimately prove viable and perhaps crucial for determining
if the ∼ 125 GeV Higgs signal is really only due to a single
Higgs-like resonance or if two resonances are contributing.

• Degeneracy has significant probability in model contexts if
enhanced γγ rates are indeed confirmed at higher statistics.
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Higgs-radion mixing model example

– Much bigger deviations of double ratios from being equal,
related to anomalous gg and γγ couplings of the radion.
(Compare to first NMSSM plot of preceding section)
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Figure 33: Figure shows only a small part of the full range of vertical axis.
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The pure 2HDM

• “Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs” A. Drozd, B. Grzadkowski,
J. F. Gunion and Y. Jiang. arXiv:1211.3580 [hep-ph]

• see also, “Mass-degenerate Higgs bosons at 125 GeV in the Two-Higgs-Doublet Model” P. M. Ferreira,
H. E. Haber, R. Santos and J. P. Silva. arXiv:1211.3131 [hep-ph]

• There are some differences.

NMSSM-like degeneracy can be explored in this context also, but
no time to discuss.
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Conclusions

• It seems likely that the Higgs responsible for EWSB has
emerged.

• Perhaps, other Higgs-like objects are emerging.

• Survival of enhanced signals for one or more Higgs boson would
be one of the most exciting outcomes of the current LHC run
and would guarantee years of theoretical and experimental
exploration of BSM models with elementary scalars.

• >SM signals would appear to guarantee the importance of a
linear collider or LEP3 or muon collider in order to understand
fully the responsible BSM physics.

• In any case, the current situation illusrates the fact that we
must never assume we have uncovered all the Higgs.
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Certainly, I will continue watching and waiting
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Details regarding the 2HDM Models

Introduction

The minimal version of the Standard Model (SM) contains one
complex Higgs doublet, resulting in one physical neutral CP-even
Higgs boson, hSM, after electroweak symmetry breaking (EWSB).

However, the Standard Model is not likely to be the ultimate
theoretical structure responsible for electroweak symmetry breaking.

Moreover, the Standard Model must be viewed as an effective
field theory that is embedded in a more fundamental structure,
characterized by an energy scale, Λ, which is larger than the
scale of EWSB, v = 246 GeV.

Although Λ may be as large as the Planck scale, there are
strong theoretical arguments that suggest that Λ is significantly
lower, perhaps of order 1 TeV [650].

J. Gunion 250Higgs, U.C. Davis, 217



For example, Λ could be the scale of supersymmetry breaking [651,
652, 653], the compositeness scale of new strong dynamics [654],
or associated with the inverse size of extra dimensions [655].

In many of these approaches, there exists an effective low-
energy theory with elementary scalars that comprise a non-
minimal Higgs sector [656].

For example, the minimal supersymmetric extension of the
Standard Model (MSSM) contains a scalar Higgs sector corresponding
to that of a two-Higgs-doublet model (2HDM) [657, 658].

Models with Higgs doublets (and singlets) possess the important
phenomenological property that ρ = mW/(mZ cos θW ) = 1 up
to finite radiative corrections.

Here, we focus on a general 2HDM. There are two possible
cases.

1. In the first case, there is never an energy range in which the
effective low-energy theory contains only one light Higgs boson.
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2. In the second case, one CP-even neutral Higgs boson, h,
is significantly lighter than a new scale, Λ2HDM , which
characterizes the masses of all the remaining 2HDM Higgs
states.

In this latter case, the scalar sector of the effective field theory
below Λ2HDM is that of the SM Higgs sector.

In particular, if Λ2HDM � v, and all dimensionless Higgs
self-coupling parameters λi <∼ O(1) [see eq. (231)], then
the couplings of h to gauge bosons and fermions and the h
self-couplings approach the corresponding couplings of the hSM,
with the deviations vanishing as some power of v2/Λ2

2HDM [659].

This limit is called the decoupling limit [660], and could be
very relevant experimentally given the SM-like nature of the
state observed at the LHC.

We now fully define and explore the decoupling limit of the
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2HDM.7

We will explain the (often confusing) relations between different
parameter sets (e.g., Higgs masses and mixing angles vs. Lagrangian
tree-level couplings) and give a complete translation table in an
Appendix.

We then make one simplifying assumption, namely that the
Higgs sector is CP-conserving. (The conditions that guarantee
that there is no explicit or spontaneous breaking of CP in the
2HDM are given in a 2nd Appendix. The more general CP-
violating 2HDM is treated elsewhere [662, 663].)

In the CP-conserving 2HDM, there is still some freedom in the
choice of Higgs-fermion couplings.

A number of different choices have been studied in the
literature [664, 656]. Among these are:

• type-I, in which only one Higgs doublet couples to the fermions;
7Some of the topics of this paper have also been addressed recently in ref. [661].
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• and type-II, in which the neutral member of one Higgs doublet
couples only to up-type quarks and the neutral member of
the other Higgs doublet couples only to down-type quarks and
leptons.

For Higgs-fermion couplings of type-I or type-II, tree-level flavor-
changing neutral currents (FCNC) mediated by Higgs bosons are
automatically absent [665].

Type-I and type-II models can be implemented with an
appropriately chosen discrete symmetry (which may be softly
broken without dire phenomenologically consequences).

The type-II model Higgs sector also arises in the MSSM.

We can also allow for the most general Higgs-fermion Yukawa
couplings (the so-called type-III model [666]). For type-III Higgs-
fermion Yukawa couplings, tree-level Higgs-mediated FCNCs are
present, and one must be careful to choose Higgs parameters
which ensure that these FCNC effects are numerically small.
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An important result is that in the approach to the decoupling
limit, FCNC effects generated by tree-level Higgs exchanges are
suppressed by a factor of O(v2/Λ2

2HDM).

In the first section, we define the most general CP-conserving
2HDM and provide a number of useful relations among the
parameters of the scalar Higgs potential and the Higgs masses in
several Appendices.

In a 3rd Appendix, we note that certain combinations of the
scalar potential parameters are invariant with respect to the
choice of basis for the two scalar doublets. In particular, the
Higgs masses and the physical Higgs interaction vertices can be
written in terms of these invariant coupling parameters.

The decoupling limit of the 2HDM is defined in the following
section, and its main properties are examined. In this limit,
the properties of the lightest CP-even Higgs boson, h, precisely
coincide with those of the SM Higgs boson.

J. Gunion 250Higgs, U.C. Davis, 222



We exhibit the tree-level Higgs couplings to vector bosons,
fermions and Higgs bosons, and evaluate them in the decoupling
limit.

The first non-trivial corrections to the Higgs couplings as one
moves away from the decoupling limit are also given.

We also will show that parameter regimes exist outside the
decoupling regime in which one of the CP-even Higgs bosons
exhibits tree-level couplings that approximately coincide with
those of the SM Higgs boson.

We discuss the origin of this behavior and show how one
can distinguish this region of parameter space from that of true
decoupling.

Still later, the two-Higgs-doublet sector of the MSSM is used
to illustrate the features of the decoupling limit when mA� mZ.

In addition, we briefly describe the impact of radiative corrections,
and show how these corrections satisfy the requirements of the
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decoupling limit.

We emphasize that the rate of approach to decoupling can be
delayed at large tanβ, and we discuss the possibility of a SM-like
Higgs boson in a parameter regime in which all Higgs masses are
in a range <∼ O(v).

The CP-Conserving Two-Higgs Doublet Model

We first review the general (non-supersymmetric) two-Higgs
doublet extension of the Standard Model [656]. Let Φ1 and Φ2

denote two complex Y = 1, SU(2)L doublet scalar fields. The
most general gauge invariant scalar potential is given by8

V = m
2
11Φ
†
1Φ1 +m

2
22Φ
†
2Φ2 − [m

2
12Φ
†
1Φ2 + h.c.]

+1
2λ1(Φ

†
1Φ1)

2
+ 1

2λ2(Φ
†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2
+
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ
†
1Φ2 + h.c.

}
. (231)

8In refs. [656] and [658], the scalar potential is parameterized in terms of a different set of couplings, which are less
useful for the decoupling analysis. In the 1st Appendix, we relate this alternative set of couplings to the parameters
appearing in eq. (231).
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In general, m2
12, λ5, λ6 and λ7 can be complex. In many

discussions of two-Higgs-doublet models, the terms proportional
to λ6 and λ7 are absent.

This can be achieved by imposing a discrete symmetry Φ1 →
−Φ1 on the model. Such a symmetry would also require m2

12 = 0

unless we allow a soft violation of this discrete symmetry by
dimension-two terms.9 For the moment, we refrain from setting
any of the coefficients in eq. (231) to zero.

We next derive the constraints on the parameters λi such that
the scalar potential V is bounded from below. It is sufficient
to examine the quartic terms of the scalar potential (which we
denote by V4). We define a ≡ Φ†1Φ1, b ≡ Φ†2Φ2, c ≡ Re Φ†1Φ2,
d ≡ Im Φ†1Φ2, and note that ab ≥ c2 + d2. Then, one can
rewrite the quartic terms of the scalar potential as follows:

9This discrete symmetry is also employed to restrict the Higgs-fermion couplings so that no tree-level Higgs-mediated
FCNC’s are present. If λ6 = λ7 = 0, but m2

12 6= 0, the soft breaking of the discrete symmetry generates finite
Higgs-mediated FCNC’s at one loop.
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V4 = 1
2

[
λ

1/2
1 a− λ1/2

2 b
] 2

+
[
λ3 + (λ1λ2)

1/2
]

(ab− c2 − d2
)

+2[λ3 + λ4 + (λ1λ2)
1/2

] c
2

+ [Re λ5 − λ3 − λ4 − (λ1λ2)
1/2

](c
2 − d2

)

−2cd Im λ5 + 2a [cRe λ6 − d Im λ6] + 2b [cRe λ7 − d Im λ7] . (232)

We demand that no directions exist in field space in which
V → −∞. (We also require that no flat directions exist for
V4.) Three conditions on the λi are easily obtained by examining
asymptotically large values of a and/or b with c = d = 0:

λ1 > 0 , λ2 > 0 , λ3 > −(λ1λ2)
1/2 . (233)

A fourth condition arises by examining the direction in field space
where λ

1/2
1 a = λ

1/2
2 b and ab = c2 + d2. Setting c = ξd, and

requiring that the potential is bounded from below for all ξ leads
to a condition on a quartic polynomial in ξ, which must be
satisfied for all ξ. There is no simple analytical constraint on the
λi that can be derived from this condition. If λ6 = λ7 = 0, the
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resulting polynomial is quadratic in ξ, and a constraint on the
remaining nonzero λi is easily derived [667]

λ3+λ4−|λ5| > −(λ1λ2)
1/2 [assuming λ6 = λ7 = 0] . (234)

From now on, we shall ignore the possibility of explicit CP-
violating effects in the Higgs potential by choosing all coefficients
in eq. (231) to be real.10

The scalar fields will develop non-zero vacuum expectation
values if the mass matrix m2

ij has at least one negative eigenvalue.

We assume that the parameters of the scalar potential are
chosen such that the minimum of the scalar potential respects
the U(1)EM gauge symmetry. Then, the scalar field vacuum

10The most general CP-violating 2HDM will be examined in ref. [663].
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expectations values are of the form11

〈Φ1〉 =
1
√

2

(
0

v1

)
, 〈Φ2〉 =

1
√

2

(
0

v2

)
, (235)

where the vi are taken to be real, i.e. we assume that spontaneous
CP violation does not occur.12 The corresponding potential
minimum conditions are:

m
2
11 = m

2
12b̃− 1

2v
2
[
λ1c

2
β + λ345s

2
β + 3λ6sβcβ + λ7s

2
βb̃
]
, (236)

m
2
22 = m

2
12b̃
−1 − 1

2v
2
[
λ2s

2
β + λ345c

2
β + λ6c

2
βb̃
−1

+ 3λ7sβcβ
]
, (237)

where we have defined:

λ345 ≡ λ3 + λ4 + λ5 , b̃ ≡ tanβ ≡
v2

v1

, (238)

11Don’t worry that we have temporarily chosen a convention in which both doublets have Y = 1 — this can be
remapped to the case of one with Y = 1 and one with Y = −1, as for the MSSM.

12The conditions required for the absence of explicit and spontaneous CP-violation in the Higgs sector are elucidated in
Appendix B.
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and

v
2 ≡ v2

1 + v
2
2 =

4m2
W

g2
= (246 GeV)

2
. (239)

It is always possible to choose the phases of the scalar doublet
Higgs fields such that both v1 and v2 are positive; henceforth we
take 0 ≤ β ≤ π/2.

Of the original eight scalar degrees of freedom, three Goldstone
bosons (G± and G) are absorbed (“eaten”) by the W± and Z.
The remaining five physical Higgs particles are: two CP-even
scalars (h and H, with mh ≤ mH), one CP-odd scalar (A) and
a charged Higgs pair (H±). The squared-mass parameters m2

11
and m2

22 can be eliminated by minimizing the scalar potential.
The resulting squared-masses for the CP-odd and charged Higgs
states are13

m
2
A =

m2
12

sβcβ
− 1

2v
2
(

2λ5 + λ6b̃
−1

+ λ7b̃
)
, (240)

m
2

H± = m
2
A + 1

2v
2
(λ5 − λ4) . (241)

13Here and in the following, we use the shorthand notation cβ ≡ cosβ, sβ ≡ sinβ, cα ≡ cosα, sα ≡ sinα,
c2α ≡ cos 2α, s2α ≡ cos 2α, cβ−α ≡ cos(β − α), sβ−α ≡ sin(β − α), etc.
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The two CP-even Higgs states mix according to the following
squared-mass matrix:

M2 ≡ m2
A

(
s2
β −sβcβ

−sβcβ c2
β

)
+ B2

, (242)

where

B2 ≡ v2

(
λ1c

2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)sβcβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

)
. (243)

Defining the physical mass eigenstates

H = (
√

2Re Φ
0
1 − v1)cα + (

√
2Re Φ

0
2 − v2)sα ,

h = −(
√

2Re Φ
0
1 − v1)sα + (

√
2Re Φ

0
2 − v2)cα , (244)

the masses and mixing angle α are found from the diagonalization process(
m2
H 0

0 m2
h

)
=

(
cα sα
−sα cα

)(
M2

11 M
2
12

M2
12 M

2
22

)(
cα −sα
sα cα

)

=

(
M2

11c
2
α + 2M2

12cαsα +M2
22s

2
α M2

12(c
2
α − s

2
α) + (M2

22 −M
2
11)sαcα

M2
12(c

2
α − s

2
α) + (M2

22 −M
2
11)sαcα M2

11s
2
α − 2M2

12cαsα +M2
22c

2
α

)
.(245)
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The mixing angle α is evaluated by setting the off-diagonal elements of the CP-even scalar
squared-mass matrix [eq. (245)] to zero, and demanding that mH ≥ mh. The end result is

m
2
H,h = 1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2 + 4(M2
12)

2

]
. (246)

and the corresponding CP-even scalar mixing angle is fixed by

s2α =
2M2

12√
(M2

11 −M2
22)

2 + 4(M2
12)

2
,

c2α =
M2

11 −M
2
22√

(M2
11 −M2

22)
2 + 4(M2

12)
2
. (247)

We shall take −π/2 ≤ α ≤ π/2.

It is convenient to define the following four combinations of parameters:

m
4

D
≡ B2

11B
2
22 − [B2

12]
2
,

m
2

L
≡ B2

11 cos
2
β + B2

22 sin
2
β + B2

12 sin 2β ,

m
2

T
≡ B2

11 + B2
22 ,

m
2

S
≡ m

2
A +m

2

T
, (248)

where the B2
ij are the elements of the matrix defined in eq. (243). In terms of these quantities
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we have the exact relations

m
2
H,h = 1

2

[
m

2

S
±
√
m4
S − 4m2

Am
2
L − 4m4

D

]
, (249)

and

c
2
β−α =

m2
L
−m2

h

m2
H −m2

h

. (250)

Eq. (250) is most easily derived by using c2
β−α = 1

2(1 + c2βc2α + s2βs2α) and the results of
eq. (247). Note that the case of mh = mH is special and must be treated carefully. We do
this in a separate Appendix, where we explicitly verify that 0 ≤ c2

β−α ≤ 1.

Finally, for completeness we record the expressions for the original hypercharge-one scalar
fields Φi in terms of the physical Higgs states and the Goldstone bosons:

Φ
±
1 = cβG

± − sβH± ,

Φ
±
2 = sβG

±
+ cβH

±
,

Φ
0
1 = 1√

2
[v1 + cαH − sαh + icβG− isβA] ,

Φ
0
2 = 1√

2
[v2 + sαH + cαh + isβG + icβA] . (251)

The Decoupling Limit

In effective field theory, we may examine the behavior of
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the theory characterized by two disparate mass scales, mL �
mS, by integrating out all particles with masses of order mS,
assuming that all the couplings of the “low-mass” effective theory
comprising particles with masses of order mL can be kept fixed.

In the 2HDM, the low-mass effective theory, if it exists, must
correspond to the case where one of the Higgs doublets is
integrated out. That is, the resulting effective low-mass theory is
precisely equivalent to the one-scalar-doublet SM Higgs sector.

These conclusions follow from electroweak gauge invariance.
Namely, there are two relevant scales—the electroweak scale
characterized by the scale v = 246 GeV and a second scale
mS � v. The underlying electroweak symmetry requires that
scalar mass splittings within doublets cannot be larger than O(v)

[assuming that dimensionless couplings of the theory are no larger
than O(1)].

It follows that the H±, A and H masses must be of O(mS),
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while mh ∼ O(v). Moreover, since the effective low-mass theory
consists of a one-doublet Higgs sector, the properties of h must
be indistinguishable from those of the SM Higgs boson.

We can illustrate these results more explicitly as follows.

Suppose that all the Higgs self-coupling constants λi are held
fixed such that |λi| <∼ O(1), while taking m2

A� |λi|v2.

In particular, we constrain the αi ≡ λi/(4π) so that the Higgs
sector does not become strongly coupled, implying no violations
of tree-unitarity [668, 669, 670, 671, 672].

Then, the B2
ij ∼ O(v2), and it follows that:

mh ' mL = O(v) , (252)

mH,mA,mH± = mS +O
(
v

2
/mS

)
, (253)

and

cos
2
(β − α) '

m2
L
(m2

T
−m2

L
)−m4

D

m4
A
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=

[
1
2(B2

11 − B
2
22)s2β − B2

12c2β

]2
m4
A

= O
(
v4

m4
S

)
. (254)

We shall establish the above results in more detail below.

The limit m2
A � |λi|v2 (subject to |αi| <∼ 1) is called the

decoupling limit of the model.14

Note that eq. (254) implies that in the decoupling limit,
cβ−α = O(v2/m2

A). We will demonstrate that this implies that
the couplings of h in the decoupling limit approach values that
correspond precisely to those of the SM Higgs boson.

We will also obtain explicit expressions for the squared-mass
differences between the heavy Higgs bosons (as a function of the
λi couplings in the Higgs potential) in the decoupling limit.

One can give an alternative condition for the decoupling limit.

As above, we assume that all |αi| <∼ 1.
14Later [see eq. (282) and surrounding discussion], we shall refine this definition slightly, and also require that

m2
A � |λ6|v2 cotβ and m2

A � |λ7|v2 tanβ, in order to guarantee that at large cotβ [tanβ] the couplings of
h to up-type [down-type] fermions approach the corresponding SM Higgs-fermion couplings.
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First consider the following special cases.

• If neither tanβ nor cotβ is close to 0, then m2
12� |λi|v2 [see

eq. (240)] in the decoupling limit.

• On the other hand, if m2
12 ∼ O(v2) and tanβ � 1 [cotβ �

1], then it follows from eqs. (236) and (237) that m2
11� O(v2)

if λ7 < 0 [m2
22� O(v2) if λ6 < 0] in the decoupling limit.

All such conditions depend on the original choice of scalar field
basis Φ1 and Φ2. For example, we can diagonalize the squared-
mass terms of the scalar potential [eq. (231)] thereby setting
m12 = 0.

In the decoupling limit in the new basis, one is simply driven
to the second case above.

A basis-independent characterization of the decoupling limit is
simple to formulate.

Starting from the scalar potential in an arbitrary basis, form
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the matrix m2
ij [made up of the coefficients of the quadratic

terms in the potential, see eq. (231)].

Denote the eigenvalues of this matrix bym2
a andm2

b respectively;
note that the eigenvalues are real but can be of either sign. By
convention, we can take |m2

a| ≤ |m2
b|. Then, the decoupling

limit corresponds to m2
a < 0, m2

b > 0 such that m2
b � |m2

a|, v2

(with |αi| <∼ 1).

For some choices of the scalar potential, no decoupling limit
exists.

Consider the case of m2
12 = λ6 = λ7 = 0 (and all other

|αi| <∼ 1). Then, the potential minimum conditions [eqs. (236)
and (237)] do not permit either m2

11 or m2
22 to become large;

m2
11, m2

22 ∼ O(v2), and clearly all Higgs masses are of O(v).
Thus, in this case no decoupling limit exists.15

The case of m2
12 = λ6 = λ7 = 0 corresponds to the existence

15However, it may be difficult to distinguish between the non-decoupling effects of the SM with a heavy Higgs boson
and those of the 2HDM where all Higgs bosons are heavy [673].
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of a discrete symmetry in which the potential is invariant under
the change of sign of one of the Higgs doublet fields.

Although the latter statement is basis-dependent, one can
check that the following stronger condition holds: no decoupling
limit exists if and only if λ6 = λ7 = 0 in the basis where m2

12 = 0.

Thus, the absence of a decoupling limit implies the existence
of some discrete symmetry under which the scalar potential is
invariant (although the precise form of this symmetry is most
evident for the special choice of basis).

We now return to the results for the Higgs masses and the
CP-even Higgs mixing angle in the decoupling limit.

For fixed values of λ6, λ7, α and β, there are two equivalent
parameter sets: (i) λ1, λ2, λ3, λ4 and λ5; (ii) m2

h, m2
H, m2

12,
m2
H± and m2

A.

The relations between these two parameter sets are given in
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an Appendix.

Using the results eqs. (313)–(318) we can give explicit expressions
in the decoupling limit for the Higgs masses in terms of the
potential parameters and the mixing angles.

First, it is convenient to define the following four linear
combinations of the λi:16

λ ≡ λ1c
4
β + λ2s

4
β + 1

2λ345s
2
2β + 2s2β(λ6c

2
β + λ7s

2
β) , (255)

λ̂ ≡ 1
2s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
− λ6cβc3β − λ7sβs3β , (256)

λA ≡ c2β(λ1c
2
β − λ2s

2
β) + λ345s

2
2β − λ5 + 2λ6cβs3β − 2λ7sβc3β , (257)

λF ≡ λ5 − λ4 , (258)

where λ345 is defined in eq. (238). The significance of these
coupling combinations is discussed in Appendix . We consider
the limit cβ−α → 0, corresponding to the decoupling limit,

16We make use of the triple-angle identities: c3β = cβ(c2
β − 3s2

β) and s3β = sβ(3c2
β − s

2
β).
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m2
A � |λi|v2. In nearly all of the parameter space, M2

12 < 0

[see eq. (242)], and it follows from eq. (247) that −π/2 ≤ α ≤ 0

(which implies that cβ−α → 0 is equivalent to β − α → π/2

given that 0 ≤ β ≤ π/2). However, in the small regions
of parameter space in which β is near zero [or π/2], roughly
corresponding to m2

A tanβ < λ6v
2 [or m2

A cotβ < λ7v
2], one

finds M2
12 > 0 (and consequently 0 < α < π/2). In these last

two cases, the decoupling limit is achieved for α = π/2− β and
cotβ � 1 [tanβ � 1]. That is, cos(β − α) = sin 2β � 1 and
sin(β − α) ' −1 [+1]. 17 In practice, since tanβ is fixed and
cannot be arbitrarily large (or arbitrarily close to zero), one can
always find a value of mA large enough such thatM2

12 < 0. This
is equivalent to employing the refined version of the decoupling
limit mentioned in footnote 14. In this case, the decoupling

17We have chosen a convention in which −π/2 ≤ α ≤ π/2. An equally good alternative is to choose
sin(β − α) ≥ 0. If negative, one may simply change the sign of sin(β − α) by taking α → α ± π, which is
equivalent to the field redefinitions h→ −h, H → −H.
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limit simply corresponds to β − α→ π/2 [i.e., sin(β − α) = 1]
independently of the value of β.

In the approach to the decoupling limit where α ' β − π/2
(that is, |cβ−α| � 1 and sβ−α ' 1 − 1

2
c2
β−α), we may use

eqs. (320)–(323) and eq. (241) to obtain:18

m
2
A ' v

2

[
λ̂

cβ−α
+ λA − 3

2λ̂ cβ−α

]
, (259)

m
2
h ' v

2
(λ− λ̂ cβ−α) , (260)

m
2
H ' v

2

[
λ̂

cβ−α
+ λ− 1

2λ̂ cβ−α

]
' m2

A + (λ− λA + λ̂ cβ−α)v
2
, (261)

m
2

H± ' v
2

[
λ̂

cβ−α
+ λA + 1

2λF −
3
2λ̂ cβ−α

]
= m

2
A + 1

2λFv
2
. (262)

The condition mH > mh implies the inequality (valid to first

18In obtaining eqs. (259), (261) and (262) we divided both sides of each equation by cβ−α, so these equations need to

be treated with care if cβ−α = 0 exactly. In this latter case, it suffices to note that λ̂/cβ−α has a finite limit whose
value depends on mA and λA [see eq. (266)].
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order in cβ−α):

m2
A > v2(λA − 2λ̂cβ−α) , (263)

[cf. eq. (343)]. The positivity of m2
h also imposes a useful

constraint on the Higgs potential parameters. For example,
m2
h > 0 requires that λ > 0.
In the decoupling limit (where m2

A � |λi|v2), eqs. (259)–
(262) provide the first nontrivial corrections to eqs. (252) and
(253). Finally, we employ eq. (240) to obtain

m
2
12 ' v

2
sβcβ

[
λ̂

cβ−α
+ λA + λ5 + 1

2λ6b̃
−1

+ 1
2λ7b̃− 3

2λ̂cβ−α

]
. (264)

This result confirms our previous observation that m2
12� |λi|v2

in the decoupling limit as long as β is not close to 0 or π/2.
However, m2

12 can be ofO(v2) in the decoupling limit [cβ−α→ 0]
if either tβ � 1 [and cβ/cβ−α ∼ O(1)] or b̃−1 � 1 [and
sβ/cβ−α ∼ O(1)].
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The significance of eq. (260) is easily understood by noting
that the decoupling limit corresponds to integrating out the
second heavy Higgs doublet. The resulting low-mass effective
theory is simply the one-Higgs-doublet model with corresponding
scalar potential V = m2(Φ†Φ) + 1

2
λ(Φ†Φ)2, where λ is given by

eq. (255) and

m2 ≡ m2
11c

2
β +m2

22s
2
β − 2m2

12sβcβ . (265)

Imposing the potential minimum conditions [eqs. (236) and
(237)], we see that v2 = −2m2/λ [where 〈Φ0〉 ≡ v/

√
2] as

expected. Moreover, the Higgs mass is given by m2
h = λv2, in

agreement with the cβ−α→ 0 limit of eq. (260).

We can rewrite eq. (259) in another form [or equivalently use
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eqs. (341) and (342) to obtain]:

cos(β − α) '
λ̂v2

m2
A − λAv2

'
λ̂v2

m2
H −m2

h

. (266)

This yields an O(v2/m2
A) correction to eq. (254). Note that

eq. (266) also implies that in the approach to the decoupling
limit, the sign of cos(β − α) is given by the sign of λ̂.

Two-Higgs Doublet Model Couplings in the Decoupling Limit

The phenomenology of the two-Higgs doublet model depends
in detail on the various couplings of the Higgs bosons to gauge
bosons, Higgs bosons and fermions [656]. The Higgs couplings
to gauge bosons follow from gauge invariance and are thus model
independent:

ghV V = gVmV sβ−α , gHV V = gVmV cβ−α , (267)

where gV ≡ 2mV /v for V = W or Z. There are no tree-level
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couplings of A or H± to V V . In the decoupling limit where
cβ−α = 0, we see that ghV V = ghSMV V , whereas the HV V

coupling vanishes. Gauge invariance also determines the strength
of the trilinear couplings of one gauge boson to two Higgs bosons:

ghAZ =
gcβ−α

2 cos θW
, gHAZ =

−gsβ−α
2 cos θW

. (268)

In the decoupling limit, the hAZ coupling vanishes, while the
HAZ coupling attains its maximal value. This pattern is repeated
in all the three-point and four-point couplings of h and H to V V ,
V φ, and V V φ final states (where V is a vector boson and φ is
one of the Higgs scalars). These results can be summarized as
follows: the coupling of h and H to vector boson pairs or vector–
scalar boson final states is proportional to either sin(β − α) or
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cos(β − α) as indicated below [656, 658].

cos(β − α) sin(β − α)

HW+W− hW+W−

HZZ hZZ

ZAh ZAH

W±H∓h W±H∓H

ZW±H∓h ZW±H∓H

γW±H∓h γW±H∓H

(269)

Note in particular that all vertices in the theory that contain at
least one vector boson and exactly one of the non-minimal Higgs
boson states (H, A or H±) are proportional to cos(β − α) and
hence vanish in the decoupling limit.

The Higgs couplings to fermions are model dependent. The
most general structure for the Higgs-fermion Yukawa couplings,
often referred to as the type-III model [666], is given by:

−LY = Q
0

LΦ̃1η
U,0
1 U

0
R +Q

0

LΦ1η
D,0
1 D

0
R +Q

0

LΦ̃2η
U,0
2 U

0
R +Q

0

LΦ2η
D,0
2 D

0
R + h.c. , (270)
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where Φ1,2 are the Higgs doublets, Φ̃i ≡ iσ2Φ
∗
i , Q0

L is the
weak isospin quark doublet, and U0

R, D0
R are weak isospin quark

singlets. [The right and left-handed fermion fields are defined
as usual: ψR,L ≡ PR,Lψ, where PR,L ≡ 1

2
(1 ± γ5).] Here, Q0

L,
U0
R, D0

R denote the interaction basis states, which are vectors in
flavor space, whereas ηU,01 , ηU,02 , ηD,01 , ηD,02 are matrices in flavor
space. We have omitted the leptonic couplings in eq. (270);
these follow the same pattern as the down-type quark couplings.

We next shift the scalar fields according to their vacuum
expectation values, and then re-express the scalars in terms of
the physical Higgs states and Goldstone bosons [see eq. (251)]. In
addition, we diagonalize the quark mass matrices and define the
quark mass eigenstates. The resulting Higgs-fermion Lagrangian
can be written in several ways [674]. We choose to display
the form that makes the type-II model limit of the general
type-III couplings apparent. The type-II model (where ηU,01 =
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ηD,02 = 0) automatically has no tree-level flavor-changing neutral
Higgs couplings, whereas these are generally present for type-
III couplings. The fermion mass eigenstates are related to the
interaction eigenstates by biunitary transformations:

PLU = V UL PLU
0 , PRU = V UR PRU

0 ,

PLD = V DL PLD
0 , PRD = V DR PRD

0 , (271)

and the Cabibbo-Kobayashi-Maskawa matrix is defined as K ≡
V UL V

D †
L . It is also convenient to define “rotated” coupling

matrices:

ηUi ≡ V
U
L η

U,0
i V U †R , ηDi ≡ V

D
L η

D,0
i V D †R . (272)

The diagonal quark mass matrices are obtained by replacing the
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scalar fields with their vacuum expectation values:

MD =
1
√

2
(v1η

D
1 + v2η

D
2 ) , MU =

1
√

2
(v1η

U
1 + v2η

U
2 ) . (273)

After eliminating ηU2 and ηD1 , the resulting Yukawa couplings are:

LY =
1

v
DMDD

(
sα

cβ
h−

cα

cβ
H

)
+
i

v
DMDγ5D(b̃A−G)

−
1
√

2cβ
D(η

D
2 PR + η

D
2

†
PL)D(cβ−αh− sβ−αH) (274)

−
i
√

2cβ
D(η

D
2 PR − η

D
2

†
PL)DA

−
1

v
UMUU

(
cα

sβ
h +

sα

sβ
H

)
+
i

v
UMUγ5U(t

−1
β A +G)

+
1
√

2sβ
U(η

U
1 PR + η

U
1

†
PL)U(cβ−αh− sβ−αH)

−
i
√

2sβ
U(η

U
1 PR − η

U
1

†
PL)U A
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+

√
2

v

[
UKMDPRD(b̃H

+ −G+
) + UMUKPLD(t

−1
β H

+
+G

+
) + h.c.

]
−
[

1

sβ
Uη

U
1

†
KPLDH

+
+

1

cβ
UKη

D
2 PRDH

+
+ h.c.

]
. (275)

In general, ηU1 and ηD2 are complex non-diagonal matrices.
Thus, the Yukawa Lagrangian displayed in eq. (275) exhibits
both flavor-nondiagonal and CP-violating couplings between the
neutral Higgs bosons and the quarks.

In the decoupling limit (where cβ−α → 0), the Yukawa
Lagrangian displays a number of interesting features. First, the
flavor non-diagonal and the CP-violating couplings of h vanish
(although the corresponding couplings to H and A persist).
Moreover, in this limit, the h coupling to fermions reduces
precisely to its Standard Model value, LSM

Y = −(mf/v)f̄fh. To
better see the behavior of couplings in the decoupling limit, the
following trigonometric identities are particularly useful:

hDD : −
sinα

cosβ
= sin(β − α)− tanβ cos(β − α) , (276)
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hUU :
cosα

sinβ
= sin(β − α) + cotβ cos(β − α) , (277)

HDD :
cosα

cosβ
= cos(β − α) + tanβ sin(β − α) , (278)

HUU :
sinα

sinβ
= cos(β − α)− cotβ sin(β − α) , (279)

where we have indicated the type of Higgs-fermion coupling
with which a particular trigonometric expression arises. It is now
easy to read off the corresponding Higgs-fermion couplings in the
decoupling limit and one verifies that the h-fermion couplings
reduce to their Standard Model values. Working to O(cβ−α),
the Yukawa couplings of h are given by

LhQQ = −D
[

1

v
MD − tanβ

[
1

v
MD −

1
√

2sβ
(SD + iPDγ5)

]
cβ−α

]
Dh

−U
[

1

v
MU + cotβ

[
1

v
MU −

1
√

2cβ
(SU + iPUγ5)

]
cβ−α

]
U h , (280)
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where

SD ≡ 1
2

(
ηD2 + ηD †2

)
, PD ≡ −i2

(
ηD2 − η

D †
2

)
,

(281)

are 3×3 hermitian matrices and SU and PU are defined similarly
by making the replacements D → U and 2→ 1.

Note that both h-mediated FCNC interactions (implicit in
the off-diagonal matrix elements of S and P ) and CP-violating
interactions proportional to P are suppressed by a factor of cβ−α
in the decoupling limit. Moreover, FCNCs and CP-violating
effects mediated by A and H are suppressed by the square of
the heavy Higgs masses (relative to v), due to the propagator
suppression.

Since mh � mH, mA and cβ−α ' O(v2/m2
A) near the

decoupling limit, we see that the flavor-violating processes and
CP-violating processes mediated by h, H and A are all suppressed
by the same factor.
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Thus, for mA >∼ O(1 TeV), the decoupling limit provides a
viable mechanism for suppressed Higgs-mediated FCNCs and
suppressed Higgs-mediated CP-violating effects in the most
general 2HDM.

Note that the approach to decoupling can be delayed if
either tanβ � 1 or cotβ � 1, as is evident from eq. (280).
For example, decoupling at large tanβ or cotβ occurs when
|cβ−α tanβ| � 1 or |cβ−α cotβ| � 1, respectively. Using
eqs. (266) and (256), these conditions are respectively equivalent
to

m2
A� |λ6|v2 cotβ and m2

A� |λ7|v2 tanβ , (282)

which supplement the usual requirement of m2
A� λiv

2.

That is, there are two possible ranges of the CP-odd Higgs
squared-mass, λiv2 � m2

A
<∼ |λ7|v2 tanβ [or λiv2 � m2

A
<∼

|λ6|v2 cotβ] when tanβ � 1 [or cotβ � 1], where the h
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couplings to V V , hh and hhh are nearly indistinguishable
from the corresponding hSM couplings, whereas one of the hff̄
couplings can deviate significantly from the corresponding hSMff̄

couplings.

The cubic and quartic Higgs self-couplings depend on the
parameters of the 2HDM potential [eq. (231)], and can easily be
worked out.

In the decoupling limit (DL) of α→ β − π/2, we denote the
terms of the scalar potential corresponding to the cubic Higgs
couplings by V(3)

DL and the terms corresponding to the quartic

Higgs couplings by V(4)
DL.

The coefficients of the quartic terms in the scalar Higgs
potential can be written more simply in terms of the linear
combinations of couplings defined earlier [eqs. (255)–(258)] and
three additional combinations:

λT = 1
4s

2
2β(λ1 + λ2) + λ345(s

4
β + c

4
β)− 2λ5 − s2βc2β(λ6 − λ7) , (283)

λU = 1
2s2β(s

2
βλ1 − c2

βλ2 + c2βλ345)− λ6sβs3β − λ7cβc3β . (284)
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λV = λ1s
4
β + λ2c

4
β + 1

2λ345s
2
2β − 2s2β(λ6s

2
β + λ7c

2
β) . (285)

The resulting expressions for V(3)
DL and V(4)

DL are

V(3)
DL = 1

2λv(h
3

+ hG
2

+ 2hG
+
G
−

) + (λT + λF )vhH
+
H
−

+1
2λ̂v

[
3Hh

2
+HG

2
+ 2HG

+
G
− − 2h(AG +H

+
G
−

+H
−
G

+
)
]

+1
2λUv(H

3
+HA

2
+ 2HH

+
H
−

)

+
[
λA − λ + 1

2λF
]
vH(H

+
G
−

+H
−
G

+
)

+(λA − λ)vHAG + 1
2λTvhA

2
+ (λ− λA + 1

2λT )vhH
2

+ i
2λFvA(H

+
G
− −H−G+

) , (286)

and

V(4)
DL = 1

8λ(gµν
2

+ 2G
+
G
−

+ h
2
)

2

+λ̂(h
3
H − h2

Agµν − h2
H

+
G
− − h2

H
−
G

+
+ hHgµν

2
+ 2hHG

+
G
− −Agµν3

−2AgµνG
+
G
− − gµν2

H
−
G

+ − gµν2
H

+
G
− − 2H

+
G
−
G

+
G
− − 2H

−
G

+
G
−
G

+
)

+1
2(λT + λF )(h

2
H

+
H
−

+H
2
G

+
G
−

+A
2
G

+
G
−

+ gµν
2
H

+
H
−

)
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+λU(hH
3

+ hHA
2

+ 2hHH
+
H
− −H2

Agµν −H2
H

+
G
− −H2

H
−
G

+ −A3
gµν

−A2
H

+
G
− −A2

H
−
G

+ − 2AgµνH
+
H
− − 2H

+
H
−
H

+
G
− − 2H

−
H

+
H
−
G

+
)

+ [2(λA − λ) + λF ] (hHH
+
G
−

+ hHH
−
G

+ −AgµνH+
G
− −AgµνH−G+

)

+1
4λV (H

4
+ 2H

2
A

2
+A

4
+ 4H

2
H

+
H
−

+ 4A
2
H

+
H
−

+ 4H
+
H
−
H

+
H
−

)

+1
2(λ− λA)(H

+
H

+
G
−
G
−

+H
−
H
−
G

+
G

+ − 2hHAgµν) + 1
4λT (h

2
A

2
+H

2
gµν

2
)

+1
4

[2(λ− λA) + λT ] (h
2
H

2
+A

2
gµν

2
) + (λ− λA + λT )H

+
H
−
G

+
G
−

+ i
2λF (hAH

+
G
− − hAH−G+

+HgµνH
+
G
− −HgµνH−G+

) , (287)

where G and G± are the Goldstone bosons (eaten by the Z and
W±, respectively). Moreover, for cβ−α = 0, we have m2

h = λv2

and m2
H −m2

A = (λ − λA)v2, whereas m2
H± −m

2
A = 1

2
λFv

2

is exact at tree-level. As expected, in the decoupling limit, the
low-energy effective scalar theory (which includes h and the three
Goldstone bosons) is precisely the same as the corresponding SM
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Higgs theory, with λ proportional to the Higgs quartic coupling.

An alternative parameterization of the 2HDM scalar potential

In this Appendix, we give the translation of the parameters
of eq. (231) employed in this paper to the parameters employed
in the Higgs Hunter’s Guide (HHG) [656]. While the HHG
parameterization was useful for some purposes (e.g., the scalar
potential minimum is explicitly exhibited), it obscures the decoupling
limit.

In the HHG parameterization, the most general 2HDM scalar
potential, subject to a discrete symmetry Φ1→ −Φ1 that is only
softly violated by dimension-two terms, is given by19

V = Λ1

(
Φ†1Φ1 − V 2

1

)2

+ Λ2

(
Φ†2Φ2 − V 2

2

)2

+ Λ3

[(
Φ†1Φ1 − V 2

1

)
+
(
Φ†2Φ2 − V 2

2

)]2
19In the HHG, the Vi and Λi are denoted by vi and λi, respectively. In eq. (288), we employ the former notation in

order to distinguish between the HHG parameterization and the notation of eqs. (231) and (235).
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+ Λ4

[
(Φ†1Φ1)(Φ

†
2Φ2)− (Φ†1Φ2)(Φ

†
2Φ1)

]
+ Λ5

[
Re(Φ†1Φ2)− V1V2 cos ξ

]2
+ Λ6

[
Im(Φ†1Φ2)− V1V2 sin ξ

]2
+ Λ7

[
Re(Φ†1Φ2)− V1V2 cos ξ

] [
Im(Φ†1Φ2)− V1V2 sin ξ

]
, (288)

where the Λi are real parameters.20 The V1,2 are related to the
v1,2 of eq. (235) by V1,2 = v1,2/

√
2. The conversion from these

Λi to the λi and m2
ij of eq. (231) is:

λ1 = 2(Λ1 + Λ3) ,

λ2 = 2(Λ2 + Λ3) ,

λ3 = 2Λ3 + Λ4 ,

λ4 = −Λ4 + 1
2
(Λ5 + Λ6) ,

20In eq. (288) we include the Λ7 term that was left out in the hardcover edition of the HHG. See the erratum that has
been included in the paperback edition of the HHG (Perseus Publishing, Cambridge, MA, 2000).
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λ5 = 1
2
(Λ5 − Λ6 − iΛ7) ,

λ6 = λ7 = 0

m2
11 = −2V 2

1 Λ1 − 2(V 2
1 + V 2

2 )Λ3 ,

m2
22 = −2V 2

2 Λ2 − 2(V 2
1 + V 2

2 )Λ3 ,

m2
12 = V1V2(Λ5 cos ξ − iΛ6 sin ξ − i

2
eiξΛ7) . (289)

Excluding λ6 and λ7, the scalar potential [eqs. (231) and (288)]
are fixed by ten real parameters. The CP-conserving limit of
eq. (288) is most easily obtained by setting ξ = 0 and Λ7 = 0.
In the CP-conserving limit, it is easy to invert eq. (289) and solve
for the Λi (i = 1, . . . , 6). The result is:

Λ1 = 1
2

[
λ1 − λ345 + 2m2

12/(v
2sβcβ)

]
,

Λ2 = 1
2

[
λ2 − λ345 + 2m2

12/(v
2sβcβ)

]
,

Λ3 = 1
2

[
λ345 − 2m2

12/(v
2sβcβ)

]
,
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Λ4 = 2m2
12/(v

2sβcβ)− λ4 − λ5 ,

Λ5 = 2m2
12/(v

2sβcβ) ,

Λ6 = 2m2
12/(v

2sβcβ)− 2λ5 , (290)

where λ345 ≡ λ3 + λ4 + λ5 and v2sβcβ = 2V1V2.

Conditions for CP conservation in the two-Higgs doublet model

First, we derive the conditions such that the Higgs sector does
not exhibit explicit CP violation.21 It is convenient to adopt a
convention in which one of the vacuum expectation values, say
v1 is real and positive.22 This still leaves one additional phase
redefinition for the Higgs doublet fields. If there is no explicit CP
violation, it should be possible to choose the phases of the Higgs
fields so that there are no explicit phases in the Higgs potential
parameters of eq. (231). If we consider Φ†1Φ2→ e−iηΦ†1Φ2, then

21For another approach, in which invariants are employed to identify basis-independent conditions for CP violation in the
Higgs sector, see refs. [692] and [693].

22Due to the U(1)-hypercharge symmetry of the theory, it is always possible to make a phase rotation on the scalar fields
such that v1 > 0.
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the η-dependent terms in V are given by

V 3 −m2
12e
−iη

Φ
†
1Φ2 + 1

2λ5e
−2iη

(
Φ
†
1Φ2

)2

+λ6e
−iη
(

Φ
†
1Φ1

) (
Φ
†
1Φ2

)
+ λ7e

−iη
(

Φ
†
2Φ2

) (
Φ
†
1Φ2

)
+ h.c. (291)

Let us write

m2
12 = |m2

12|e
iθm , λ5,6,7 = |λ5,6,7|eiθ5,6,7 . (292)

Then, all explicit parameter phases are removed if

θm− η = nmπ , θ5− 2η = n5π , θ6,7− η = n6,7π , (293)

where nm,5,6,7 are integers. Writing η = θm−nmπ from the first
condition of eq. (293), and substituting into the other conditions,
gives

θ5 − 2θm = (n5 − 2nm)π ⇒ Im[(m2
12)

2λ∗5] = 0 , (294)

θ6 − θm = (n6 − nm)π ⇒ Im[m2
12λ
∗
6] = 0 , (295)
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θ7 − θm = (n7 − nm)π ⇒ Im[m2
12λ
∗
7] = 0 . (296)

Eqs. (294)–(296) constitute the conditions for the absence of
explicit CP violation in the (tree-level) Higgs sector. A useful
convention is one in which m2

12 is real (by a suitable choice of
the phase η). It then follows that λ5, λ6 and λ7 are also real.
Henceforth, we shall assume that all parameters in the scalar
potential are real.

Let us consider now the conditions for the absence of spontaneous
CP violation.23 Let us write 〈Φ†1Φ2〉 = 1

2
v1v2e

iξ with v1 and v2

real and positive and 0 ≤ ξ ≤ π. The ξ-dependent terms in V
are given by

V 3 −m2
12v1v2 cos ξ + 1

4λ5v
2
1v

2
2 cos 2ξ + 1

2λ6v
3
1v2 cos ξ + 1

2λ7v
3
2v1 cos ξ , (297)

which yields

∂V
∂ cos ξ

= −m2
12v1v2 + λ5v

2
1v

2
2 cos ξ + 1

2λ6v
3
1v2 + 1

2λ7v
3
2v1 (298)

23Similar considerations can be found in refs. [693, 694, 695] and [662].
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and
∂2V

∂(cos ξ)2
= λ5v

2
1v

2
2 . (299)

Spontaneous CP violation occurs when ξ 6= 0, π/2 or π at
the potential minimum. That is, λ5 > 0 and there exists a
CP-violating solution to

cos ξ =
m2

12 −
1
2
λ6v

2
1 −

1
2
λ7v

2
2

λ5v1v2

. (300)

Thus, we conclude that the criterion for spontaneous CP violation
(in a convention where all parameters of the scalar potential are
real) is

0 6=
∣∣m2

12 −
1
2
λ6v

2
1 −

1
2
λ7v

2
2

∣∣ < λ5v1v2 and λ5 > 0 . (301)

Otherwise, the minimum of the potential occurs either at ξ = 0,
π/2 or π and CP is conserved.24 The case of ξ = π/2 is

24The CP-conserving minimum corresponding to ξ = 0 or ξ = π does not in general correspond to an extremum in
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singular and arises when m2
12 = 1

2
λ6v

2
1 + 1

2
λ7v

2
2 and λ5 > 0.25

It is convenient to choose a convention where 〈Φ0
1〉 is real and

〈Φ0
2〉 is pure imaginary. One must then re-evaluate the Higgs

mass eigenstates. As shown in ref. [696], the neutral Goldstone
boson is now a linear combination of Im Φ0

1 and Re Φ0
2, while

the physical CP-odd scalar, A corresponds to the orthogonal
combination. The two CP-even Higgs scalars are orthogonal
linear combinations of Re Φ0

1 and Im Φ0
2. Most of the results of

this paper do not apply for this case without substantial revision.
Nevertheless, it is clear that the decoupling limit (m2

A � λiv
2)

does not exist due to the condition on m2
12.

We shall not consider the ξ = π/2 model further in this paper.
Then, if the parameters of the scalar potential are real and if
V (cos ξ). Specifically, for λ5 < 0, the extremum corresponds to a maximum in V , while for λ5 > 0, the extremum
corresponding to a minimum of V(cos ξ) arises for | cos ξ| > 1. In both cases, when restricted to the physical region
corresponding to | cos ξ| ≤ 1, the minimum of V(cos ξ) is attained on the boundary, | cos ξ| = 1.

25Note that the case of ξ = π/2 arises automatically in the case of the discrete symmetry discussed in Section ,
m2

12 = λ6 = λ7 = 0, when λ5 > 0.
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there is no spontaneous CP-violation, then it is always possible to
choose the phase η in eq. (291) so that the potential minimum
corresponds to ξ = 0.26 In this convention,

m2
12 −

1
2
λ6v

2
1 −

1
2
λ7v

2
2 ≥ λ5v1v2 for λ5 > 0 , (302)

m2
12 −

1
2
λ6v

2
1 −

1
2
λ7v

2
2 ≥ 0 for λ5 ≤ 0 , (303)

where eq. (302) follows from eq. (301), and eq. (303) is a
consequence of the requirement that V(ξ = 0) ≤ V(ξ = π).
Since ξ = 0 and both v1 and v2 are real and positive, this
convention corresponds to the one chosen below eq. (239). Note
that if we rewrite eq. (240) as 27

m2
A =

v2

v1v2

[
m2

12 − λ5v1v2 − 1
2
λ6v

2
1 −

1
2
λ7v

2
2

]
, (304)

26In particular, if ξ = π, simply choose η = π, which corresponds to changing the overall sign of Φ
†
1Φ2. This is

equivalent to redefining the parameters m2
12 → −m

2
12, λ6 → −λ6 and λ7 → −λ7.

27 Under the assumption that v1 and v2 are positive, eq. (240) implicitly employs the convention in which ξ = 0.
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it follows that if λ5 > 0, then the condition m2
A ≥ 0 is equivalent

to eq. (302). However, if λ5 ≤ 0, then eq. (303) implies that
m2
A ≥ |λ5|v2.

A singular limit: mh = mH

By definition, mh ≤ mH. The limiting case of mh = mH
is special and requires careful treatment in some cases. For
example, despite the appearance of m2

H−m2
h in the denominator

of eq. (250), one can show that 0 ≤ c2
β−α ≤ 1. To prove this,

we first write

c
2
β−α =

1

2

1−
m2
S − 2m2

L√
m4
S − 4m2

Am
2
L − 4m4

D

 . (305)

Next, we use eq. (248) to explicitly compute:

m
4

S
−4m

2
Am

2

L
−4m

4

D
= m

4
A−2m

2
A

[
(B2

22 − B
2
11)c2β + 2B2

12s2β

]
+(B2

11−B
2
22)

2
+4[B2

12]
2
,

(306)
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and

(m
2
S − 2m

2
L)

2
= m

4

S
− 4m

2
Am

2

L
− 4m

4

D
−
[
(B2

11 − B
2
22)s2β − 2B2

12c2β

]2

. (307)

Note that eq. (306), viewed as a quadratic function of m2
A (of

the form Am4
A + Bm2

A + C), is non-negative if B2 − 4AC =[
(B2

11 − B2
22)s2β − 2B2

12c2β

]2 ≥ 0. It then follows from eq. (305)
that 0 ≤ c2

β−α ≤ 1 if

(m2
S − 2m2

L)2 ≤ m4
S
− 4m2

Am
2
L
− 4m4

D
, (308)

a result which is manifestly true [see eq. (307)].

We now turn to the case of mh = mH. This can arise if and
only if the CP-even Higgs squared-mass matrix (in any basis) is
proportional to the unit matrix. From eq. (242), it then follows
that:

B2
11 − B

2
22 = m2

Ac2β , 2B2
12 = m2

As2β . (309)
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where m2
h = m2

H = B2
11 +m2

As
2
β = B2

22 +m2
Ac

2
β. Alternatively,

from eq. (249), the condition for mh = mH is given by m4
S
−

4m2
Am

2
L
− 4m4

D
≡ Am4

A+Bm2
A+C = 0. However, one must

check that this quadratic equation possesses a positive (real)
solution for m2

A. Noting the discussion above eq. (308), such a
solution can exist if and only if B2 − 4AC = 0, which is indeed
consistent with eq. (309). Of course, the results of eq. (309) are
not compatible with the decoupling limit, since it is not possible
to have mh = mH and m2

A� |λi|v2.

If we take B2 − 4AC = 0 but keep mA arbitrary, then
eq. (305) yields

c2
β−α =

{
0 , if m2

L <
1
2
m2
S ,

1 , if m2
L >

1
2
m2
S .

(310)

For m2
L = 1

2
m2
S, we have m2

h = m2
H = 1

2
m2
S, and the angle

α is not well-defined. In this case, one cannot distinguish
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between h and H in either production or decays, and the
corresponding squared-amplitudes should be (incoherently) added
in all processes. It is easy to check that the undetermined angle
α that appears in the relevant Higgs couplings would then drop
out in any such sum of squared-amplitudes. The singular point
of parameter space corresponding to mh = mH will not be
considered further in this paper.

Relations among Higgs potential parameters and masses

It is useful to express the physical Higgs masses in terms of
the parameters of the scalar potential [eq. (231)]. First, inserting
eqs. (242) and (243) into eq. (245) and examining the diagonal
elements yields the CP-even Higgs boson squared-masses:

m
2
h = m

2
Ac

2
β−α + v

2
[
λ1c

2
βs

2
α + λ2s

2
βc

2
α − 2λ345cαcβsαsβ + λ5c

2
β−α

− 2λ6cβsαcβ+α + 2λ7sβcαcβ+α

]
, (311)

m
2
H = m

2
As

2
β−α + v

2
[
λ1c

2
βc

2
α + λ2s

2
βs

2
α + 2λ345cαcβsαsβ + λ5s

2
β−α

+ 2λ6cβcαsβ+α + 2λ7sβsαsβ+α

]
, (312)
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while the requirement that the off-diagonal entries in eq. (245)
are zero yields

m
2
A sβ−αcβ−α = 1

2v
2
[
s2α(−λ1c

2
β + λ2s

2
β) + λ345s2βc2α − 2λ5sβ−αcβ−α

+ 2λ6cβcβ+2α + 2λ7sβsβ+2α

]
, (313)

where λ345 ≡ λ3 + λ4 + λ5. We can now eliminate m2
A from

eqs. (311) and (312) and eqs. (240) and (241) using the result of
eq. (313). This yields equations for the other three physical Higgs
boson squared-masses and the scalar potential mass parameter
m2

12 in terms of the Higgs scalar quartic couplings

m2
h

v2
sβ−α = −λ1c

3
βsα + λ2s

3
βcα + 1

2λ345cβ+αs2β

+λ6c
2
β(cβcα − 3sβsα) + λ7s

2
β(3cβcα − sβsα) , (314)

m2
H

v2
cβ−α = λ1c

3
βcα + λ2s

3
βsα + 1

2λ345sβ+αs2β

+λ6c
2
β(3sβcα + cβsα) + λ7s

2
β(sβcα + 3cβsα) , (315)
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2m2

H±

v2
sβ−αcβ−α = −s2α(λ1c

2
β − λ2s

2
β) + λ345s2βc2α − (λ4 + λ5)sβ−αcβ−α

+2λ6cβcβ+2α + 2λ7sβsβ+2α , (316)

2m2
12

v2
sβ−αcβ−α = −1

2s2βs2α(λ1c
2
β − λ2s

2
β) + 1

2λ345s
2
2βc2α

+λ6c
2
β

[
3cβsβc2α − cαsα(1 + 2s

2
β)
]

(317)

+λ7s
2
β

[
3sβcβc2α + cαsα(1 + 2c

2
β)
]
.

(318)

Note that eq. (316) is easily derived by inserting eq. (313) into
eq. (241). A related useful result is easily derived from eqs. (313)
and (315):

(m2
A −m

2
H)

v2
sβ−α = 1

2s2β (−λ1cαcβ + λ2sαsβ + λ345cβ+α)− λ5sβ−α

+λ6cβ
[
cβcβ+α − 2s

2
βcα
]

+ λ7sβ
[
sβcβ+α + 2c

2
βsα
]
.(319)

It is remarkable that the left hand side of eq. (319) is proportional
only to sβ−α (i.e., the factor of cβ−α has canceled). As a
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result, in the decoupling limit where cβ−α → 0, we see that
m2
A −m2

H = O(v2).
The expressions given in eqs. (313)–(316) are quite complicated.

These results simplify considerably when expressed in terms of λ,
λ̂ and λA [eqs. (255)–(257)]:

m
2
A = v

2

[
λA + λ̂

(
sβ−α

cβ−α
−
cβ−α

sβ−α

)]
, (320)

m
2
h = v

2

[
λ−

λ̂ cβ−α

sβ−α

]
, (321)

m
2
H = v

2

[
λ +

λ̂ sβ−α

cβ−α

]
. (322)

One can then rewrite eq. (319) as

m
2
H −m

2
A = v

2

[
λ− λA +

λ̂cβ−α

sβ−α

]
. (323)

We can invert eqs. (313)–(318) and solve for any five of the
scalar potential parameters in terms of the physical Higgs masses
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and the remaining three undetermined variables [661, 697, 698].
It is convenient to solve for λ1, . . . , λ5 in terms of λ6, λ7, m2

12
and the Higgs masses. We obtain:

λ1 =
m2
Hc

2
α +m2

hs
2
α −m

2
12b̃

v2c2
β

− 3
2λ6b̃ + 1

2λ7b̃
3
, (324)

λ2 =
m2
Hs

2
α +m2

hc
2
α −m

2
12b̃
−1

v2s2
β

+ 1
2λ6b̃

−3 − 3
2λ7b̃

−1
, (325)

λ3 =
(m2

H −m
2
h)cαsα + 2m2

H±sβcβ −m
2
12

v2sβcβ
− 1

2λ6b̃
−1 − 1

2λ7b̃ (326)

λ4 =
(m2

A − 2m2

H±)sβcβ +m2
12

v2sβcβ
− 1

2λ6b̃
−1 − 1

2λ7b̃ , (327)

λ5 =
m2

12 −m
2
Asβcβ

v2sβcβ
− 1

2λ6b̃
−1 − 1

2λ7b̃ . (328)

In addition, the minimization conditions of eqs. (236) and (237)
reduce to:

m
2
11 = −

1

2cβ

(
m

2
Hcαcβ−α −m

2
hsαsβ−α

)
+m

2
12b̃ , (329)
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m
2
22 = −

1

2sβ

(
m

2
hcαsβ−α +m

2
Hsαcβ−α

)
+m

2
12b̃
−1
. (330)

Note that λ6 and λ7 do not appear when m2
11 and m2

22 are
expressed entirely in terms of m2

12 and physical Higgs masses.
In some cases, it proves more convenient to eliminate m2

12 in
favor of λ5 using eq. (328). The end result is:

λ1 =
m2
Hc

2
α +m2

hs
2
α −m

2
As

2
β

v2c2
β

− λ5b̃
2 − 2λ6b̃ , (331)

λ2 =
m2
Hs

2
α +m2

hc
2
α −m

2
Ac

2
β

v2s2
β

− λ5b̃
−2 − 2λ7b̃

−1
, (332)

λ3 =
(m2

H −m
2
h)sαcα + (2m2

H± −m
2
A)sβcβ

v2sβcβ
− λ5 − λ6b̃

−1 − λ7b̃ , (333)

λ4 =
2(m2

A −m
2

H±)

v2
+ λ5 , (334)

and

m
2
11 = −

1

2cβ

(
m

2
Hcαcβ−α −m

2
hsαsβ−α

)
+ (m

2
A + λ5v

2
)s

2
β + 1

2v
2
(λ6sβcβ + λ7s

2
βb̃) ,
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(335)

m
2
22 = −

1

2sβ

(
m

2
hcαsβ−α +m

2
Hsαcβ−α

)
+ (m

2
A + λ5v

2
)c

2
β + 1

2v
2
(λ6c

2
βb̃
−1

+ λ7sβcβ) .

(336)

Using eqs. (320)–(322), one may obtain simple expressions for
λ, λ̂ and λA [eqs. (255)–(257)] in terms of the neutral Higgs
squared-masses:

λ v
2

= m
2
h s

2
β−α +m

2
H c

2
β−α , (337)

λ̂ v
2

= (m
2
H −m

2
h) sβ−α cβ−α , (338)

λA v
2

= m
2
A + (m

2
H −m

2
h) (c

2
β−α − s

2
β−α) , (339)

λF v
2

= 2(m
2

H± −m
2
A) , (340)

where we have also included an expression for λF ≡ λ5 − λ4 in
terms of the Higgs squared-masses [see eq. (241)]. Thus, four of
the the invariant coupling parameters can be expressed in terms

J. Gunion 250Higgs, U.C. Davis, 275



of the physical Higgs masses and the basis-independent quantity
β − α (see Appendix ).

Finally, we note that eqs. (338) and (339) also yield a simple
expression for β − α, which plays such a central role in the
decoupling limit. We find two forms that are noteworthy:

tan [2(β − α)] =
−2λ̂v2

m2
A − λAv2

, (341)

and

sin [2(β − α)] =
2λ̂v2

m2
H −m2

h

. (342)

Indeed, if λ̂ = 0 then either cβ−α = 0 or sβ−α = 0 as discussed
in Section 5. For λ̂ 6= 0, the condition mH > mh implies that
λ̂sβ−αcβ−α > 0. This inequality, when applied to eq. (320),
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imposes the following constraint on mA

v2

[
λA −

2λ̂ cβ−α

sβ−α

]
< m2

A < v2

[
λA +

2λ̂ sβ−α

cβ−α

]
. (343)

In addition, we require that m2
A ≥ 0.

The expressions for the Higgs masses [eqs. (320)–(322)] and
β−α [eq. (341) or (342)] are especially useful when considering
the approach to the decoupling limit, where |cβ−α| � 1. For
example, eqs. (320)–(322) reduce in this limit to the results of
eqs. (259)–(261). Moreover, sin[2(β−α)] ' − tan[2(β−α)] '
2cβ−α, and eqs. (341) and (342) reduce to the results given
by eq. (266). The corresponding results in limiting case of
|sβ−α| � 1 treated in Section 5 are also similarly obtained.

Invariant combinations of the Higgs scalar potential parameters

In the most general 2HDM model, there is no distinction
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between the two Y = 1 complex doublets, Φ1 and Φ2. In
principle, one could choose any two orthogonal linear combinations
of Φ1 and Φ2 (i.e., choose a new basis for the scalar doublets), and
construct the scalar sector Lagrangian with respect to the new
basis. Clearly, the parameters of eq. (231), m2

ij and the λi, would
all be modified, along with α and β. However, there exists seven
invariant combinations of the λi that are independent of basis
choice [699]. These are: λ, λ̂, λA, λF defined in eqs. (255)–
(258), and λT , λU and λV defined in eqs. (283)–(285). In
addition, the combination β − α is clearly basis independent.
Thus, all physical Higgs masses and Higgs self-couplings can be
expressed in terms of the above invariant coupling parameters
and β − α. Earlier, we have already shown how to express the
Higgs masses in terms of the invariant parameters. One can also
write the three-Higgs and four-Higgs couplings in terms of the
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invariant parameters.28

To obtain expressions for the Higgs self-couplings in terms of
invariant parameters, one must invert the relations between the
λi and the invariant coupling parameters. The end result is:

λ1 = c
2
β(1 + 3s

2
β)λ + 2s2β(c

2
β λ̂ + s

2
β λU)− 1

2s
2
2β(2λA − λT ) + s

4
βλV ,

λ2 = s
2
β(1 + 3c

2
β)λ− 2s2β(s

2
β λ̂ + c

2
β λU)− 1

2s
2
2β(2λA − λT ) + c

4
βλV ,

λ345 = (2c
2
2β − c

2
βs

2
β)λ− 3s2βc2β(λ̂− λU)− (c

2
2β − 2c

2
βs

2
β)(2λA − λT ) + 3

4s
2
2βλV ,

λ5 = (c
2
2β + c

2
βs

2
β)λ− s2βc2β(λ̂− λU)− c2

2βλA + 1
4s

2
2β(λV − 2λT ) ,

λ6 = 1
2s2β(3s

2
β − 1)λ− cβc3βλ̂− sβs3βλU + 1

2s2βc2β(2λA − λT )− 1
2s

2
βs2βλV ,

λ7 = 1
2s2β(3c

2
β − 1)λ− sβs3βλ̂− cβc3βλU − 1

2s2βc2β(2λA − λT )− 1
2c

2
βs2βλV ,(344)

and λ4 = λ5 − λF .
The significance of the invariant coupling parameters is most

evident in the so-called Higgs basis of ref. [693], in which only
28The Higgs couplings to vector bosons depend only on β − α [see eqs. (267)–(269)].
The Higgs couplings to fermions in the Type-III model (in which both up and down-type fermions couple to both Higgs

doublets) can also be written in terms of invariant parameters. However, one would then have to identify the appropriate

invariant combinations of the Higgs-fermion Yukawa coupling parameters [699], ηUi and ηDi [see eq. (272)].
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the neutral component of one of the two Higgs doublets (say, the
first one) possesses a vacuum expectation value. Let us denote
the two Higgs doublets in this basis by Φa and Φb. Then, after
a rotation from the Φ1–Φ2 basis by an angle β,

Φa = Φ1 cosβ + Φ2 sinβ ,

Φb = −Φ1 sinβ + Φ2 cosβ , (345)

one obtains

Φa =

(
G+

1√
2

(
v + ϕ0

a + iG0
) ) , Φb =

(
H+

1√
2

(
ϕ0
b + iA

) ) , (346)

where ϕ0
a and ϕ0

b are related in the CP-conserving model to the
CP-even neutral Higgs bosons by:

H = ϕ
0
a cos(β − α)− ϕ0

b sin(β − α) , (347)

h = ϕ
0
a sin(β − α) + ϕ

0
b cos(β − α) . (348)

Here, we see that β−α is the invariant angle that characterizes
the direction of the CP-even mass eigenstates (in the two-
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dimensional Higgs “flavor” space) relative to that of the vacuum
expectation value.

In the Higgs basis, the corresponding values of λ1, · · · , λ7 are
easily evaluated by putting β = 0 in eq. (344). Thus, the scalar
potential takes the following form:

V = m
2
aaΦ

†
aΦa +m

2
bbΦ
†
bΦb − [m

2
abΦ
†
aΦb + h.c.]

+1
2λ(Φ

†
aΦa)

2
+ 1

2λV (Φ
†
bΦb)

2
+ (λT + λF )(Φ

†
aΦa)(Φ

†
bΦb) (349)

+(λ− λA − λF )(Φ
†
aΦb)(Φ

†
bΦa)

+
{

1
2(λ− λA)(Φ

†
aΦb)

2 −
[
λ̂ (Φ

†
aΦa) + λU(Φ

†
bΦb)

]
Φ
†
aΦb + h.c.

}
, (350)

where three new invariant quantities are revealed:

m
2
aa = m

2
11c

2
β +m

2
22s

2
β − [m

2
12 + (m

∗
12)

2
]sβcβ , (351)

m
2
bb = m

2
11s

2
β +m

2
22c

2
β + [m

2
12 + (m

∗
12)

2
]sβcβ , (352)

m
2
ab = (m

2
11 −m

2
22)sβcβ +m

2
12c

2
β − (m

∗
12)

2
s

2
β . (353)

In the CP-conserving theory where m2
12 is real, the corresponding
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potential minimum conditions [eqs. (236)–(237)] simplify to:

m2
aa = −1

2
v2λ , m2

ab = −1
2
v2λ̂ , (354)

with no constraint on m2
bb. In fact, m2

bb is related to m2
A:

m2
A = Tr m2 + 1

2
v2(λ+ λT )

= m2
bb + 1

2
v2λT , (355)

after imposing the potential minimum condition [eq. (354)]. It
is convenient to trade the free parameter m2

bb for β − α. Using
the results of eqs. (341) and (342), it follows that

tan[2(β − α)] =
2λ̂

λA − 1
2
λT −m2

bb/v
2
, (356)

where the sign of sin[2(β − α)] is equal to the sign of λ̂.

It is now straightforward to obtain the three-Higgs and four-
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Higgs couplings in terms of the invariant coupling parameters and
β − α, by inserting eqs. (346)–(348) into eq. (350).
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Some more on the MSSM Higgs sector:
theoretical basis

Note: There are equation numbers appearing as ?? marks in
what follows. If you want to learn more about the referenced
equations, you can go look for these equation numbers in the
.pdf file for the darkmatter-susy course linked to my home page.
The discussion below is taken from the notes for that course.

• Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking
is slightly complicated by the fact that there are two complex
Higgs doublets Hu = (H+

u , H
0
u) and Hd = (H0

d, H
−
d ) rather

than just one as in the ordinary Standard Model.
The classical scalar potential for the Higgs scalar fields in the
MSSM by

V = (|µ|2 +m2
Hu

)(|H0
u|

2 + |H+
u |

2) + (|µ|2 +m2
Hd

)(|H0
d|

2 + |H−d |
2)
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+ [b (H+
uH
−
d −H

0
uH

0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|
2 + |H+

u |
2 − |H0

d|
2 − |H−d |

2)2

+1
2
g2|H+

uH
0∗
d +H0

uH
−∗
d |

2. (357)

We note the following:

– The terms proportional to |µ|2 come from F -terms [see
Eq. (??)].

– The terms proportional to g2 and g′2 are the D-term
contributions, obtained from the general formula Eq. (??)
after some rearranging.

– Finally, the terms proportional to m2
Hu

, m2
Hd

and b are just a
rewriting of the last three terms of Eq. (??) using the identity

|Hi ∗
u H

i
d|

2 + |εijHi
uH

j
d|

2 = (Hi ∗
u H

i
u)(Hj ∗

d Hj
d) (358)

The full scalar potential of the theory also includes many terms
involving the squark and slepton fields that we can ignore here,
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since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential
should break electroweak symmetry down to electromagnetism
SU(2)L × U(1)Y → U(1)EM, in accord with experiment.

We can use the freedom to make gauge transformations to
simplify this analysis.

– First, the freedom to make SU(2)L gauge transformations
allows us to rotate away a possible VEV for one of the weak
isospin components of one of the scalar fields, so without
loss of generality we can take H+

u = 0 at the minimum of
the potential.

– Then, we can examine the condition for a minimum of the
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potential satisfying

∂V

∂H+
u

∣∣∣∣∣
H+
u=0

= bH−d + 1
2
g2H0

d

∗
H−d H

0
u

∗
= 0 . (359)

For generic parameter choices this will not vanish unless
H−d = 0.
This is good, because it means that at the minimum of the
potential electromagnetism is necessarily unbroken, due to
the fact that the charged components of the Higgs scalars
cannot get VEVs.

– After setting H+
u = H−d = 0, we are left to consider the

scalar potential involving only the neutral Higgs fields:

V = (|µ|2 +m
2
Hu

)|H0
u|

2
+ (|µ|2 +m

2
Hd

)|H0
d|

2 − (bH
0
uH

0
d + c.c.)

+
1

8
(g

2
+ g

′2
)(|H0

u|
2 − |H0

d|
2
)

2
. (360)
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– The only term in this potential that depends on the phases
of the fields is the b-term.
Therefore, a redefinition of the phase of Hu or Hd can absorb
any phase in b, so we can take b to be real and positive.

– Then it is clear that a minimum of the potential V requires
that H0

uH
0
d is also real and positive, so 〈H0

u〉 and 〈H0
d〉 must

have cancelling phases.
– We can therefore use a U(1)Y gauge transformation to make

them both be real and positive without loss of generality, since
Hu and Hd have opposite weak hypercharges (±1/2).

– It follows that CP cannot be spontaneously broken by
the Higgs scalar potential, since the VEVs and b can be
simultaneously chosen real, as a convention.

– This means that the Higgs scalar mass eigenstates can be
assigned well-defined eigenvalues of CP, at least at tree-
level. (CP-violating phases in other couplings can induce
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loop-suppressed CP violation in the Higgs sector, but do not
change the fact that b, 〈H0

u〉, and 〈Hd〉 can always be chosen
real and positive.)

In order for the MSSM scalar potential to be viable, we must
first make sure that the potential is bounded from below for
arbitrarily large values of the scalar fields, so that V will
really have a minimum. (Recall that scalar potentials in purely
supersymmetric theories are automatically non-negative and so
clearly bounded from below. But, now that we have introduced
supersymmetry breaking, we must be careful.)

The scalar quartic interactions in V will stabilize the potential
for almost all arbitrarily large values of H0

u and H0
d.

However, for the special directions in field space |H0
u| = |H0

d|,
the quartic contributions to V [the second line in Eq. (363)]
are identically zero.

Such directions in field space are called D-flat directions,

J. Gunion 250Higgs, U.C. Davis, 289



because along them the part of the scalar potential coming
from D-terms vanishes.

In order for the potential to be bounded from below, we need
the quadratic part of the scalar potential to be positive along
the D-flat directions. This requirement amounts to

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (361)

Note that the b-term always favors electroweak symmetry
breaking.

Requiring that one linear combination of H0
u and H0

d has a
negative squared mass near H0

u = H0
d = 0 (i.e. requiring that

the determinant of the mass-squared matrix be negative) gives

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (362)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be
a stable minimum of the potential (or there will be no stable
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minimum at all), and electroweak symmetry breaking will not
occur.

Interestingly, if m2
Hu

= m2
Hd

then the constraints Eqs. (361)
and (362) cannot both be satisfied.

In models derived from the minimal supergravity or gauge-
mediated boundary conditions, m2

Hu
= m2

Hd
is supposed to

hold at tree level at the input scale, but the contribution to
the RG equation for m2

Hu
proportional to the square of the

large top-quark Yukawa coupling yt naturally pushes m2
Hu

to
negative or small values m2

Hu
< m2

Hd
at the electroweak scale.
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Figure 34: Illustration of RG evolution of soft parameters showing how m2
Hu

is driven

negative in evolving from GUT scale to mZ scale. Some other things to note: gaugino

masses can unify if M3 ∼ 3M2 ∼ 6M1 at scale mZ; squark masses increase as scale

decreases, but slepton masses don’t change a lot.
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Unless this effect is significant, the parameter space in which
the electroweak symmetry is broken would be quite small.
So, in these models electroweak symmetry breaking is actually
driven by quantum corrections; this mechanism is therefore
known as radiative electroweak symmetry breaking.

Note that although a negative value for |µ|2 + m2
Hu

will help
Eq. (362) to be satisfied, it is not strictly necessary.

Furthermore, even if m2
Hu

< 0, there may be no electroweak
symmetry breaking if |µ| is too large or if b is too small.

Still, the large negative contributions to m2
Hu

from the RG
equation are an important factor in ensuring that electroweak
symmetry breaking can occur in models with simple GUT-scale
boundary conditions for the soft terms.

The realization that this works most naturally with a large
top-quark Yukawa coupling provides additional motivation for
these models.
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Having established the conditions necessary for H0
u and H0

d
to get non-zero VEVs, we can now require that they are
compatible with the observed phenomenology of electroweak
symmetry breaking, SU(2)L × U(1)Y → U(1)EM. Returning
to the scalar potential involving only the neutral Higgs fields:

V = (|µ|2 +m
2
Hu

)|H0
u|

2
+ (|µ|2 +m

2
Hd

)|H0
d|

2 − (bH
0
uH

0
d + c.c.)

+
1

8
(g

2
+ g

′2
)(|H0

u|
2 − |H0

d|
2
)

2
, (363)

let us write

vu = 〈H0
u〉, vd = 〈H0

d〉. (364)

These VEVs are related to the known mass of the Z boson
and the electroweak gauge couplings (I have changed my
convention so that v = vprevious/

√
2.):

v2
u + v2

d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2. (365)
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The ratio of the VEVs is traditionally written as

tanβ ≡ vu/vd. (366)

The value of tanβ is not fixed by present experiments, but
it depends on the Lagrangian parameters of the MSSM in a
calculable way.

Since vu = v sinβ and vd = v cosβ were taken to be real and
positive by convention, we have 0 < β < π/2, a requirement
that will be sharpened below.

Now one can write down the conditions ∂V/∂H0
u = ∂V/∂H0

d =

0 under which the potential Eq. (363) will have a minimum
satisfying Eqs. (365) and (366):

m2
Hu

+ |µ|2 − b cotβ − (m2
Z/2) cos(2β) = 0, (367)

m2
Hd

+ |µ|2 − b tanβ + (m2
Z/2) cos(2β) = 0. (368)
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It is easy to check that these equations indeed satisfy the
necessary conditions Eqs. (361) and (362). They allow us to
eliminate two of the Lagrangian parameters b and |µ| in favor
of tanβ, but do not determine the phase of µ.

Taking |µ|2, b, m2
Hu

and m2
Hd

as input parameters, and m2
Z

and tanβ as output parameters obtained by solving these two
equations, one obtains:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (369)

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu
−m2

Hd
− 2|µ|2.(370)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as
is usually assumed, then cos(2β) is negative; otherwise it is
positive.)
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As an aside, Eqs. (369) and (370) highlight the “µ problem”
already mentioned earlier.

– Without miraculous cancellations, all of the input parameters
ought to be within an order of magnitude or two of m2

Z.
– However, in the MSSM, µ is a supersymmetry-respecting

parameter appearing in the superpotential, while b, m2
Hu

,
m2
Hd

are supersymmetry-breaking parameters.
– This has lead to a widespread belief that the MSSM must

be extended at very high energies to include a mechanism
that relates the effective value of µ to the supersymmetry-
breaking mechanism in some way.

– Even if the value of µ is set by soft supersymmetry breaking,
the cancellation needed by Eq. (370) is often very substantial
(⇒ finetuning) when evaluated in specific model frameworks,
after constraints from direct searches for the Higgs bosons
and superpartners are taken into account.
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– For example, expanding for large tanβ, Eq. (370) becomes

m2
Z = −2(m2

Hu
+|µ|2)+

2

tan2 β
(m2

Hd
−m2

Hu
)+O(1/ tan4 β).

(371)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2
each much larger than m2

Z, so that significant cancellation is
needed.

– In particular, large top squark squared masses, needed to
avoid having the Higgs boson mass turn out too small [see
Eq. (385) below] compared to the 126 GeV observed mass,
will feed into (via the RGEs) m2

Hu
and make it normally quite

large in magnitude and negative.
The cancellation needed in the minimal model is typically
of order a fraction of a per cent level. It is impossible to
objectively characterize whether this should be considered
worrisome, but it could be taken as a weak hint in favor of
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non-minimal models such as the NMSSM.

Radiative corrections to the Higgs masses

The discussion above is based on the tree-level potential, and
involves running renormalized Lagrangian parameters, which
depend on the choice of renormalization scale.

In practice, one must include radiative corrections at one-loop
order, at least, in order to get numerically stable results.

To do this, one can compute the loop corrections ∆V to the
effective potential Veff(vu, vd) = V + ∆V as a function of
the VEVs. The impact of this is that the equations governing
the VEVs of the full effective potential are obtained by simply
replacing

m2
Hu
→ m2

Hu
+

1

2vu

∂(∆V )

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂(∆V )

∂vd
(372)

in Eqs. (367)-(370), treating vu and vd as real variables in the
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differentiation.

The above replacements come from the simple identity that
(focusing on vu as an example)

∂

∂vu
(V + ∆V ) 3

∂

∂vu
[m2

Hu
v2
u + ∆V )

= (m2
Hu

2vu +
∂∆V

∂vu
)

= (m2
Hu

+
1

2vu

∂∆V

∂vu
)2vu . (373)

The result for ∆V has now been obtained through two-loop
order in the MSSM.

The most important corrections come from the one-loop
diagrams involving the top squarks and top quark, and experience
shows that the validity of the tree-level approximation and the
convergence of perturbation theory are therefore improved by
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choosing a renormalization scale roughly of order the average
of the top squark masses.

Mass eigenstates

The Higgs scalar fields in the MSSM consist of two complex
SU(2)L-doublet, or eight real, scalar degrees of freedom.

When the electroweak symmetry is broken, three of them
are the would-be Nambu-Goldstone bosons G0, G±, which
become the longitudinal modes of the Z and W± massive
vector bosons.

The remaining five Higgs scalar mass eigenstates consist of two
CP-even neutral scalars h and H, one CP-odd neutral scalar
A, and a charge +1 scalar H+ and its conjugate charge −1

scalar H−. (Here we define G− = G+∗ and H− = H+∗.
Also, by convention, h is lighter than H.)

The gauge-eigenstate fields can be expressed in terms of the
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mass eigenstate fields as:(
H0
u

H0
d

)
=

(
vu
vd

)
+

1
√

2
Rα

(
h
H

)
+

i
√

2
Rβ0

(
G0

A

)
(374)

(
H+
u

H−∗d

)
= Rβ±

(
G+

H+

)
(375)

where the orthogonal rotation matrices

Rα =

(
cosα sinα
− sinα cosα

)
, (376)

Rβ0 =

(
sinβ0 cosβ0

− cosβ0 sinβ0

)
, Rβ± =

(
sinβ± cosβ±
− cosβ± sinβ±

)
, (377)

are chosen so that the quadratic part of the potential has diagonal squared-
masses:

V = 1
2
m2
h(h)2 + 1

2
m2
H(H)2 + 1

2
m2
G0(G

0)2 + 1
2
m2
A(A0)2

+m2
G±|G

+|2 +m2
H±|H

+|2 + . . . , h (378)
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Then, provided that vu, vd minimize the tree-level potential,29

one finds that β0 = β± = β, and m2
G0 = m2

G± = 0, and

m2
A = 2b/ sin(2β) = 2|µ|2 +m2

Hu
+m2

Hd
(379)

m2
h,H = 1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2(2β)

)
, (380)

m2
H± = m2

A +m2
W . (381)

The mixing angle α is determined, at tree-level, by

sin 2α

sin 2β
= −

(
m2
H +m2

h

m2
H −m2

h

)
,

tan 2α

tan 2β
=

(
m2
A +m2

Z

m2
A −m2

Z

)
, (382)

and is traditionally chosen to be negative; it follows that
−π/2 < α < 0 (provided mA > mZ). The Feynman rules for
couplings of the mass eigenstate Higgs scalars to the Standard
Model quarks and leptons and the electroweak vector bosons,

29It is often more useful to expand around VEVs vu, vd that do not minimize the tree-level potential, for example to
minimize the loop-corrected effective potential instead. In that case, β, β0, and β± are all slightly different.
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as well as to the various sparticles, have been worked out in
detail (Gunion-Haber, and HHG).

The masses of A, H and H± can in principle be arbitrarily
large since they all grow with b/ sin(2β). In contrast, the mass
of h is bounded above. From Eq. (380), one finds at tree-level:

mh < mZ| cos(2β)| (383)

This corresponds to a shallow direction in the scalar potential,
along the direction (H0

u − vu,H0
d − vd) ∝ (cosα,− sinα).

The existence of this shallow direction can be traced to the
fact that the quartic Higgs couplings are given by the square
of the electroweak gauge couplings, via the D-term.

A contour map of the potential, for a typical case with tanβ ≈
− cotα ≈ 10, is shown in Figure 35.
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Figure 35: A contour map of the Higgs potential, for a typical case with

tanβ ≈ − cotα ≈ 10. The minimum of the potential is marked by +, and the

contours are equally spaced equipotentials. Oscillations along the shallow direction, with

Hu/H
0
d ≈ 10, correspond to the mass eigenstate h, while the orthogonal steeper direction

corresponds to the mass eigenstate H.

If the tree-level inequality (383) were robust, the lightest
Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of
h is subject to quantum corrections that are relatively drastic.
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The largest such contributions typically come from top and
stop loops, as shown30 in Fig. 36.

Figure 36: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark

one-loop diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a

large positive correction to m2
h in the limit of heavy top squarks.

In the simple limit of top squarks that have a small mixing in
the gauge eigenstate basis and with masses mt̃1

, mt̃2
much

greater than the top quark mass mt, one finds a large positive

30In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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one-loop radiative correction to Eq. (380):

∆(m2
h) =

3

4π2
cos2α y2

tm
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (384)

This shows that mh can at least approach the observed 126
GeV mass.

An alternative way to understand the size of the radiative
correction to the h mass is to consider an effective theory
in which the heavy top squarks and top quark have been
integrated out.

The quartic Higgs couplings in the low-energy effective theory
get large positive contributions from the the one-loop diagrams
of Fig. 37. This increases the steepness of the Higgs potential,
and can be used to obtain the same result for the enhanced h
mass.
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Figure 37: Integrating out the top quark and top squarks yields large positive contributions

to the quartic Higgs coupling in the low-energy effective theory, especially from these one-loop

diagrams.

An interesting case, often referred to as the “decoupling limit”,
occurs when mA� mZ.

– Then mh can saturate the upper bounds just mentioned,
with m2

h ≈ m2
Z cos2(2β)+ loop corrections.

– The particles A, H, and H± will be much heavier and nearly
degenerate, forming an isospin doublet that decouples from
sufficiently low-energy experiments.

– The angle α is very nearly β − π/2, and h has the same
couplings to quarks and leptons and electroweak gauge
bosons as would the physical Higgs boson of the ordinary
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Standard Model without supersymmetry.
– Indeed, model-building experiences have shown that it is not

uncommon for h to behave in a way nearly indistinguishable
from a Standard Model-like Higgs boson, even if mA is not
too huge.

– However, it should be kept in mind that the couplings of
h might turn out to deviate significantly from those of a
Standard Model Higgs boson.

Top-squark mixing (which we may discuss later) can result in
a further large positive contribution to m2

h. At one-loop order,
and working in the decoupling limit for simplicity, Eq. (384)
generalizes to:
m

2
h = m

2
Z cos

2
(2β)

+
3

4π2
sin

2
β y

2
t

[
m

2
t ln

(
mt̃1

mt̃2
/m

2
t

)
+ c

2
t̃s

2
t̃(m

2
t̃2
−m2

t̃1
) ln(m

2
t̃2
/m

2
t̃1

)

+c
4
t̃s

4
t̃

{
(m

2
t̃2
−m2

t̃1
)

2 − 1
2(m

4
t̃2
−m4

t̃1
) ln(m

2
t̃2
/m

2
t̃1

)

}
/m

2
t

]
. (385)

Here ct̃ and st̃ are the cosine and sine of a top squark mixing
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angle θt̃, defined more specifically later on when we discuss the
squark sector.

For fixed top-squark masses, the maximum possible h mass
occurs for rather large top squark mixing, c2

t̃
s2
t̃

= m2
t/[m

2
t̃2

+

m2
t̃1
− 2(m2

t̃2
−m2

t̃1
)/ln(m2

t̃2
/m2

t̃1
)] or 1/4, whichever is less.

It follows that the quantity in square brackets in Eq. (385) is
always less than m2

t[ln(m2
t̃2
/m2

t) + 3].

The observed 126 GeV mass makes large top-squark mixing
mandatory unless the top-squark masses are themselves extremely
large.

Including these and other important corrections one can obtain
only a weaker, but still very interesting, bound

mh <∼ 135 GeV (386)

in the MSSM. This assumes that all of the sparticles that can
contribute to m2

h in loops have masses that do not exceed 1
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TeV.

Thus, before the LHC discovery it was a fairly robust prediction
of supersymmetry at the electroweak scale that at least one of
the Higgs scalar bosons had to be light.

The measured 126 GeV mass does not require extreme measures,
but does lead to large fine-tuning in order to have consistency
with the Z mass, as described earlier.

Let us now recall that the top, charm and up quark mass matrix
is proportional to vu = v sinβ and the bottom, strange, and
down quarks and the charge leptons get masses proportional
to vd = v cosβ. At tree-level,

mt = ytv sinβ, mb = ybv cosβ, mτ = yτv cosβ.

(387)

These relations hold for the running masses rather than the
physical pole masses, which are significantly larger for t, b.

Considering yb and yτ , we see that at tree level yb/yt =
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(mb/mt) tanβ and yτ/yt = (mτ/mt) tanβ, so that yb and
yτ are large if tanβ is much larger than 1.

In fact, there are good theoretical motivations for considering
models with large tanβ. For example, models based on the
GUT gauge group SO(10) can unify the running top, bottom
and tau Yukawa couplings at the unification scale; this requires
tanβ to be very roughly of order mt/mb.

Further notes:

– If one tries to make sinβ too small, yt will be nonperturbatively
large.
Requiring that yt does not blow up above the electroweak
scale, one finds that tanβ >∼ 1.2 or so, depending on the
mass of the top quark, the QCD coupling, and other details.

– In principle, there is also a constraint on cosβ if one requires
that yb and yτ do not become nonperturbatively large.
This gives a rough upper bound of tanβ <∼ 65. However,
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this is complicated somewhat by the fact that the bottom
quark mass gets significant one-loop non-QCD corrections in
the large tanβ limit.

– One can obtain a stronger upper bound on tanβ in some
models where m2

Hu
= m2

Hd
at the GUT or other high energy

input scale, by requiring that yb does not significantly exceed
yt.31

– The parameter tanβ also directly impacts the masses and
mixings of the MSSM sparticles,.

31If yb were substantially larger than yt, then the RG evolution equations for the soft-SUSY-breaking masses
m2
Hu
,m2

Hd
that we did not discuss, would imply m2

Hd
< m2

Hu
at the electroweak scale. In this case, the minimum

of the potential would have 〈H0
d〉 > 〈H

0
u〉, which would be a contradiction with the supposition that tanβ is large.

J. Gunion 250Higgs, U.C. Davis, 313



The RNS approach to the Little Hierarchy
Problem

Outline

• Models of natural supersymmetry seek to solve the little
hierarchy problem by positing a spectrum of light higgsinos
<∼ 200−300 GeV and light top squarks

<∼ 600 GeV along with
very heavy squarks and TeV-scale gluinos.

Such models have low electroweak fine-tuning and satisfy the
LHC constraints.

• However, in the context of the MSSM, they predict too low
a value of mh, are frequently in conflict with the measured
b → sγ branching fraction and the relic density of thermally
produced higgsino-like WIMPs falls well below dark matter
(DM) measurements.
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• RNS posits a framework dubbed radiative natural SUSY (RNS)
which can be realized within the MSSM (avoiding the addition
of extra exotic matter) and which maintains features such as
gauge coupling unification and radiative electroweak symmetry
breaking.

• The RNS model can be generated from SUSY GUT type
models with non-universal Higgs masses (NUHM). Allowing
for high scale soft SUSY breaking Higgs mass mHu > m0

leads to automatic cancellations during renormalization group
(RG) running, and to radiatively-induced low fine-tuning at the
electroweak scale.

• Coupled with large mixing in the top squark sector, RNS allows
for fine-tuning at the 3-10% level with TeV-scale top squarks
and a 125 GeV light Higgs scalar h.

• The model allows for at least a partial solution to the SUSY
flavor, CP and gravitino problems since first/second generation
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scalars (and the gravitino) may exist in the 10-30 TeV regime.

• There are some interesting possible signatures for RNS at the
LHC such as the appearance of low invariant mass opposite-sign
isolated dileptons from gluino cascade decays.

• The smoking gun signature for RNS is the appearance of light
higgsinos at a linear e+e− collider.

• If the strong CP problem is solved by the Peccei-Quinn
mechanism, then RNS naturally accommodates mixed axion-
higgsino cold dark matter, where the light higgsino-like WIMPS
– which in this case make up only a fraction of the measured
relic abundance – should be detectable at upcoming WIMP
detectors.

Introduction

• The recent discovery by Atlas and CMS of a Higgs-like
resonance at the CERN LHC adds credence to supersymmetric
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models (SUSY) of particle physics in that the mass value
mh ' 125 GeV falls squarely within the narrow window
predicted by the Minimal Supersymmetric Standard Model
(MSSM): mh ∼ 115− 135 GeV.

• At the same time, the lack of a SUSY signal at LHC7 and LHC8

implies mg̃
>∼ 1.4 TeV (for mg̃ ∼ mq̃) and mg̃

>∼ 0.9 TeV (for
mg̃ � mq̃).

• While weak scale SUSY provides a solution to the gauge
hierarchy problem via the cancellation of quadratic divergences,
the apparently multi-TeV sparticle masses required by LHC
searches seemingly exacerbates the little hierarchy problem (LHP):

– how do multi-TeV values of SUSY model parameters conspire
to yield a Z-boson (Higgs boson) mass of just 91.2 (125) GeV?

• Models of natural supersymmetry address the LHP by positing

a spectrum of light higgsinos
<∼ 200 GeV and light top- and
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bottom-squarks with mt̃1,2,b̃1

<∼ 600 GeV along with very heavy

first/second generation squarks and TeV-scale gluinos.

Such a spectrum allows for low electroweak fine-tuning (EWFT)
while at the same time keeping sparticles safely beyond LHC
search limits.

Because third generation scalars are in the few hundred GeV
range, the radiative corrections to mh, which increase only
logarithmically with m2

t̃i
, are never very large and these models

have great difficulty in accommodating a light SUSY Higgs
scalar with mass mh ∼ 125 GeV.

Thus, we are faced with a new conundrum:

– how does one reconcile low EWFT with such a large value of
mh?

A second problem occurs in that

– the predicted branching fraction for b→ sγ decay is frequently
at odds with the measured value due to the very light third
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generation squarks.

A third issue appears in that

– the light higgsino-like WIMP particles predicted by models
of natural SUSY lead to a thermally-generated relic density
which is typically a factor 10-15 below the WMAP measured
value of ΩCDMh

2 ' 0.11.

• One solution to the fine-tuning/Higgs problem is to add extra
fields to the theory, thus moving beyond the MSSM.

For example, adding an extra singlet as in the NMSSM permits
a new quartic coupling in the Higgs potential thus allowing for
an increased value of mh.

• Alternatively, one may add extra vector-like matter to increase
mh while maintaining light top squarks.

• In the former case of the NMSSM, adding extra gauge singlets
may lead to re-introduction of destabilizing divergences into
the theory.
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In the latter case, one might wonder about the ad-hoc
introduction of extra weak scale matter multiplets and how
they might have avoided detection.

• A third possibility, which is presented below, is to re-examine
EWFT and to ascertain if there do indeed exist sparticle spectra
within the MSSM that lead to mh ∼ 125 GeV while maintaining
modest levels of electroweak fine-tuning.

Electroweak fine-tuning

• One way to evaluate EWFT in SUSY models is to examine the
minimization condition from the Higgs sector scalar potential
which determines the Z boson mass. (Alternatively, one
may examine the mass formula for mh and arrive at similar
conclusions.)

Minimization of the one-loop effective potential Vtree + ∆V ,
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leads to

M2
Z

2
=
m2
Hd

+ Σdd − (m2
Hu

+ Σuu) tan2 β

tan2 β − 1
− µ2 , (388)

where Σuu and Σdd are radiative corrections that arise from the
derivatives of ∆V evaluated at the minimum.

Eq. (388) reduces to the familiar tree-level expression for M2
Z

when radiative correction terms are ignored.

As you know, Σuu and Σdd include contributions from various
particles and sparticles with sizeable Yukawa and/or gauge
couplings to the Higgs sector.

• To obtain a natural value of MZ on the left-hand-side, one
would like each term Ci (with i = Hd, Hu, µ as well as
Σuu(k), Σdd(k), where k denotes the various contributions to
the Σs that we just mentioned) on the right-hand-side to have
an absolute value of order M2

Z/2.
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Traditionally, EWFT has been quantified using the Barbieri-
Giudice measure[710, 711, 712, 713, 714, 715, 716, 717, 718,
719, 720, 721, 722, 723, 724]

∆BG ≡ maxi

∣∣∣∣∣∂ lnm2
Z

∂ ln ai

∣∣∣∣∣ (389)

where ai represents various fundamental parameters of the
theory, usually taken to be some set of soft SUSY breaking
parameters defined at some high energy scale ΛHS below which
the theory in question is posited to be the correct effective
field theory description of nature. 1/∆ is the % of fine tuning.
The value of ∆BG then answers the question: how stable is
the fractional Z-boson mass against fractional variation of high
scale model parameters?

Depending on which parameters are included in the set ai, very
different answers emerge[724].
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In addition, theories which are defined at very different values
of ΛHS, but which nonetheless lead to exactly the same weak
scale sparticle mass spectra, give rise to very different values
of ∆BG.

• To understand how the underlying framework for superpartner
masses may be relevant, consider a model with input parameters
defined at some high scale Λ� mSUSY , where mSUSY is the
SUSY breaking scale ∼ 1 TeV and Λ may be as high as MGUT

or even the reduced Planck mass MP . Then

m2
Hu

(mSUSY ) = m2
Hu

(Λ) + δm2
Hu

(390)

where

δm2
Hu
' −

3f2
t

8π2

(
m2
Q3

+m2
U3

+A2
t

)
log

(
Λ

mSUSY

)
. (391)
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• Requiring δm2
Hu
≤ ∆× m2

h
2

then leads for mh = 125 GeV to,

√
m2
t̃1

+m2
t̃2

<∼ 600 GeV
sinβ√
1 +R2

t

(
log Λ

TeV

3

)−1/2(
∆

5

)1/2

,

(392)

where Rt = At/
√
m2
t̃1

+m2
t̃2

. Taking ∆ = 10 and Λ as low

as 20 TeV corresponds to

– |µ| <∼ 200 GeV,

– mt̃i
, mb̃1

<∼ 600 GeV,

– mg̃
<∼ 1.5− 2 TeV.

The last of these conditions arises because the squark radiative
corrections δm2

t̃i
∼ (2g2

s/3π
2)m2

g̃ × log Λ. Setting the log to

unity and requiring δm2
t̃i
< m2

t̃i
then implies mg̃

<∼ 3mt̃i
, or

mg̃
<∼ 1.5− 2 GeV for ∆

<∼ 10.
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• Taking Λ as high as MGUT leads to even tighter constraints:

mt̃1,2
,mb̃1

<∼ 200 GeV and mg̃
<∼ 600 GeV, almost certainly in

violation of LHC sparticle search constraints.

• Since (degenerate) first/second generation squarks and sleptons
enter into (388) only at the two loop level, these can be much
heavier: beyond LHC reach and also possibly heavy enough to
provide a (partial) decoupling solution to the SUSY flavor and
CP problems.

• In gravity mediation where mq̃ ∼ m3/2, then one also solves
the cosmological gravitino problem and in GUTs one also
suppresses proton decay. Then we may also have

– mq̃, ˜̀∼ 10− 50 TeV.

• The generic natural SUSY (NS) solution reconciles lack of a
SUSY signal at LHC with allowing for electroweak naturalness.
It also predicts that the t̃1,2 and b̃1 may soon be accessible
to LHC searches. New limits from direct top- and bottom-
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squark pair production searches, interpreted within the context
of simplified models, have begun to bite into the NS parameter
space. Of course, if mt̃1,2

, mb̃1
' mZ̃1

, then the visible decay
products from stop and sbottom production will be soft and
difficult to see at the LHC.

• A more worrisome problem comes from the newly discovered
value of the Higgs mass mh ' 125 GeV. In the MSSM, one
obtains (assuming that the t-squarks are not very split),

m2
h 'M

2
Z cos2 2β +

3g2

8π2

m4
t

m2
W

[
ln
m2
t̃

m2
t

+
X2
t

m2
t̃

(
1−

X2
t

12m2
t̃

)]
(393)

where Xt = At−µ cotβ and m2
t̃
' mQ3mU3. For a given m2

t̃
,

this expression is maximal for large mixing in the top-squark
sector with Xmax

t =
√

6mt̃.

With top-squark masses below about 500 GeV, the radiative
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corrections to mh are not large enough to yield mh ' 125 GeV
even with maximal mixing.

• This situation has been used to argue that additional multiplets
beyond those of the MSSM must be present in order to raise
up mh while maintaining very light third generation squarks.

Added to these are the two issues mentioned earlier:

1. the very light third generation squarks endemic to NS lead
to a predicted branching fraction for b → sγ decay which is
frequently much lower than the measured value, and

2. that the relic abundance of higgsino-like WIMPs inherent
in NS, calculated in the standard MSSM-only cosmology, is
typically a factor 10-15 below measured values.

• These issues have led to increasing skepticism of weak scale
SUSY as realized in the natural SUSY incarnation described
above.

• A possible resolution to the above issues associated with a NS
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spectrum is to simply invoke a SUSY particle spectrum at the
weak scale (or some other nearby scale), as in the pMSSM
model so that large logarithms associated with a high value of
Λ are absent.

In this case, Λ ∼ mSUSY and δm2
Hu

is not enhanced by large
logarithms and we may select parameters m2

Hu
∼ µ2 ∼M2

Z ∼
m2
h. Of course, heavy top squarks are needed to obtain the

observed value of mh.

While a logical possibility, this solution loses several attractive
features of models which are valid up to scales as high as
Λ ∼ MGUT, such as gauge coupling unification and radiative
electroweak symmetry breaking driven by a large top quark
mass.

• Another alternative is to use ∆EW discussed below as a fine-
tuning measure even for models defined at the high scale.

Small ∆EW will be simply the statement that we only use the
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weak scale parameters appearing in Eq. (388) to define the
fine-tuning criterion. This approach is a weaker condition since
it allows for possible cancellations in (390).

Indeed this is precisely what happens in what is known as the
hyperbolic branch or focus point region (HB/FP) where

m2
Hu

(Λ) + δm2
Hu
∼ m2

Hu
(mSUSY ) ∼ µ2 ∼M2

Z. (394)

The HB/FP region of mSUGRA occurs, however, only for small
values of A0/m0 and yields mh < 120 GeV, well below the
Atlas/CMS measured value of mh ' 125 GeV.

Scans over parameter space show that the HB/FP region
is nearly excluded if one requires both low |µ| and mh ∼
123− 127 GeV.

• To obtain a viable high scale model we see that we clearly need
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to go beyond mSUGRA.

∆EW and ∆HS

Let us now define more precisely the two different measures of
EWFT– ∆EW and ∆HS– that have been proposed to answer
the following question:

how is it possible that mZ has a value of just 91.2 GeV while
gluino and squark masses exist at TeV or even far beyond
values?

As we have discussed, the answer should be: those independent
contributions which enter the scalar potential and conspire to
build up the Z-boson mass should all be comparable to mZ.

Minimization of the scalar potential in the MSSM[704] leads
to the well-known relation that

m2
Z

2
=
m2
Hd

+ Σdd − (m2
Hu

+ Σuu) tan2 β

tan2 β − 1
− µ2 , (395)
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where m2
Hu

and m2
Hd

are soft SUSY breaking (not physical)
Higgs mass terms, µ is the superpotential Higgsino mass term,
tanβ ≡ vu/vd is the ratio of Higgs field vevs and Σuu and Σdd
include a variety of independent radiative corrections[725].

∆EW

Noting that all entries in Eq. 395 are defined at the weak scale,
the electroweak fine-tuning parameter

∆EW ≡ maxi |Ci| /(m2
Z/2) , (396)

may be constructed, where CHd = m2
Hd
/(tan2 β− 1), CHu =

−m2
Hu

tan2 β/(tan2 β − 1) and Cµ = −µ2. Also, CΣuu(k) =

Σuu(k)/(m2
Z/2) and CΣd

d
(k) = Σdd(k)/(m2

Z/2), where k labels
the various loop contributions included in Eq. 395.

A low value of ∆EW means less fine-tuning, e.g. ∆EW =

20 corresponds to ∆−1
EW = 5% finetuning amongst terms
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contributing to m2
Z/2. Since CHd and CΣd

d
(k) terms are

suppressed by tan2 β − 1, for even moderate tanβ values the
expression Eq. 395 reduces approximately to

m2
Z

2
' −(m2

Hu
+ Σuu)− µ2 . (397)

In order to achieve low ∆EW , it is necessary that −m2
Hu

, −µ2

and each contribution to −Σuu all be nearby to m2
Z/2 to within

a factor of a few.

We note that ∆EW coincides with ∆BG when M2
Z depends

linearly on input parameters (such as µ2, m2
Hu

or m2
Hd

using
electroweak scale parameters) but differs when the parameter
dependence is non-linear.

For electroweak scale parameters, the non-linear dependence
only occurs in the radiative correction terms Σuu and Σdd and in
tanβ.
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A scan over mSUGRA/CMSSM parameter space, requiring
that LHC sparticle mass constraints and mh = 125 ± 2 GeV
be obeyed, finds a minimal value of ∆EW ∼ 102, with more
common values being ∆EW ∼ 103 − 104. Thus, one may
conclude that the Z mass is rather highly finetuned in this
paradigm model.

In the case of mSUGRA, the value Cµ becomes low only in
the hyperbolic branch/focus point[716, 718] (HB/FP) region.
In this region, however, m0 and consequently mt̃1,2

are very

large, so that Σuu(t̃1,2) are each large, and the model remains
finetuned.

Alternatively, if one moves to the two-parameter non-universal
Higgs model (NUHM2)[726], with free parameters

m0, m1/2, A0, tanβ, µ, mA (398)

then
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1. µ can be chosen in the 100− 300 GeV range since it is now
a free input parameter,

2. a value of m2
Hu

(mGUT ) ∼ (1.3− 2.5)m0 may be chosen so
that m2

Hu
is driven only slightly negative at the weak scale,

leading to m2
Hu

(weak) ∼ −m2
Z/2, and

3. with large stop mixing from A0 ∼ ±1.6m0, the top-squark
radiative corrections are softened while mh is raised to the
∼ 125 GeV level[725].

In the NUHM2 model, ∆EW as low as 5 − 10 can be
generated. For such cases, the Little Hierarchy Problem
seems to disappear. The low ∆EW models are typified by
the presence of light higgsinos m±

W̃1
, mZ̃1,2

∼ 100− 300 GeV

which should be accessible to a linear e+e− collider operating

with
√
s
>∼ 2|µ|. Also, mg̃ ∼ 1 − 5 TeV while mt̃1

∼ 1 − 2
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TeV and mt̃2
∼ 2− 4 TeV.

∆HS

To include explicit dependence on the high scale Λ at which
the SUSY theory may be defined, we may write the weak scale

parameters m2
Hu,d

and µ2 in Eq. (395) as

m2
Hu,d

= m2
Hu,d

(Λ) + δm2
Hu,d

; µ2 = µ2(Λ) + δµ2 , (399)

where m2
Hu,d

(Λ) and µ2(Λ) are the corresponding parameters

renormalized at the high scale Λ. It is the δm2
Hu,d

terms that

will contain the log Λ dependence emphasized in constructs of
natural SUSY models[727, 728, 729]. In this way, we write

m2
Z

2
=

(m2
Hd

(Λ) + δm2
Hd

+ Σdd)− (m2
Hu

(Λ) + δm2
Hu

+ Σuu) tan2 β

tan2 β − 1
−(µ

2
(Λ)+δµ

2
) .

(400)

In the same spirit used to construct ∆EW , we can now define
a fine-tuning measure that encodes the information about the
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high scale origin of the parameters by requiring that each of
the terms on the right-hand-side of Eq. (400) (normalized
again to m2

Z/2) be smaller than a value ∆HS. The high scale
fine-tuning measure ∆HS is thus defined to be

∆HS ≡ maxi|Bi|/(m2
Z/2) , (401)

with BHd ≡ m2
Hd

(Λ)/(tan2 β − 1) etc., defined analogously
to the set Ci.

As discussed above, in models such as mSUGRA whose domain
of validity extends to very high scales, because of the large
logarithms one would expect that (barring seemingly accidental
cancellations) the BδHu contributions to ∆HS would be much
larger than any contributions to ∆EW because the term m2

Hu

evolves from large m2
0 through zero to negative values in order

to radiatively break electroweak symmetry. Thus, ∆HS is
numerically very similar to the EWFT measure advocated by
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Kitano-Nomura[727] where ∆KN = δm2
Hu
/(m2

h/2)

Scans of the mSUGRA/CMSSM model in Ref. [730] found

∆HS
>∼ 103. In Ref. [725], scans over NUHM2 model similarly

found ∆HS
>∼ 103. Thus, both the mSUGRA and NUHM2

models would qualify as highly EW finetuned under ∆HS.

• A perhaps surprising result is that ∆HS values far below the
NUHM2/mSUGRA minimal value of 103 can now be found.
In fact, the lowest ∆HS point from a broad scan has a value
of 32, or 3.1% EWFT, even including the effect of high scale
logarithms.

There are several features of the input parameters which lead
to low ∆HS.

First, the GUT scale value of m2
Hu

= (314 GeV)2, so our high
scale starting point for mHu is not too far from mZ.

Second, the GUT scale gaugino masses M1 and M2 are ∼
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3M3 ∼ 3 TeV. The RG running of m2
Hu

is governed by

dm2
Hu

dt
=

2

16π2

(
−

3

5
g2

1M
2
1 − 3g2

2M
2
2 +

3

10
g2

1S + 3f2
tXt

)
(402)

where t = log(Q2/µ2),

S = m2
Hu
−m2

Hd
+ Tr

[
m2
Q −m2

L − 2m2
U + m2

D + m2
E

]
and

Xt = m2
Q(3) +m2

U(3) +m2
Hu

+A2
t.

At Q = mGUT , the large gaugino masses provide a large
negative slope (green curve of Fig. 38) for m2

Hu
, causing its

value to increase while running towards lower mass scales.

As the parameters evolve, Xt increases due to the increasing
squark soft terms so that the Yukawa coupling term grows (red
curve from Fig. 38) and ultimately dominates; then m2

Hu
is

driven towards negative values, so that electroweak symmetry
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is finally broken.

Figure 38: Plot of a) slope dm2
Hu
/dt vs. Q from model HS1 with ∆HS = 32.

The total slope (black curve) passes through zero around
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Q ∼ 1010 GeV, indicating large cancellations in the RG running
of m2

Hu
.

Ultimately, the value of m2
Hu

(mweak) ∼ −(185 GeV)2 so that
both the starting and ending points of m2

Hu
remain not too

far from m2
Z, and hence δm2

Hu
is not too far from m2

Z, thus
fulfilling the most important condition required by low ∆HS.

The RG running of gaugino masses and selected soft scalar
masses for HS1 are shown in Fig. 39.

We see that indeed M1 and M2 start at ∼ 3 TeV values and
decrease, whilst M3 starts small at Q = mGUT and sharply
increases.

The gaugino mass boundary conditions then influence the
running of the soft scalar masses shown in Fig. 40.
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Figure 39: Plot of running gaugino masses vs. Q from model HS1 with ∆HS = 32.
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Figure 40: Plot of running scalar masses vs. Q from model HS1 with ∆HS = 32.

Most important is the running of m2
Hu

, as shown in Fig. 40,
which starts near m2

Z at mGUT , runs up to about the TeV
scale at Q ∼ 1010 GeV, and then is pushed to small negative
values by Q ∼ mweak.
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Also, mU(3) and mQ(3) start small, which aides the high Q
gaugino dominance in the running of m2

Hu
.

By Q ∼ mweak, these third generation squark soft terms have
been pushed to the TeV scale. Thus, top squarks are not so
heavy and the radiative corrections Σuu(t̃1,2) are under control.

• To contrast the above to how a low value of m2
Hu

(mSUSY )

is obtained in the previously discussed RNS models, in Fig. 41
we show the running of various SUSY parameters versus the
renormalization scale Q for the RNS2 benchmark point.

The RNS2 point has parameters m0 = 7025 GeV, m1/2 =

568.3 GeV, A0 = −11426.6 GeV, tanβ = 8.55 with µ =

150 GeV and mA = 1000 GeV.

The gaugino and matter scalar mass parameters evolve from
m1/2 and m0 to their weak scale values, resulting in a pattern
of masses very similar to that in mSUGRA. The parameters µ
and m2

Hd
hardly evolve.
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Figure 41: Evolution of SSB parameters from MGUT to Mweak for the RNS2 benchmark

point taken from in Ref. [?] whose parameters are given in the text. The graph extends to

values below Q2 = mt̃1
mt̃2

where the Higgs mass parameters are extracted.
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Of most interest to us here is the RG evolution of m2
Hu

. As
is well known, the SUSY breaking parameters m2

Q3
, m2

U3
and

m2
Hu

of the scalar fields that couple via the large top quark
Yukawa coupling are driven down with reducing values of the
scale Q.

The reduction is the greatest for m2
Hu

which, in fact, is driven
negative, triggering the radiative breakdown of electroweak
symmetry. We see from the figure that the weak scale value
of −m2

Hu
has a magnitude ∼ M2

Z, and is much smaller than
the weak scale value of other mass parameters.

In this way, small ∆EW becomes possible if µ is also of order
MZ.

In this kind of RNS model, small ∆EW is thus not an accident
because the NUHM2 model provides us the flexibility to adjust the

GUT scale value of m2
Hu

so that it barely runs to negative values

at the weak scale. Since m2
Hu

is driven radiatively to ∼ −M2
Z at
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the weak scale, this was why this scenario was dubbed Radiative

Natural SUSY, or RNS for short.

Some Conclusions

• In previous studies, the radiative natural SUSY model had
emerged as a way to reconcile low EWFT with lack of SUSY
signals at LHC8 and the presence of a light Higgs scalar with
mass mh ∼ 125 GeV.

The RNS model cannot be realized within the restrictive
mSUGRA/CMSSM framework, but can be realized within
the context of NUHM2 models (which depend on 6 input
parameters) and where µ can be a free input value.

In RNS models, ∆EW as low as ∼ 10 can be generated while
∆HS as low as 103 can be found.

However, if one does scans over the most general minimal
flavor- and minimal CP -violating GUT scale SUSY model –
SUGRA19, which is like the pMSSM, but defined at high scale)
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— the conclusions change.

• The first question is if the additional freedom of 13 extra
parameters allows for much lower ∆EW solutions. In previous
work– by proceeding from mSUGRA to NUHM2 models– a
reduction in the minimum of ∆EW of at least a factor of 10
was found[730, 725].

In fact, one does not find any substantial reduction in the
minimal ∆EW value by proceeding from the NUHM2 model
to SUGRA19. The parameter freedom of NUHM2 appears
sufficient to minimize ∆EW to its lowest values of ∼ 5− 10.

• The second question is whether the additional parameter
SUGRA19 freedom can improve on the high scale EWFT
parameter ∆HS.

In this regard, one does find improvements by factors ranging
up to ∼ 150!

In order to generate low values of ∆HS, one must generate
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µ ∼ 100 − 300 GeV as usual, but also one must start with
m2
Hu
∼ m2

Z at the GUT scale, and then generate relatively
little change δm2

Hu
during evolution from mGUT to mweak.

Small values of δm2
Hu

can be found if one begins with
electroweak gaugino masses M1,2 ∼ 3M3 at the GUT scale
so that gaugino-induced RG evolution dominates at high
Q ∼ mGUT .

Then at lower Q values approaching the weak scale, top-
Yukawa terms dominate the running of m2

Hu
, leading to broken

electroweak symmetry, but also to not much net change in
m2
Hu

during its evolution from mGUT to mweak.

The solutions with low ∆HS are characterized by the presence
of four light higgsinos W̃±1 and Z̃1,2 similar to RNS models.

However, in contrast to RNS models, the third generation
squarks tend to be lighter (although not as light as generic

natural SUSY which favors mt̃1,2

<∼ 500 GeV).
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The lighter third generation squarks lead to significant SUSY
contributions to the decay b→ sγ, and seem to be disfavored
by the measured value of this branching fraction.

In the case of low ∆HS models, the lightest neutralino is more
higgsino-like than in RNS models, leading to even lower values
of predicted relic density and low direct detection rates.

The remaining CDM abundance may be augmented by scalar
field or axino/saxion production and decay in the early universe,
and in the latter case, the additional presence of axions is
expected.
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Fine Tuning in the NMSSM

There are a number of recent relevant papers.

1. arXiv:1212.5243 (Gherghetta et. al.) shows that you can
get small fine-tuning if you use an upper cutoff of order
Λ ∼ 20 TeV.

Well, I regard this as no big deal since this was already true in
the MSSM

2. There is generalized version of the NMSSM which gets you to
smaller fine-tuning using GUT scale boundary conditions, but
it is kind of messy: see arXiv:1205.1509 (Graham Ross, et.
al.).

3. I claim that my work with Kraml and Yun (arXiv:1201.0982)
is actually more relevant to this question when GUT scale
boundary conditions are employed.
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Let us recall some defining equations for the NMSSM.

The parameters in the Higgs sector are chosen as follows:

a) Apart from the usual quark and lepton Yukawa couplings, the
scale invariant superpotential is

λ ŜĤuĤd +
κ

3
Ŝ3 (403)

depending on two dimensionless couplings λ, κ beyond the
MSSM. (Hatted capital letters denote superfields, and unhatted
capital letters will denote their scalar components).

b) The associated trilinear soft terms are

λAλSHuHd +
κ

3
AκS

3 . (404)

c) The final two input parameters are

tanβ = 〈Hu〉 / 〈Hd〉 , µeff = λ 〈S〉 . (405)
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These, along with MZ, can be viewed as determining the three
SUSY breaking masses squared for Hu, Hd and S through the
three minimization equations of the scalar potential.

Thus, as compared to two independent parameters in the Higgs
sector of the MSSM (often chosen as tanβ and MA), the Higgs
sector of the NMSSM is described by the six parameters

λ , κ , Aλ , Aκ, tanβ , µeff . (406)

We will choose sign conventions for the fields such that λ and
tanβ are positive, while κ, Aλ, Aκ and µeff should be allowed
to have either sign. For any choice of these parameters – as
well as of the values for the gaugino masses and of the soft
terms related to the squarks and sleptons that contribute to the
radiative corrections in the Higgs sector

The three models we considered are defined in terms of grand-
unification (GUT) scale parameters as follows:
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I) a version of the constrained NMSSM (CNMSSM) in which
we adopt universal m0, m1/2, A0 = At,b,τ values but require
Aλ = Aκ = 0, as motivated by the U(1)R symmetry limit of
the NMSSM;

II) the non-universal Higgs mass (NUHM) relaxation of model I
in which mHu and mHd are chosen independently of m0, but
still with Aλ = Aκ = 0; and

III) universal m0, m1/2, A0 with NUHM relaxation and general
Aλ and Aκ.

We used NMSSMTools-3.0.2 [126][162][?] for the numerical
analysis, performing extensive scans over the parameter spaces
of the models considered.

The precise constraints imposed were the following.

1. Our ‘basic constraints’ were to require that an NMSSM
parameter choice be such as to give a proper RGE solution,
have no Landau pole, have a neutralino LSP and obey Higgs
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and SUSY mass limits as implemented in NMSSMTools-3.0.2
(Higgs mass limits are from LEP, TEVATRON, and early LHC
data; SUSY mass limits are essentially from LEP).

2. Regarding B physics, the constraints considered were those on
BR(Bs → Xsγ), ∆Ms, ∆Md, BR(Bs → µ+µ−), BR(B+ →
τ+ντ) and BR(B → Xsµ

+µ−) at 2σ as encoded in NMSSMTools-
3.0.2, except that we updated the bound on the radiative Bs
decay to 3.04 < BR(Bs → Xsγ) × 104 < 4.06; theoretical
uncertainties in B-physics observables are taken into account
as implemented in NMSSMTools-3.0.2. These combined
constraints we term the ‘B-physics contraints’.

3. Regarding aµ, we required that the extra NMSSM contribution,
δaµ, falls into the window defined in NMSSMTools of 8.77×
10−10 < δaµ < 4.61 × 10−9 expanded to 5.77 × 10−10 <

δaµ < 4.91× 10−9 after allowing for a 1σ theoretical error in
the NMSSM calculation of ±3× 10−10.
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In fact, points that fail to fall into the above δaµ window
always do so by virtue of δaµ being too small.

4. For Ωh2, we declare that the relic density is consistent with
WMAP data provided 0.094 < Ωh2 < 0.136, which is the
‘WMAP window’ defined in NMSSMTools-3.0.2 after including
theoretical and experimental systematic uncertainties.

We also considered the implications of relaxing this constraint
to simply Ωh2 < 0.136 so as to allow for scenarios in which
the relic density arises at least in part from some other source.

5. A “perfect” point is one for which all constraints are satisfied
including requiring that δaµ is in the above defined window
and Ωh2 is in the WMAP window.

Results

• We find that only in models II and III is it possible for a
“perfect” point to have a light scalar Higgs in the mass range
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123 − 128 GeV as consistent with the hints from the recent
LHC Higgs searches. The largest mh1 achieved for perfect
points is about 125 GeV.

• However, relaxing the aµ constraint vastly increases the number
of accepted points and it is possible to have mh1

>∼ 126 GeV

in both models II and III even if δaµ is just slightly outside
(below) the allowed window.

Comparing with [?], the tension between obtaining an ideal or
nearly ideal δaµ while predicting a SM-like light Higgs near
125 GeV appears to be somewhat less in NUHM variants of
the NMSSM than in those of the MSSM.

In the plots shown in the following, the coding for the plotted
points is as follows:

• grey squares pass the ‘basic’ constraints but fail B-physics
constraints (such points are rare);

• green squares pass the basic constraints and satisfy B-physics
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constraints;

• blue plusses (+) observe B-physics constraints as above and
in addition have Ωh2 < 0.136, thereby allowing for other
contributions to the dark matter density (a fraction of order
20% of these points have 0.094 < Ωh2 < 0.136) but they do
not necessarily have acceptable δaµ;

• magenta crosses (×) have satisfactory δaµ as well as satisfying
B-physics constraints, but arbitrary Ωh2;

• golden triangle points pass all the same constraints as the
magenta points and in addition have Ωh2 < 0.136;

• open black/grey32 triangles are perfect, completely allowed
points in the sense that they pass all the constraints listed
earlier, including 5.77 × 10−10 < δaµ < 4.91 × 10−9 and
0.094 < Ωh2 < 0.136;

• open white diamonds are points with mh1 ≥ 123 GeV that pass
32For perfect points, we will use black triangles if mh1

≥ 123 GeV and grey triangles if mh1
< 123 GeV in plots

where mh1
does not label the x axis.
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basic constraints, B-physics constraints and predict 0.094 <

Ωh2 < 0.136 but have 4.27 × 10−10 < δaµ < 5.77 × 10−10,
that is we allow an excursion of half the 1σ theoretical
systematic uncertainty below the earlier defined window. We
will call these “almost perfect” points.

• We begin by presenting the crucial plots of Fig. 42 in which we
show Rh1(γγ) as a function of mh1 for cases I, II and III.

• Only in cases II and III do we find points that pass all constraints
(the open black triangles) with mh1 ∼ 124− 125 GeV.

These typically have Rh1(γγ) of order 0.98.

• Somewhat surprisingly, such points were more easily found by
our scanning procedure in case II than in case III.

• Many additional points with mh1 ∼ 125 GeV emerge if we
relax only slightly the δaµ constraint.
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Figure 42: Scatter plots of Rh1(γγ) versus mh1 for boundary condition case
I. See text for symbol/color notations.
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Figure 43: Scatter plots of Rh1(γγ) versus mh1 for boundary condition case
II. See text for symbol/color notations.
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Figure 44: Scatter plots of Rh1(γγ) versus mh1 for boundary condition case
III. See text for symbol/color notations.
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• The white diamonds show points for cases for which 4.27 ×
10−10 < δaµ < 5.77× 10−10 having mh1 ≥ 123 GeV.

• The parameter choices that give the largest mh1 values are
ones for which the h1 is really very SM-like in terms of its
couplings and branching ratios.

• These scans did not find parameter choices for which Rh1(γγ)

was significantly larger than 1 for mh1 = 123 − 128 GeV, as
hinted at by the ATLAS data.
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Figure 45: Scatter plot of squark versus gluino masses for model II. Here we use black

(grey) open triangles for perfect points with mh1 ≥ 123 GeV (mh1 < 123 GeV). See text

for remaining symbol/color notations.
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Figure 46: As above, but for model III.
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Given that the LHC data is consistent with a rather SM-
like Higgs in the vicinity of mh1 ∼ 125 GeV (rather than one
with an enhanced γγ rate), it is of interest to know the nature
of the parameter choices that yield the perfect, black triangle
and almost perfect white diamond points with mh1 ∼ 125 GeV

and what the other experimental signatures of these points are.
We therefore present a brief summary of the most interesting
features.

First, one must ask if such points are consistent with current
LHC limits on SUSY particles, in particular squarks and gluinos.
To this end, Fig. 45 shows the distribution of squark and gluino
masses for the various kinds of points for models II and III.
Interestingly, all the perfect, black triangle and almost perfect,
white diamond points with mh1

>∼ 123 GeV have squark and
gluino masses above 1 TeV and thus have not yet been probed by
current LHC results. (Note that since we are considering models
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with universal m0 and m1/2 for squarks and gauginos, analyses
in the context of the CMSSM apply.) It is quite intriguing that
the regions of parameter space that are consistent with a Higgs
of mass close to 125 GeV automatically evade the current limits
from LHC SUSY searches.

In order to further detail the parameters and some relevant
features of perfect and almost perfect points we present in
Tables 2–5 seven exemplary points with mh1

>∼ 124 GeV from
models II and III. Some useful observations include the following:

• Because of the way we initiated our model III MCMC scans,
restricting |Aλ,κ| ≤ 1 TeV, most of the tabulated model III
points have quite modest Aλ and Aκ. However, a completely
random scan finds almost perfect points with quite large Aλ
and Aκ values as exemplified by tabulated point #7. The
fact that the general scan over Aλ and Aκ did not find any
perfect points with mh1

>∼ 124 GeV, whereas such points were
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fairly quickly found using the MCMC technique, suggests that
such points are quite fine-tuned in the general scan sense. See
Table 2 for specifics.

• In Table 3, we display various details regarding the Higgs bosons
for each of our exemplary points. As already noted, for the
perfect and almost perfect points the h1 is very SM-like when
mh1

>∼ 123 GeV. To quantify how well the LHC Higgs data is
described for each of our exemplary points, we use a chi-squared
approach. In practice, only the ATLAS collaboration has
presented the best fit values for Rh(γγ, ZZ → 4`,WW →
`ν`ν) along with 1σ upper and lower errors as a function of
mh. Identifying h with the NMSSM h1, we have employed
Fig. 8 of [?] to compute a χ2(ATLAS) for each point in the
NMSSM parameter space (but this was not included in the
global likelihood used for our MCMC scans). From Table 3 we
see that the smallest χ2(ATLAS) values (of order 0.6 to 0.7)
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are obtained for mh1 ∼ 124 GeV. This is simply because at
this mass the ATLAS fits to Rh(γγ) and Rh(4`) are very close
to one, the natural prediction in the NMSSM context. For
mh ∼ 125 GeV, the Rh’s for the ATLAS data are somewhat
larger than 1 leading to a discrepancy with the NMSSM SM-
like prediction and a roughly doubling of χ2(ATLAS) to values
of order 1.3 to 1.6 for our exemplary points. In this context,
we should note that at a Higgs mass of 125 GeV the CMS data
is best fit if the Higgs signals are not enhanced and, indeed,
are very close to SM values.

• The mass of the neutralino LSP, χ̃0
1, is rather similar, mχ̃0

1
≈

300 − 450 GeV, for the different perfect and almost perfect
points with mh1

>∼ 124 GeV. For all but pt. #5, the χ̃0
1 is

approximately an equal mixture of higgsino and bino. There
is some variation in the primary annihilation mechanism, with
τ̃1τ̃1 and χ̃0

1χ̃
0
1 annihilation being the dominant channels except
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for pt. #2 for which ν̃τ ν̃τ and ν̃τ ν̃τ annihilations are dominant.
In the case of dominant τ̃1τ̃1 annihilation, the bulk of the χ̃0

1’s
come from those τ̃ ’s that have not annihilated against one
another or co-annihilated with a χ̃0

1.

• All the tabulated points yield a spin-independent direct detection
cross section of order (3.5− 6)× 10−8 pb. For the above mχ̃0

1

values, current limits on σSI are not that far above this mark
and upcoming probes of σSI will definitely reach this level.

• The 7 points all have mg̃ and mq̃ above 1.5 TeV and in some
cases above 2 TeV. Detection of the superparticles may have
to await the LHC upgrade to 14 TeV.

• Only the t̃1 is seen to have a mass distinctly below 1 TeV for
the tabulated points. Still, for all the points mt̃1

is substantial,
ranging from ∼ 500 GeV to above 1 TeV. For such masses,
detection of the t̃1 as an entity separate from the other squarks
and the gluino will be quite difficult and again may require the
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14 TeV LHC upgrade.

• The effective superpotential µ-term, µeff, is small for all the
exemplary points. This is interesting regarding the question of
electroweak fine-tuning.
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Model II Model III

Pt. # 1* 2* 3 4* 5 6 7

tanβ(mZ) 17.9 17.8 21.4 15.1 26.2 17.9 24.2
λ 0.078 0.0096 0.023 0.084 0.028 0.027 0.064
κ 0.079 0.011 0.037 0.158 −0.045 0.020 0.343
m1/2 923 1026 1087 842 738 1104 1143
m0 447 297 809 244 1038 252 582
A0 −1948 −2236 −2399 −1755 −2447 −2403 −2306

Aλ 0 0 0 −251 −385 −86.8 −2910

Aκ 0 0 0 −920 883 −199 −5292

m2
Hd

(2942)2 (3365)2 (4361)2 (2481)2 (935)2 (3202)2 (3253)2

m2
Hu

(1774)2 (1922)2 (2089)2 (1612)2 (1998)2 (2073)2 (2127)2

Table 2: Input parameters for the exemplary points. We give tanβ(mZ)
and GUT scale parameters, with masses in GeV and masses-squared in GeV2.
Starred points are the perfect points satisfying all constraints, including
δaµ > 5.77 × 10−10 and 0.094 < Ωh2 < 0.136. Unstarred points are the
almost perfect points that have 4.27 × 10−10 < δaµ < 5.77 × 10−10 and
0.094 < Ωh2 < 0.136.
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Model II Model III

Pt. # 1* 2* 3 4* 5 6 7

mh1 124.0 125.1 125.4 123.8 124.5 125.2 125.1
mh2 797 1011 1514 1089 430 663 302
ma1 66.5 9.83 3.07 1317 430 352 302

Cu 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Cd 1.002 1.002 1.001 1.003 1.139 1.002 1.002
CV 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Cγγ 1.003 1.004 1.004 1.004 1.012 1.003 1.001
Cgg 0.987 0.982 0.988 0.984 0.950 0.986 0.994

Γtot(h1) [GeV] 0.0037 0.0039 0.0039 0.0037 0.0046 0.0039 0.0039
BR(h1 → γγ) 0.0024 0.0024 0.0024 0.0024 0.002 0.0024 0.0024
BR(h1 → gg) 0.056 0.055 0.056 0.056 0.043 0.055 0.056
BR(h1 → bb̄) 0.638 0.622 0.616 0.643 0.680 0.619 0.621
BR(h1 →WW ) 0.184 0.201 0.207 0.180 0.159 0.203 0.201
BR(h1 → ZZ) 0.0195 0.022 0.023 0.019 0.017 0.022 0.022

Rh1(γγ) 0.977 0.970 0.980 0.980 0.971 0.768 0.975

Rh1(ZZ,WW ) 0.971 0.962 0.974 0.974 0.964 0.750 0.969

χ2
ATLAS 0.59 1.27 1.47 0.72 1.57 1.34 1.20

Table 3: Upper section: Higgs masses. Middle section: reduced h1 couplings
to up- and down-type quarks, V = W,Z bosons, photons, and gluons. Bottom
section: total width in GeV, decay branching ratios, Rh1(γγ), Rh1(V V ) and
χ2

ATLAS of the lightest CP-even Higgs for the seven exemplary points.
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Model II Model III

Pt. # 1* 2* 3 4* 5 6 7

µeff 400 447 472 368 421 472 477
mg̃ 2048 2253 2397 1876 1699 2410 2497
mq̃ 1867 2020 2252 1685 1797 2151 2280
mb̃1

1462 1563 1715 1335 1217 1664 1754

mt̃1
727 691 775 658 498 784 1018

mẽL
648 581 878 520 1716 653 856

mẽR
771 785 1244 581 997 727 905

mτ̃1 535 416 642 433 784 443 458
m
χ̃
±
1

398 446 472 364 408 471 478

mχ̃0
1

363 410 438 328 307 440 452

fB̃ 0.506 0.534 0.511 0.529 0.914 0.464 0.370
fW̃ 0.011 0.009 0.008 0.012 0.002 0.009 0.009
fH̃ 0.483 0.457 0.482 0.459 0.083 0.528 0.622

fS̃ 10−4 10−6 10−6 10−4 10−6 10−4 10−6

Table 4: Top section: µeff and sparticle masses at the SUSY scale in GeV.
Bottom section: LSP decomposition. mq̃ is the average squark mass of the
first two generations. The LSP bino, wino, higgsino and singlino fractions are
fB̃ = N2

11, fW̃ = N2
12, fH̃ = N2

13 +N2
14 and fS̃ = N2

15, respectively, with N
the neutralino mixing matrix.
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Pt. # δaµ Ωh2 Prim. Ann. Channels σSI [pb]

1* 6.01 0.094 χ̃0
1χ̃

0
1 →W+W−(31.5%), ZZ(21.1%) 4.3× 10−8

2* 5.85 0.099 ν̃τ ν̃τ → ντντ(11.4%), ν̃τ ν̃τ →W+W−(8.8%) 3.8× 10−8

3 4.48 0.114 χ̃0
1χ̃

0
1 →W+W−(23.9%), ZZ(17.1%) 3.7× 10−8

4* 6.87 0.097 χ̃0
1χ̃

0
1 →W+W−(36.9%), ZZ(23.5%) 4.5× 10−8

5 5.31 0.135 χ̃0
1χ̃

0
1 → bb̄(39.5%), h1a1(20.3%) 5.8× 10−8

6 4.89 0.128 τ̃1τ̃1 → ττ (17.4%), χ̃0
1χ̃

0
1 →W+W−(14.8%) 4.0× 10−8

7 4.96 0.101 χ̃0
1χ̃

0
1 →W+W−(17.7%), ZZ(12.9%) 4.0× 10−8

Table 5: δaµ in units of 10−10, LSP relic abundance, primary annihilation
channels and spin-independent LSP scattering cross section off protons.

Our second study

• NMSSM=MSSM+Ŝ.
• The extra complex S component of Ŝ ⇒ the NMSSM has
h1, h2, h2, a1, a2.
• The new NMSSM parameters of the superpotential (λ and κ)

and scalar potential (Aλ and Aκ) appear as:

W 3 λŜĤuĤd +
κ

3
Ŝ3 , Vsoft 3 λAλSHuHd +

κ

3
AκS

3

(407)
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• 〈S〉 6= 0 is generated by SUSY breakng and solves µ problem:
µeff = λ〈S〉.
• First question: Can the NMSSM give a Higgs mass as large as

125 GeV?
Answer: Yes, so long as it is not a highly unified model.
For our studies, we employed universal m0, except for NUHM
(m2

Hu
, m2

Hd
, m2

S
free), universal At = Ab = Aτ = A0 but

allow Aλ and Aκ to vary freely. Of course, λ > 0 and κ are
scanned demanding perturbativity up to the GUT scale.
• Can this model achieve rates in γγ and 4` that are >SM?

Answer: it depends on whether or not we insist on getting
good aµ.
• The possible mechanism (arXiv:1112.3548, Ellwanger) is to reduce the
bb width of the mainly SM-like Higgs by giving it some singlet
component. The gg and γγ couplings are less affected.
In the semi-unified model we employ, enhanced rates and/or
large λ cannot be made consistent with decent δaµ. (J. F. Gunion,
Y. Jiang and S. Kraml.arXiv:1201.0982 [hep-ph])

In this lecture we want to focus on the green points that have
SM-like rates and good δaµ — the LHC data may be headed
in the direction of a quite SM-like Higgs.
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Some illustrative Rgg results from (J. F. Gunion, Y. Jiang and S. Kraml.
arXiv:1207.1545):

Wide Scan Range
0 ≤ m0 ≤ 3000
100 ≤ m1/2 ≤ 3000, in particular one more scan for 100 ≤ m1/2 ≤ 1000
1 ≤ tanβ ≤ 15
−6000 ≤ A0 ≤ 6000
0.1 ≤ λ ≤ 0.7
0.05 ≤ κ ≤ 0.7
−1000 ≤ Aλ ≤ 1000
−1000 ≤ Aκ ≤ 1000
100 ≤ µeff ≤ 500

Combined λ Scan Range
500 ≤ m0 ≤ 3000
500 ≤ m1/2 ≤ 3000
1 ≤ tanβ ≤ 40
−2000 ≤ A0 ≤ −1000
0.3 ≤ λ ≤ 0.7
0.05 ≤ κ ≤ 0.5
−700 ≤ Aλ ≤ −500
−400 ≤ Aκ ≤ −200
110 ≤ µeff ≤ 130

Figure Legend
LEP/Teva B-physics Ωh2 > 0 δaµ(×1010) XENON100 Rh1/h2(γγ)

• √ √
0 − 0.136 × √

[0.5, 1]
! √ √

0 − 0.094 × √
(1, 1.2]

" √ √
0 − 0.094 × √

> 1.2
! √ √

0.094-0.136 × √
(1, 1.2]

" √ √
0.094-0.136 × √

> 1.2
# √ √

0.094 − 0.136 4.27-49.1
√ ∼ 1
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Figure 47: Observe the clear general increase in maximum Rgg(γγ) with increasing λ.

Green points have good δaµ, mh2 > 1 TeV BUT Rgg(γγ) ∼ 1.
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Figure 48: The lightest stop has mass ∼ 300− 900 GeV for green ”perfect” points.
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Figure 49: Plots involving µeft and m2
Hu

(GUT ). For the green ”perfect” points, µeff

ranges from 350− 470 GeV while mHu(GUT ) is of order <∼ 1.5 TeV.
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• Well, of course we need mHu(mSUSY ) but this will require
reprocessing the data files.

But given modest µeff, and the usual formulate for m2
Z/2,

mHu(mSUSY ) cannot be that different.

• So, from our work, I would claim that the simple NMSSM
with rather unified boundary conditions comparable to NUHM
MSSM boundary conditions will have very modest ∆EW .

If we just use
µ2

eff

(m2
Z/2)

, i.e. the Cµ estimator part of ∆EW ,

this would give ∆EW ∼ 55, which is quite comparable to the
best values obtained in the more complicated MSSM scenarios
and to the best values obtained in the lower Λ NMSSM or
generalized NMSSM scenarios.
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