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Introductory Ideas

Renormalization is not unique to QFT. For example, recall the difference
between m and m∗ (the effective mass) for an electron in a solid. m→ m∗ as
a result of the electron’s interaction with the lattice ions as it moves through
the lattice.

However, there is an important difference relative to QFT. This is the fact
that both m and m∗ are, in principle, measurable. In particular, the bare
mass m (i.e. outside the lattice) can be measured in the usual way. In QFT,
we will find that:

1. The bare mass cannot be directly measured — only the renormalized mass
is measurable.

There is no way to switch off the interactions. The electron is always
exposed to the QED interactions through virtual processes involving virtual
photons and virtual electron-positron loops.

2. m−m∗ is naively infinite until some cutoff due to the physics of very large
momentum (small distances) is brought into the picture.
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If we eventually acquire a full understanding of physics at all momentum
scales, we will be able to compute the bare mass in terms of the measured
renormalized mass m∗.

Thus, in QFT, the process of renormalization consists of:

1. Imagining that we will ultimately understand the high scale physics and in
particular taking seriously the idea that there will be some way of cutting
off the divergent integrals at high momentum.

2. Understanding that the exact form of this cutoff is not important when
dealing with observations at energies well below the high scale of the cutoff
physics, so long as one can rephrase all low energy predictions in terms of
a small number of quantities measured at low energy.

Theories with this property are called renormalizable theories.

3. Rewriting all predictions in terms of a few measured quantities (e.g. in
QED the mass and charge of the electron as measured in some particular
experiment). Since the measured quantities are finite, all our predictions
will be finite and well defined in terms of these few inputs.
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Renormalization for λφ4

By considering this relatively simple theory we will be able to understand
essentially all the important basic procedures and ideas without the complexity
of spinors and gauge fields.

The theory is defined by the Lagrangian

L = L0 + LI (1)

with

L0 =
1

2
[(∂µφ0)(∂

µφ0)− µ2
0φ

2
0]

LI = −λ0

4!
φ4

0 . (2)

Here, I have been careful to use 0 subscripts to denote the “bare” field, mass
and coupling.
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The bare propagator and four-point Feynman interaction are, respectively,

i∆0(p) =
i

p2 − µ2
0 + iε

, −iλ0 . (3)

1PI Diagrams

An important concept is that of one-particle irreducible diagrams. 1PI
means that you start with a single line and end with a single line and draw all
diagrammatic structure in between which cannot be cut apart by cutting just
a single line.

The complete set of insertions into a single line is then given by iterations
of the 1PI diagram set with intermediate single line propagators.

1 particle propagator = bare line + bare line(−iΣ(p)bare line + bl(−iΣ(p))bl(−iΣ(p))bl + . . . . (4)

Here, −iΣ(p) is the algebraic expression for the 1PI diagram set. This can
be written algebraically as:

i∆(p) = i∆0(p) + i∆0(p)[−iΣ(p)]i∆0(p) + . . .

=
i

p2 − µ2
0 + iε

+
i

p2 − µ2
0 + iε

[−iΣ(p)]
i

p2 − µ2
0 + iε

+ . . .
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=
i

p2 − µ2
0 + iε

 1

1 + iΣ(p2) i
p2−µ2

0+iε


=

i

p2 − µ2
0 − Σ(p2) + iε

, (5)

where, midway through, I used the fact that Lorentz invariance and analyticity
imply the Σ can really only be a function of p2.

Now, if we just simply write down an expression using Feynman rules of
the lowest order contribution to −iΣ(p2) (coming from the bubble tadpole
correction diagram), the expression is infinite (as we shall dwell on later). The
ultimate high scale physics theory will make this expression finite. Effectively
the divergence will be regulated by some high scale, but for the moment we
can employ any regularization procedure that renders the diagram finite.

There are also divergent 1-loop corrections to the φ4 interaction. All the
relevant 1-loop diagrams appear below.
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Figure 1: The one-loop corrections to the propagator and vertex.

The algebraic expressions for these are easily given. For the propagator
correction, we get

−iΣ(p2) = −iλ0

2

∫
d4l

(2π)4

i

l2 − µ2
0 + iε

(6)

Note that the integral is quadratically divergent.
The first of the three vertex diagrams gives

Γa = Γ(p) = Γ(s) =
(−iλ0)

2

2

∫
d4l

(2π)4

[
i

l2 − µ2
0 + iε

] [
i

(l + p1 + p2)2 − µ2
0 + iε

]
(7)

and it is obvious that

Γb = Γ(t) , Γc = Γ(u) , (8)
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where we have defined

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 . (9)

The integral defining Γ is only logarithmically divergent.

There are also vertex corrections in which the bare vertex is corrected by
inserting the 1PI correction into one of the external lines. These will be
handled in a special manner later on.

We will typically try to separate “standard” divergent pieces from finite
pieces according to some scheme.

For example, if we write

Γ(p2) = a0 +a1p
2 + . . .+

1

n!
an(p2)n+ . . . , an =

∂n

∂np2
Γ(p2)

∣∣∣∣
p2=0

, (10)

then only a0 is divergent. Thus, we can write

Γ(s) = Γ(0) + Γ̃(s) (11)

where Γ̃(s) is finite and Γ̃(0) = 0.
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So, let us now turn to

Mass and wave-function renormalization

which involves the 1 particle propagator corrections.

In φ4 theory at one-loop, there is a special feature that is not typical of
other field theories or higher orders. This is that Σ(p2) = Σ(0) because of
the fact that at one loop p2 does not enter into the closed loop. (See earlier
figure.)

More generally, we must write

Σ(p2) = Σ(µ2) + (p2 − µ2)Σ′(µ2) + Σ̃(p2) (12)

where Σ(µ2) is quadratically divergent and Σ′(µ2) is logarithmically divergent,
before regularization. Further, from the above definition, Σ̃(µ2) = 0 and
Σ̃′(µ2) = 0 (i.e. Σ̃ ∝ (p2 − µ2)2 + . . . — something that will be important
later).

(At one-loop, Σ′(p2) = Σ̃′(p2) = 0, but this is not the case once higher
orders are considered.)

(Note that there is no term linear in p, which would be a linearly divergent
term, since a term ∝ pµ would not be Lorentz invariant and since analyticity
forbids Σ being a function of

√
p2.)
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Let us substitute the result Eq. (12) into our earlier expression for ∆(p2),
Eq. (5). We obtain

i∆(p2) =
i

p2 − µ2
0 − Σ(µ2)− (p2 − µ2)Σ′(µ2)− Σ̃(p2) + iε

. (13)

We next define µ2, the physical pole mass squared by the consistency
requirement

µ2 = µ2
0 + Σ(µ2) . (14)

Then, i∆(p2) has a pole at p2 = µ2 by construction, and it is the pole or
singularity that is the physical definition of the physical mass of the particle.

We should notice that if Σ(µ2) should one day be computable given a
theory with full ultraviolet (large momentum) information, it would be possible
to figure out what µ2

0 corresponds to the observed physical pole mass-squared
µ2. But, even if this is not possible, we can still carry on in working out
low-energy predictions of the theory so long as every such prediction can be
rephrased in terms of the experimentally observed µ2. Theories for which the
latter is true define what we mean by a renormalizable theory or model.
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Anyway, inserting the consistency requirement Eq. (14), we obtain

i∆(p2) =
i

(p2 − µ2)[1− Σ′(µ2)]− Σ̃(p2) + iε
. (15)

the infinity of Σ(µ2) has been absorbed into the definition of the mass. Now
we must turn to how to deal with Σ′(µ2). We will discuss the procedure at
order λ0 (i.e. one-loop level). Both Σ′(µ2) and Σ̃(p2) are O(λ0) (in fact,
for the simple φ4 theory, they are both 0 — the current discussion is meant
to apply to any theory.) Thus, perturbatively (we of course imagine that we
have regulated any infinities, or, equivalently, that we know the full theory at
high momentum and have simply input the true finite values) we can write

Σ̃(p2) ' [1− Σ′(µ2)]Σ̃(p2) +O(λ2
0) , (16)

in which case we can (to order λ0) write

i∆(p2) =
iZφ

p2 − µ2 − Σ̃(p2) + iε
, (17)
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where

Zφ =
1

1− Σ′(µ2)
' 1 + Σ′(µ2) +O(λ2

0) . (18)

In this form, the remaining naively divergent component is a multiplicative
factor and can be removed by redefining the field operator φ:

φ = Z
−1/2
φ φ0 . (19)

We would then have the renormalized propagator

i∆R(p2) ≡
∫
d4xe−ip·x〈0|T{φ(x)φ(0)}|0〉

= Z−1
φ

∫
d4xe−ip·x〈0|T{φ0(x)φ0(0)}|0〉

=
i

p2 − µ2 − Σ̃(p2) + iε

= iZ−1
φ ∆(p2) , (20)

which is now completely finite.
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The quantity Zφ is called the wave function renormalization constant.
Renormalized Green’s functions are more generally defined by

G
(n)
R (x1, . . .) = 〈0|T{φ(x1) . . . φ(xn)}|0〉

= Z
−n/2
φ 〈0|T{φ0(x1) . . . φ0(xn)}|0〉

= Z
−n/2
φ G

(n)
0 (x1, . . .) . (21)

One finds that the amplitudes for scattering of physical particles are given in
terms of an appropriate projection operator operating on the appropriate GR
renormalized Green’s function, and will thus be finite.

In momentum space, the same type of relationship between renormalized
and bare Green’s functions applies.

G
(n)
R (p1, . . . , pn) = Z

−n/2
φ G

(n)
0 (p1, . . . , pn) (22)

where

(2π)4δ4(p1 + . . .+pn)G
(n)
R (p1, . . .) =

∫ n∏
i=1

d4xie
−ipi·xiG(n)

R (x1, . . .) . (23)

J. Gunion 230C, U.C. Davis, 12



To go from the connected Green’s function to the 1PI (amputated)
Green’s function, Γ, we remove the 1P reducible diagrams, and also remove the

propagators for the external lines, i.e. remove the ∆R(pi)’s fromG
(n)
R (p1 . . . pn)

and ∆(pi)’s from G
(n)
0 (p1 . . . pn). Algebraically, this means

G
(n)
0 (p1, . . .) =

n∏
i=1

∆(pi)Γ
(n)
0 (p1, . . .) ,

G
(n)
R (p1, . . .) =

n∏
i=1

∆R(pi)Γ
(n)
R (p1, . . .) . (24)

Obviously, this gives us

Γ
(n)
R (p1, . . .)

Γ
(n)
0 (p1, . . .)

=
G

(n)
R (p1, . . .)

G
(n)
0 (p1, . . .)

∏n
i=1 ∆(pi)∏n
i=1 ∆R(pi)

= Z
−n/2
φ Znφ = Z

n/2
φ . (25)

The quantity Zφ is precisely the quantity Z, specialized to the φ4 model,
that we talked about earlier that relates (at asymptotic times) a field with full
free-particle normalization to the fully interacting field that must also connect
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to multiple particle states and thus only has part of the full free-particle
normalization at asymptotic times.

To see this, let us recall the way we introduced Z before when discussing
the reduction formalism. In fact, let us first briefly review the reduction
formalism for the scalar field. Before doing that, we should talk about the S
matrix a bit.

The S matrix

Formally, the S matrix is defined by

|out〉 = S−1|in〉 = S†|in〉 , or |in〉 = S|out〉 , (26)

and by the relation
φout = S−1φinS . (27)

Suppose that at time t→ −∞ the system is in a definite state, the vacuum
for instance, i.e. contains no physical particles. In general, the final state
has some computable probability to contain zero, one, two, etc. particles.
For example, in the case of photons (which are massless), the probability to
remain the ground state as t goes from −∞ to +∞ is

〈0 out|0 in〉 = 〈0 in|S|0 in〉 = 〈0 out|S|0 out〉 (28)
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and is not just equal to a phase factor but actually has normalization

p0 = |〈0 out|0 in〉|2 < 1 (29)

If the theory is such that the there is a mass gap, then life is simpler and
p0 = 1 and the in and out vacuums are the same up to a phase, as are the
1-particle in and out states:

|0 in〉 = |0 out〉 = |0〉 (we set a possible phase to 1) , (30)

|1 in〉 = |1 out〉 . (31)

Since 〈0|φ(x)|1〉 has the same dependence on x as the corresponding matrix
elements of φin or φout (all being ∝ e−ip1·x), the normalization of the latter
being fixed by their free-field character, we necessarily have

〈0|φ0(x)|1〉 = Z1/2〈0|φin(x)|1〉 = Z1/2〈0|φout(x)|1〉 . (32)

This provides a very precise definition of the famous Z factor. We will employ
this definition in what follows in many different ways.
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Because the vacuum and one-particle states are stable, it must be that S
cannot change them. That is, the S matrix in this case satisfies

〈0|S|0〉 = 〈0|0〉 = 1 , 〈1|S|1′〉 = 〈1|1′〉 (33)

where indices have been omitted from the one-particle states and we have
only translated the stability of these states.

However, by the time we go to 2-particle and higher states (as necessarily
considered in the scattering situation) or to unstable single-particle resonance
states, these will intrinsically have knowledge of the t → ∞ or t → −∞
boundary conditions through the fact that interactions can (and will, in
general) take place.

The Reduction Formalism

Recall that we want to compute

out〈p1, p2, . . . |kA, kB〉in (34)

for a 2 → n process, where the in and out states are eigenstates of the full
H at times when we have highly separated wave packets. In such a distant
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past or future, the operator for creating a one particle wave packet should be
free-particle like. Thus, we would, for instance, like to write

|~k〉in = ain †~k
|Ω〉 (35)

where |Ω〉 represents the fully interacting vacuum. Recall that the state
created should be a free particle state but with the actually measured physical
mass µ.

Next, we recall that for a normalization in which we write a free particle φ
as

φnon−interacting =
∑
~k

1√
2V E~k

[
a~ke
−ik·x + a†~ke

+ik·x
]

(36)

we have

a†~k = −i
∫

d3~x√
2V E~k

[
e−ik·x

↔
∂x0φnon−int(x

0, ~x)

]
a~k = +i

∫
d3~x√
2V E~k

[
eik·x

↔
∂x0φnon−int(x

0, ~x)

]
, (37)

which would apply for either the in or the out states. In the distant past
or distant future there is only a normalization difference between the fully
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interacting φ0 and φin or φout. Thus, we can write

ain †~k
|Ω〉 = |~k〉in = −iZ−1/2 lim

x0→−∞

∫
d3~x√
2V E~k

[
e−ik·x

↔
∂x0φ0(x)

]
|Ω〉 ,

(38)
where Z−1/2 is the renormalization factor necessary to boost the interacting
φ0 to free-particle-like normalization, see Eq. (32). Another way of saying this
is that

lim
x0→−∞

φ0(x) =
√
Zφin(x) . (39)

Once again, Z is required since φ0(x)|Ω〉 in the interacting theory ⇒ 1
particle, 2 particle, . . . states (i.e. it does much more than the φin operator
which only makes 1 particle states). In fact though, Eq. (39) cannot really
be true in a strict operator sense. The reason is that both φin and φ0 are
supposed to obey the same equal-time commutation relations

[φin(x), φ̇in(y)][x0=y0] = iδ3(~x− ~y) , [φ0(x), φ̇0(y)][x0=y0] = iδ3(~x− ~y) ,
(40)

whereas the above relation would imply a factor of Z in front of the φ0

commutation relation if the φin commutation relation holds. Fortunately, the
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real requirement is not so strict. What we need is only that

lim
x0→−∞

φ−0 (x)| . . .〉in =
√
Zφ−in(x)| . . .〉in ,

lim
x0→+∞

out〈. . . |φ+
0 (x) =

√
Z out〈. . . |φ+

out(x) , (41)

where the +,− superscripts are the positive and negative frequency components
of the fields containing the a~k and a†~k operators respectively. This is fully

consistent with Eq. (32). The above is all that is required since all we
really need to do at very early or very late times is to be able to create
appropriate stuff in the incoming state or outgoing state (the latter having
been written in the conjugate form appropriate to an S matrix calculation).
Since no statement is made above about the positive frequency components
for φin or negative frequency components for φout, there is no contradiction
with relations between commutators which require knowing how + and −
frequency components commute. We will return later to see that this

√
Z

factor must be the same as that which appeared in our 1PI etc. sum to get
the full propagator.

Now let us look at the reduction process. We have

out〈p1, p2, . . . |kA, kB〉in = out〈p1, p2, . . . |ain †~kA
|kB〉in
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= −iZ−1/2
lim

x0
A
→−∞

∫
x0
A

d3~xA√
2V E~kA

[
e
−ikA·xA ↔∂

x0
A
out〈p1 . . . |φ0(xA)|kB〉in

]
.(42)

At this point, we bring in the trivial identity

[ lim
t→+∞

− lim
t→−∞

]

∫
d3~xψ(~x, t) = lim

tf→∞,ti→−∞

∫ tf

ti

dt
∂

∂t

∫
d3~xψ(~x, t) .

(43)
We use this to substitute in the above equation, obtaining (where the 0 in
the 2nd line comes from assuming that ~kA 6= ~pi for any i)

out〈p1, p2, . . . |kA, kB〉in = out〈p1, p2, . . . |aout †~kA
|kB〉in

+iZ
−1/2

∫
d4xA√
2V E~kA

∂
x0
A

[
e
−ikA·xA ↔∂

x0
A
out〈p1 . . . |φ0(xA)|kB〉in

]

= 0 + iZ
−1/2

∫
d4xA√
2V E~kA

e−ikA·xA∂2
x0
A
out〈p1 . . . |φ0(xA)|kB〉in

−∂2
x0
A
e
−ikA·xA out〈p1 . . . |φ0(xA)|kB〉in
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= iZ
−1/2

∫
d4xA√
2V E~kA

e
−ikA·xA(2xA + µ

2
) out〈p1 . . . |φ0(xA)|kB〉in (44)

where to obtain the last line we noted that

∂2
x0
A
e−ikA·xA =

(
~∇2
~xA
− µ2

)
e−ikA·xA , (45)

substituted it in, and partial integrated twice.

Now, we reduce in a 2nd particle, let us say the p1 outgoing particle. We
have

out〈p1 . . . |φ0(xA)|kB〉in = out〈p2 . . . |aout(~p1)φ0(xA)|kB〉in

= lim
y0

1→∞
iZ
−1/2

∫
d3y1√
2V E~p1

[
e
ip1·y1

↔
∂
y0

1
out〈p2 . . . |φ0(y1)φ0(xA)|kB〉in

]

= lim
y0

1→∞
iZ
−1/2

∫
d3y1√
2V E~p1

[
e
ip1·y1

↔
∂
y0

1
out〈p2 . . . |T{φ0(y1)φ0(xA)}|kB〉in

]

= lim
y0

1→−∞
iZ
−1/2

∫
d3y1√
2V E~p1

[
e
ip1·y1

↔
∂
y0

1
out〈p2 . . . |T{φ0(y1)φ0(xA)}|kB〉in

]
+ correction

= out〈p2 . . . |φ0(xA)ain(~p1)|kB〉in + correction

= 0 + correction , (46)

J. Gunion 230C, U.C. Davis, 21



where we assumed that p1 6= kB. Writing out the correction piece, we thus
have

out〈p1 . . . |φ0(xA)|kB〉in = iZ
−1/2

∫
d4y1√
2V E~p1

∂
y0

1

[
e
ip1·y1

↔
∂
y0

1
out〈p2 . . . |T{φ0(y1)φ0(xA)}|kB〉in

]

= iZ
−1/2

∫
d4y1√
2V E~p1

e
ip1·y1(2y1 + µ

2
) out〈p2 . . . |T{φ0(y1)φ0(xA)}|kB〉in(47)

where we did the same manipulations as in the previous case, i.e. employed
(2y1 + µ2)e−ip1·y1 = 0 to replace

∂2
y0

1
e−ip1·y1 = (~∇2

~y1
− µ2)e−ip1·y1 (48)

and then partial integrated twice in ~y1.
So, we would now insert this expression into Eq. (44). And, we would

continue on to reduce in all the initial and final particles. I hope you can see
that the result will be (for n final particles)

out〈p1, p2, . . . |kA, kB〉in = [iZ
−1/2

]
n+2

n+2∏
i=1

1√
2V Ei

∫
d

4
y1 . . . d

4
ynd

4
xAd

4
xB

× exp

i n∑
k=1

pk · yk − ikA · xA − ikB · xB
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×(2y1 + µ
2
) . . . (2xB + µ

2
)〈Ω|T{φ0(y1) . . . φ0(xB)}|Ω〉 . (49)

Before going back to renormalization, let’s just check that we get the correct
Feynman rule. For the basic connected vertex graph, our Feynman rules give
(we set Z = 1 for this tree level case)

〈Ω|T{φ0(x1) . . . φ0(x4)}|Ω〉 ≡ G
(4)
0 (x1, x2, x3, x4)

=

∏
i

∫
d4li

(2π)4

i

l2
i
− µ2 + iε

 (−iλ)(2π)
4
δ
4
(
∑
j

lj)e
−i∑k lk·xk . (50)

We now insert this into the above expression for the S matrix, but using the
convention where all particles are outgoing. We find (all indexed sums and
products go from 1 to 4):

out〈p1, p2, p3, p4|0〉in = [i]
4
[∏
m

1√
2V Em

] ∫
d

4
x1d

4
x2d

4
x3d

4
x4e

i
∑
pk·xk

×(2x1 + µ
2
) . . . (2x4 + µ

2
)G

(4)
0 (x1, x2, x3, x4)

= [i]
4
[∏
m

1√
2V Em

] ∫
d

4
x1d

4
x2d

4
x3d

4
x4e

i
∑
pk·xk

×
∏
i

∫
d4li

(2π)4
(−l2i + µ

2
)

i

l2
i
− µ2 + iε

 (−iλ)(2π)
4
δ
4
(
∑
j

lj)e
−i∑k lk·xk
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=

[∏
m

1√
2V Em

] ∏
i

∫
d4li

(2π)4
(−i)(2π)

4
δ
4
(pi − li)

 (−iλ)(2π)
4
δ
4
(
∑
j

lj)

=

[∏
m

1√
2V Em

]
(−iλ)(2π)

4
δ
4
(
∑
j

pj) . (51)

As always, we remove the 1√
2V E

factors and the (2π)4δ4(. . .) to define iM
and obtain at tree-level

M = −λ . (52)

Let us generalize this a bit. We will write

G0(x1, . . . , xn) =

∫
d4p1

(2π)4
. . .

d4pn

(2π)4
exp[i

∑
pj · xj]G̃0(p1, . . .) . (53)

Translational invariance implies that

G̃0(p1, . . .) = (2π)4δ4(p1 + . . .+ pn)G0(p1, . . .)

=

∫
d4x1 . . . d

4xn exp[−i
∑

pk · xk]G0(x1, . . .) (54)

where the 2nd line gives the inverse Fourier transform.
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Thus, the S matrix structure in the general case looks like (dropping the
1√

2EV
factors that get dropped when we relate out〈p1, . . . pn|Ω〉in to M)

out〈p1, . . . pn|Ω〉in = (iZ
−1/2

)
n
∫
d

4
x1 . . . d

4
xn exp[i

∑
k

pk · xk](2x1 + µ
2
) . . . (2xn + µ

2
)G0(x1 . . . xn)

= (iZ
−1/2

)
n
∫
d

4
x1 . . . d

4
xn exp[i

∑
k

pk · xk](2x1 + µ
2
) . . . (2xn + µ

2
)

×
∫
d4p̄1

(2π)4
. . . exp[i

∑
p̄i · xi](2π)

4
δ
4
(p̄1 + . . . + p̄n)G0(p̄1 . . . p̄n)

= (iZ
−1/2

)
n
∫
d

4
p̄1 . . . d

4
p̄nδ

4
(p1 + p̄1) . . . δ

4
(pn + p̄n)(µ

2 − p̄2
1) . . . (µ

2 − p̄2
n)

×(2π)
4
δ
4
(p̄1 + . . . + p̄n)G0(p̄1, . . . p̄n)

= (iZ
−1/2

)
n
∫
d

4
p̄1 . . . d

4
p̄nδ

4
(p1 + p̄1) . . . δ

4
(pn + p̄n)(µ

2 − p̄2
1) . . . (µ

2 − p̄2
n)

×(2π)
4
δ
4
(p̄1 + . . . + p̄n)

iZ

p̄2
1 − µ2 − Σ̃(p̄2

1)
. . .

iZ

p̄2
n − µ2 − Σ̃(p̄2

n)
Γ0(p̄1, . . . p̄n)

(55)

where we wrote

G0(p̄1 . . .) =

[∏
i

i∆(p̄2
i)

]
Γ0 (56)

with the i∆(p̄2
i) factors coming from the full insertion set on each of the
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external lines (see figure).
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Figure 2: Graphical representation of Eq. (56).

Now, as we go on shell (which is what happens since p̄i = −pi via the δ4

functions and since p2
i = µ2) we have

(µ2 − p̄2
i)

iZ

p̄2
i − µ2 − Σ̃(p̄2

i)
→ −iZ (57)
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for each i, leaving us with

out〈p1, . . . pn|Ω〉in = (iZ−1/2)n(−iZ)n(2π)4δ4(p1 + . . .+ pn)Γ0(p1 . . .)

= (Z1/2)n(2π)4δ4(p1 + . . .+ pn)Γ0(p1 . . .)

= (2π)4δ4(p1 + . . .+ pn)ΓR(p1 . . .) , (58)

where we used Eq. (25).

Thus, you see that the S matrix elements are given in terms of the
renormalized “amputated” momentum space n-particle interaction. This is
the key result we need. We need only show now that ΓR can be written as
a finite expression in terms of a single (finite) measurement of the 4-point
interaction at some conveniently chosen momentum setup.

The Z’s

But first, we want to return to the claim that the Zφ that appears in

i∆(p2) =
iZφ

p2 − µ2 − Σ̃(p2) + iε
(59)

is the same Z as that which appeared in our early and late time limits of the
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φ0 field versus the φin,out fields. Obviously, the cancellation of all the Z’s in
the end will only occur if this is the case.

Without getting too formal about it (for more rigor, see later), that
these two Z’s are the same is certainly intuitively obvious. We wrote
Z−1/2φ−0 |in〉 → φ−in|in〉 at very early times and Z−1/2〈out|φ+

0 → 〈out|φ+
out

at very late times. Here, φ0 is the fully interacting field while the out and in
fields are those that are free particle like with full one-particle normalization
at very early or very late times. It is the latter that are related to the aout

and ain operators that define the S-matrix.

Consider the propagator for p2 → µ2. For the single particle propagator,
the distinction between in and out states is not relevant since interactions
cannot change the state in this limit (if there is a mass gap). We have

∫
d4(x− y)e−ip·(x−y)〈0|T{φ0(x)φ0(y)}|0〉 =

iZφ

p2 − µ2
. (60)

Intuitively, as p2 → µ2 what is happening is that the particle is propagating
from y0 = −∞ to x0 = +∞ and it is that part of the integration above
that will be dominant. Focusing on the 〈0|T{φ0(x)φ0(y)}|0〉 integrand, let
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us consider x0 → +∞ and y0 → −∞. Then,

lim
x0→∞,y0→−∞

〈0|T{φ0(x)φ0(y)}|0〉

= lim
x0→∞,y0→−∞

〈0|φ0(x)φ0(y)|0〉

= lim
x0→∞,y0→−∞

〈0|φ+
0 (x)φ−0 (y)|0〉

= 〈0|Z1/2φ+
out(x)Z1/2φ−in(y)|0〉

= Z〈0|φ+
out(x)φ−in(y)|0〉 . (61)

Remembering that I insisted at the time that the in and out fields be free-
particle like, but with physical mass µ, the resulting contribution to the
propagator from 〈0|φ+

outφ
−
in|0〉 will come only from 1-particle intermediate

states (here we are again assuming the mass gap situation) and have unit
normalization, yielding a propagator after Fourier transforming that is i

p2−µ2

as p2 → µ2. Inserting into Eq. (60) we obtain Z = Zφ. That is, the factor
that appears in the asymptotic time relations must be the same as the Zφ
which appears in the propagator. Note that it is important in making the
above switch to the Fourier transform to emphasize that the limit of p2 → µ2
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means that we are really isolating just the free-particle-like component of the
interacting field which connects a state very early in time to one very late in
time. This means that even though I wrote things in the limx0→∞,y0→−∞,
this was not actually necessary in the p2 → µ2 limit. Further, there is no
difference between φin and φout in the p2 → µ2 limit. As we discussed earlier,
physically, all the above statements are equivalent to the statements that in
the on-shell one particle and no particle environments:

• one-particle states are stable, i.e. |1〉in = |1〉out;

• the vacuum is unique, |0〉in = |0〉out (up to a trivial phase that is taken to
be 1 by convention).

Thus, the full Fourier transform in this limit will have the Z factor relative
to the canonical free-particle i/(p2 − µ2) form. We now proceed to a more
formal derivation of Z = Zφ.

Still more on Z: the spectral representation

We have already noted earlier that from the 2nd quantization expansion of
φin and φ0, it is clear that 〈1|φin|Ω〉 and 〈1|φ0|Ω〉 have the same functional
dependence on x. The normalization factor Z1/2 takes into account the
fact that the content of the state φ0(x)|Ω〉 is not exhausted by the matrix
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elements 〈1|φ0|Ω〉 whereas the state φin(x)|Ω〉 is exhausted by 〈1|φin|Ω〉.
Once again, this intuitively means that Z1/2 should obey 0 ≤ Z1/2 < 1.

For a real field, using translation invariance (i.e. φ(x) = eiP ·xφ(0)e−iP ·x),
P |Ω〉 = 〈Ω|P = 0, P |α〉 = pα|α〉, etc., we can write

〈Ω|[φ0(x), φ0(y)]|Ω〉 =
∑
α

[〈Ω|φ0(0)|α〉e−ipα·(x−y)〈α|φ0(0)|Ω〉 − (x↔ y)]

=
∑
α

|〈Ω|φ0(0)|α〉|2
[
e−ipα·(x−y) − e+ipα·(x−y)

]
, (62)

where the sum runs over a complete set of positive energy states α. To
compare this with the commutator of two free fields of mass µ,

∆0(x− y, µ) ≡ [φ
free
0 (x), φ

free
0 (y)] =

∫
d3l

(2π)3

1

2E~l

[
e
−il·(x−y) − eil·(x−y)

]

=

∫
d4l

(2π)3
δ(l

2 − µ2
)θ(l0)

[
e
−il·(x−y) − e+il·(x−y)

]
, (63)

we insert into Eq. (62) the identity

1 =

∫
d4lδ4(l− pα) (64)
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leading to

〈Ω|[φ0(x), φ0(y)]|Ω〉 =

∫
d4l

(2π)3
ρ(l)

(
e−il·(x−y) − e+il·(x−y)

)
(65)

with
ρ(l) = (2π)3

∑
α

δ4(l− pα) |〈Ω|φ0(0)|α〉|2 . (66)

Clearly, ρ(l) > 0 and vanishes when l is not in the forward light cone,
since all the physical states α have positive energy, p0

α > 0. Further, it is
invariant under a Lorentz transformation, as required by the corresponding
property of the field φ0 (which is to say that φ0(x) is a scalar field and obeys
φ′0(x

′) = φ0(x), where the primes are after a Lorentz transform). Since l is
the only available 4-vector, we thus have

ρ(l) = σ(l2)θ(l0) , with σ(l2) = 0 if l2 < 0 . (67)

In general, this is a positive measure where δ-function singularities might
possibly occur. We shall also use the identity

σ(l2) =

∫
dµ′ 2σ(µ′ 2)δ(l2 − µ′ 2) . (68)
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Using the above, we have

〈Ω|[φ0(x), φ0(y)]|Ω〉

=

∫
d4l

(2π)3
ρ(l)

(
e
−il·(x−y) − e+il·(x−y)

)
=

∫
d4l

(2π)3
σ(l

2
)θ(l

0
)
(
e
−il·(x−y) − e+il·(x−y)

)
=

∫
dµ
′ 2
σ(µ

′ 2
)

∫
d4l

(2π)3
δ(l

2 − µ′ 2)θ(l
0
)
(
e
−il·(x−y) − e+il·(x−y)

)
=

∫
dµ
′ 2
σ(µ

′ 2
)∆0(x− y;µ

′
) (69)

where we used the analogue of Eq. (63):

∆0(x− y;µ′) =

∫
d4l

(2π)3
δ(l2 − µ′ 2)θ(l0)

(
e−il·(x−y) − e+il·(x−y)

)
(70)

where, to repeat, ∆0(x − y;µ′) is our old way of writing the free-field
commutator. We now wish to separate out the 1-particle state component
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using

〈1|φ0|Ω〉 = Z1/2〈1|φfree|Ω〉 = Z1/2〈1|φin|Ω〉 = Z1/2〈1|φout|Ω〉 . (71)

For this, it is best to convert from finite volume normalization, for which∑1 particle
α =

∑
~k, to continuum V →∞ normalization using our old friend

∑
~k

→ d3~kV

(2π)3
(72)

and recall that for

φfree0 =
∑
~q

1√
2V E~q

(afree~q e−iq·x + a† free~q eiq·x) (73)

and one particle states (with full normalization) defined by |~k〉 = a† free~k
|Ω〉,

we have

〈Ω|φfree0 |~k〉 =
1√

2V E~k
e−ik·x , (74)
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and, hence,

〈Ω|φinteracting0 |~k〉 = Z1/2 1√
2V E~k

e−ik·x , (75)

where E~k is computed using µ2. As a result, the one-particle content of ρ is
computed as

ρ(l) = (2π)3
∑
α

δ4(l− pα) |〈Ω|φ0(0)|α〉|2

3 (2π)3
∑
~k

δ4(l− k)Z
1

2V E~k

= (2π)3

∫
d3~kV

(2π)3
δ4(l− k)Z

1

2V E~k

= Z

∫
d3~k

2E~k
δ4(l− k)

= Z

∫
d4kδ(k2 − µ2)θ(k0)δ4(l− k)

= Zδ(l2 − µ2)θ(l0) , (76)
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from which we read off that

σ1 particle(l2) = Zδ(l2 − µ2) , (77)

given that ρ(l) ≡ σ(l2)θ(l0).

We now use Eq. (69) to conclude that

〈Ω|[φ0(x), φ0(y)]|Ω〉 = Z∆0(x−y;µ)+

∫
µ2

1

dµ′ 2σ(µ′ 2)∆0(x−y;µ′) , (78)

where µ1 > µ is the threshold for multiparticle states (= 3µ in the φ4 theory
context — can’t go from 1 to 2 particle state in φ4). Now, assuming that the
interaction Lagrangian does not involve field derivatives, φ̇0 will be conjugate
to φ0. By taking the time derivative in x0 of both sides of the above equation
and then taking the x0 = y0 equal time limit, if we identify the coefficients of
iδ3(~x− ~y), we find

1 = Z +

∫
µ2

1

dµ′ 2σ(µ′ 2) , (79)

so that σ > 0 implies 0 ≤ Z ≤ 1.
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For the time-ordered product, we follow a very similar procedure. We start
with

〈Ω|φ0(x)φ0(y)|Ω〉 =
∑
α

〈Ω|φ0(0)|α〉e−ipα·(x−y)〈α|φ0(0)|Ω〉 , (80)

and introduce

1 =

∫
d4lδ4(l− pα) (81)

leading to

〈Ω|φ0(x)φ0(y)|Ω〉 =

∫
d4l

(2π)3
ρ(l)e−il·(x−y) (82)

with ρ(l) defined as before. Using this, we can write

θ(x
0 − y0

)〈Ω|φ0(x)φ0(y)|Ω〉 = θ(x
0 − y0

)

∫
d4l

(2π)3
σ(l

2
)θ(l

0
)e
−il·(x−y)

= θ(x
0 − y0

)

∫
dµ
′ 2
∫

d4l

(2π)3
δ(l

2 − µ′ 2)θ(l
0
)e
−il·(x−y)

σ(µ
′ 2

)

= θ(x
0 − y0

)

∫
dµ
′ 2
∫

d3l

(2π)3

1

2E~l
e
−il·(x−y)

σ(µ
′ 2

) .

= θ(x
0 − y0

)

∫
dµ
′ 2
∫

d4l

(2π)4

i

l2 − µ′ 2 + iε
e
−il·(x−y)

σ(µ
′ 2

) .
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(83)

(To derive the above, you need to recall that i
l2−µ′2+iε

= i
(l0−E~l+iε)(l0+E~l−iε)

,

where E~l =

√
~l2 + µ′2, and that for x0 > y0, the dl0 contour is closed down

and is clockwise, picking up the l0 = +E~l pole in the lower 1/2 plane yielding

a factor of (−)2πi
2E~l
i = 2π

2E~l
.)

Similarly, if y0 > x0 we have

θ(y
0 − x0

)〈Ω|φ0(y)φ0(x)|Ω〉 = θ(y
0 − x0

)

∫
dµ
′ 2
∫

d4l

(2π)4

i

l2 − µ′ 2 + iε
e
−il·(x−y)

σ(µ
′ 2

) .

(84)

In this case, the dl0 contour is closed up and one picks up the pole at −E~l
and we obtain factor of (+) 2πi

−2E~l
i = 2π

2E~l
, i.e. the same as for x0 > y0.

Combining these two results using θ(x0 − y0) + θ(y0 − x0) = 1 we find

〈Ω|T{φ0(x)φ0(y)}|Ω〉 =

∫
dµ′ 2∆F (x− y, µ′)σ(µ′ 2) , (85)

where ∆F is the usual Feynman propagator. We now take the Fourier
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transform of this result∫
d

4
xe
−ip·x〈Ω|T{φ0(x)φ0(0)}|Ω〉 =

∫
dµ
′ 2 i

p2 − µ′ 2 + iε
σ(µ
′ 2

)

=
iZ

p2 − µ2 + iε
+

∫
9µ2

dµ
′ 2 i

p2 − µ′ 2 + iε
σ(µ
′ 2

)

=
iZφ

p2 − µ2 − Σ̃(p2) + iε
(86)

where for the 2nd equality we isolated the 1-particle portion of σ, which
explicitly contains the Z factor defined by asymptotic state limits, and the 3rd
equality is simply our definition of Zφ as the pole residue for the interacting
field propagator. Now, as p2 → µ2, the

∫
9µ2 term above has no singularity

and Σ̃(p2) ∝ (p2 − µ2)2 (by its definition) and so we conclude that Zφ = Z.

Coupling Constant Renormalization

We consider the 1PI 4-point function at one-loop. The expression for it is

Γ
(4)
0 (s, t, u) = −iλ0 + Γ(s) + Γ(t) + Γ(u) . (87)

Noting that s+ t+u = 4µ2 we choose our “experimental” input observation
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as that made at the (unphysical, but symmetric)1 point

s0 = t0 = u0 =
4µ2

3
. (88)

We define the renormalized coupling constant (the thing we measure) by

Γ
(4)
R (s0, t0, u0) ≡ −iλ . (89)

We next write

Γ
(4)
0 (s, t, u) = −iλ0 + 3Γ(s0) + Γ̃(s) + Γ̃(t) + Γ̃(u) , (90)

where Γ̃(s) ≡ Γ(s) − Γ(s0) → 0 when s = s0. Now define Zλ through the
equation

−iZ−1
λ λ0 ≡ −iλ0 + 3Γ(s0) (91)

so that
Γ

(4)
0 (s, t, u) = −iZ−1

λ λ0 + Γ̃(s) + Γ̃(t) + Γ̃(u) (92)
1We could choose a truly physical point but that is less convenient.
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and
Γ

(4)
0 (s0, t0, u0) = −iZ−1

λ λ0 . (93)

Zλ carries the infinities.
Now, we use the relation

Γ
(4)
R (s, t, u) = Z2

φΓ
(4)
0 (s, t, u) (94)

discussed earlier and we define the physically observable coupling λ by

Γ
(4)
R (s0, t0, u0) ≡ −iλ. Then, the above equations yield

λ = Z2
φZ
−1
λ λ0 . (95)

Note that −iλ is what would actually be measured at the symmetric point
according to Eq. (58) (obtained via the reduction formalism) since −iλ is

directly related to Γ
(4)
R and Γ

(4)
R directly gives the scattering matrix element.

To repeat Eq. (58) for the 4-point case:

out〈p1, p2, p3, p4|0〉in = (2π)4δ4(p1 + p2 + p3 + p4)ΓR(p1, p2, p3, p4) . (96)

We can now show that the renormalized 1PI four-point function for any
kinematic configuration will be finite up to order λ2 when written in terms of
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λ. This follows from

Γ
(4)
R (p1, . . . p4) = Z2

φΓ
(4)
0 (p1 . . .)

= −iZ−1
λ Z2

φλ0 + Z2
φ

[
Γ̃(s) + Γ̃(t) + Γ̃(u)

]
= −iλ+ Z2

φ

[
Γ̃(s) + Γ̃(t) + Γ̃(u)

]
' −iλ+

[
Γ̃(s) + Γ̃(t) + Γ̃(u)

]
+O (λ3

)
(97)

given that Zφ = 1 +O(λ0) and Γ̃ = O(λ2
0). Clearly, to the order considered,

the final expression for Γ
(4)
R above is completely finite when expressed as a

function of the renormalized (i.e. measured) coupling λ.

Let us look at G(4) in very explicit fashion using this same approach. To
order λ2, we need to consider the bubble insertions on external propagators
as well as the 1PI fish diagrams. There are 4 such bubble insertions. We can
write

G
(4)
0 (p1, . . . p4) =

∏
j

 i

p2
j
− µ2

0 + iε


−iλ0 + 3Γ(s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)
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+(−iλ0)
∑
k

[−iΣ(p
2
k)]

i

p2
k
− µ2

0 + iε

 . (98)

The first and last terms can be combined to order λ2
0 in the form:

(−iλ0)

∏
j

 i

p2
j
− µ2

0 + iε



1 +

∑
k

Σ(p
2
k)

1

p2
k
− µ2

0 + iε

 = (−iλ0)

∏
j

 i

p2
j
− µ2

0 − Σ(p2
j
) + iε


 +O(λ

3
0) .

(99)

Since Γ ∼ O(λ2
0), Γ̃0 ∼ O(λ2

0), and Σ ∼ O(λ0), we can also write to this
order

∏
j

i

p2
j
− µ2

0 + iε

 [3Γ(s0) + Γ̃(s) + . . .
]

=

∏
j

i

p2
j
− µ2

0 − Σ(p2
j
) + iε

 [3Γ(s0) + Γ̃(s) + . . .
]

+O(λ
3
0) .(100)

Altogether, we get

G
(4)
0 (p1 . . . p4) =

∏
j

 i

p2
j
− µ2

0 − Σ(p2
j
) + iε

 [−iλ0 + 3Γ(s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)
]

=

∏
j

i∆(p
2
j)

 Γ
(4)
0 (p1 . . . p4) . (101)
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Recalling that

G
(4)
R = Z−2

φ G
(4)
0 , ∆R = Z−1

φ ∆ , Γ
(4)
R = Z2

φΓ
(4)
0 (102)

we then find from the above equation that

G
(4)
R = Z−2

φ

Z4
φ

∏
j

i∆R(p2
j)

Z−2
φ Γ

(4)
R

=
∏
j

[
i∆R(p2

j)
]

Γ
(4)
R , (103)

which is finite since ∆R and Γ
(4)
R are.

Altogether, if we define

φ = Z
−1/2
φ φ0 , λ = Z−1

λ Z2
φλ0 , µ2 = µ2

0 + δµ2(with δµ2 = Σ(µ2)),
(104)

then the renormalized quantities are finite expressions as functions of µ2 and
λ. This feature, namely that all divergences, after rewriting everything in terms
of λ and µ, can be absorbed, is the hallmark of a renormalizable theory. And,
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as we have seen, the S matrix scattering amplitudes are given in terms of the
renormalized Green’s functions, more precisely the ΓR for any given process.

BPH Renormalization

BPH=Bogoliubov, Parasink and Hepp (+Zimmerman)
The alternative (but equivalent) approach of BPH renormalization is often

more convenient.
First, let us rephrase our result just obtained. We begin once again with

L0 =
1

2
[(∂µφ0)(∂

µφ0)− µ2
0φ

2
0]−

λ0

4!
φ4

0 . (105)

(here, the 0 subscript refers to before renormalization rather than to just the
free particle part of L). If we substitute in terms of the renormalized field and
mass and coupling constant, this becomes

L0 =
1

2
Zφ
[
∂µφ∂

µφ− (µ2 − δµ2)φ2
]−

(
Zλλ

Z2
φ

)
4!

Z2
φφ

4

=
1

2
Zφ
[
∂µφ∂

µφ− (µ2 − δµ2)φ2
]− λZλ

4!
φ4 . (106)
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We rewrite this in the form

L0 = L+ ∆L (107)

where

L =
1

2

[
∂µφ∂µφ− µ2φ2

]− λ

4!
φ4

∆L = (Zφ − 1)
1

2

[
∂µφ∂µφ− µ2φ2

]
+ Zφ

1

2
δµ2φ2 − λ(Zλ − 1)

4!
φ4(108)

where

• L is the renormalized Lagrangian density

• ∆L is the counter term Lagrangian and is explicitly of order λL.

The BPH scheme is the following:

1. Start with L and compute propagators and vertices.

2. Isolate the divergent 1PI diagrams at order λ (i.e. at one loop).
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3. Choose ∆L(1) to cancel these divergences.

4. Use L(1) = L+ ∆L(1) to generate 2-loop diagrams.

5. Isolate the infinities of the 2-loop diagrams.

6. Choose ∆L(2) (order λ3) to cancel these infinities.

7. and so forth.

Note that to any given order in λ, this procedure will give a finite expression
in terms of the renormalized quantities, λ and µ. In the end, we will have

∆L = ∆L(1) + ∆L(2) + . . . (109)

To analyze further, we need to do some general power counting. This will
tell us what kinds of counter terms we will need.

A theory is renormalizable if only a small number of counter terms are
required and if these counter terms have the same form as terms already in
the bare Lagrangian.
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To analyze the divergent structure of any Feynman diagram, we introduce
the term “superficial degree of divergence”, D, which is the number of
loop momenta in the numerator minus the number of loop momenta in the
denominator. For example, in our fish diagrams of Fig. 1, we find the d4l in
the numerator and 1/(l2)2 (large l) in the denominator, giving D = 4−4 = 0,
implying a logarithmic divergence. In general, D can be computed once we
know:

• B = number of external bosons;

• IB = number of internal boson lines;

• n = number of vertices.

The computation of D that we desire is as follows:

1. Since each vertex has 4 lines entering or exiting, and both ends of an internal
line must terminate on vertices, but only one end of an external line must
terminate on a vertex, we have

4n = 2(IB) +B (110)
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2. The number of independent loop moment that must be integrated over after
employing all the δ functions from the vertices is given by

L = IB − n+ 1 (111)

where the +1 is because the 4-momenta delta functions at the n vertices
are not all independent given that an overall δ(

∑
pi) must emerge.

3. The degree of divergence is

D = 4L− 2(IB) (112)

where there is a 4 for each loop d4l and a −2 for each internal propagator
(since they fall off as 1/l2).

4. Using Eq. (111) for L in (112) and then using Eq. (110) to substitute for
IB gives

D = 4(IB−n+1)−2IB = 2IB−4n+4 = 4n−B−4n+4 = 4−B .
(113)
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The fact that D does not depend on the internal structure of the diagram is
another hallmark of a renormalizable theory. To see how many divergences
are possible, we need only look at external structures.

Since λφ4 has a reflection symmetry under φ → −φ, B must be an
even number. Thus, only B = 2 and B = 4 diagrams are superficially
divergent. We reemphasize the fact that this statement is valid to all
orders in perturbation theory (i.e. for arbitrarily complicated internal diagram
structures).

Of course, we know very well what the most relevant diagrams are (at
least at one-loop order). The B = 2 diagram at one-loop is the propagator
correction which has D = 2 and contains quadratically divergent and log
divergent pieces. The crucial B = 4 diagrams are the 1PI vertex correction
diagrams (the fish diagrams at one-loop).

Note however that one can draw diagrams with D = 0 or even D < 0
that are actually quadratically or logarithmically divergent. An example is the
diagram with 6 external bosons connected by a propagator supplemented by
a loop correction on any one of the external legs. This is an example of a
diagram that superficially has D = −2 but is actually quadratically divergent
because of the presence of a divergent (in this case, propagator correction)
subdiagram. However, this subdiagram will be rendered finite once we have

J. Gunion 230C, U.C. Davis, 50



included counterterm Feynman rules that make the basic propagator correction
finite. Part of the proof of renormalizability is to show that all D < 0 diagrams
are rendered finite once counterterms for the basic (1PI) D = 2 and D = 0
diagrams have been introduced in ∆L.

Before proceeding to analyze these basic D = 2 and D = 0 1PI diagrams
and the required counterterms from the BPH perspective, let us first discuss
the general case of a φN theory. We have

Nn = (N − 4)n+ 4n = 2IB +B

L = IB − n+ 1

D = 4L− 2IB

= 4(IB − n+ 1)− 2IB

= 2IB − 4n+ 4

= (N − 4)n+ 4n−B − 4n+ 4

= (4−B) + (N − 4)n . (114)

• For N > 4, as we move to higher orders, n, we generate higher and higher
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degrees of divergence. The nature of the divergence is not just a function of
the external particle number, but depends also on the order of perturbation
theory being considered.

The theory is called non-renormalizable.

• For N < 4, higher orders quickly lead to convergent diagrams. There are
only a limited number of actually divergent diagrams.

For example, for N = 3, D = 4−B − n.

1. For B = 2, only diagrams with n = 1 or 2 vertices are divergent.
But, n = 1 is topologically impossible for B = 2. The smallest possible
n is n = 2 and the associated diagram (the loop insertion in a line) is
log divergent.
n = 3 is topologically impossible.
n = 4 gives two 1PI diagrams that are convergent; of course, the double
iteration of the n = 2 loop diagram is handled if we deal with the n = 2
diagram in the first place.

2. For B = 3, there are no n = 1 loop diagrams and all higher n diagrams
are convergent. (The simplest diagram is the triangle correction to
the 3-boson vertex, which has 3 internal propagators and converges as∫
d4l/(l2)3.)
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3. For B ≥ 4, any diagram with at least one vertex (so that it is a non-trivial
diagram) will be convergent, other than diagrams with a 1-loop correction
to a propagator, which are handled by the B = 2 renormalization.
The simplest example to think of here is to consider the tree-level diagram
with one virtual boson exchange between two three-boson vertices with
two external bosons connected to each. If you insert a loop into the
exchanged boson, that will be divergent, but handled by the B = 2
renormalization. The other diagrams are: a) triangle diagram corrections
to the two vertices, which are convergent as discussed for B = 3; and b)
the box diagram, which converges as

∫
d4l/(l2)4.

Thus, there is only one divergent diagram and it arises only in the lowest
order at which a one-loop diagram propagator correction can be drawn.

The theory is called super-renormalizable.

Let us now return to φ4 theory.
We have seen that we should only have to deal with B = 2 (D = 2) and

B = 4 (D = 0) for renormalization.
For the D = 2 case, we have divergences associated with the mass and

with the field strength. In a Taylor expansion, we would write

Σ(p2) = Σ(0) + p2Σ′(0) + Σ̃(p2) (115)
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where Σ(0) and Σ′(0) are divergent but Σ̃(p2) is finite. (It will usually be
simpler in the BPH approach to expand about zero-momentum configurations.)
This means we need two counterterms:

1

2
Σ(0)φ2 +

1

2
Σ′(0)(∂µφ)(∂µφ) (116)

to cancel the divergences. If we introduce these terms into ∆L that means
we introduce new Feynman rules associated with these Lagrangian structures.
The Feynman rules are easily derived using our standard technique and
correspond to point-like insertions onto a single particle line of weights iΣ(0)
and iΣ′(0)p2, respectively — these are the desired signs since −iΣ(p2) is the
result of the 1PI loop insertion in a single particle line and so the new ∆L
terms will have the correct sign to cancel the one-loop divergent expansion
components.

Similarly, for D = 0, B = 4 we know that

Γ4(p1, p2, p3, p4) = Γ4(0) + Γ̃4(p1, p2, p3, p4) (117)

where we find it convenient to expand about the point where all the pi=1,2,3,4

are 0. Γ4(0) we know is log divergent. To cancel this log divergence we
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introduce a counter term in ∆L of the form

∆L 3 iΓ
4(0)

4!
φ4 (118)

which gives rise to a new 4-point vertex in our set of Feynman rules:

−Γ4(0) . (119)

(To check sign and phase, recall that L 3 −λ
4!

produces Feynman rule −iλ,
i.e. multiply by i4!.) Thus, (118) will produce Feynman rule (119), which
will therefore have the correct sign to cancel the +Γ4(0) coming from the
one-loop calculations.

Altogether, we can rewrite ∆L in the form

∆L =
1

2
(Zφ − 1)[(∂µφ)(∂µφ)− µ2φ2] +

1

2
Zφδµ

2φ2 − λ(Zλ − 1)

4!
φ4 (120)

if we make the following identifications:
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Σ′(0) = Zφ − 1

Σ(0) = −(Zφ − 1)µ2 + Zφδµ
2 = −Σ′(0)µ2 + Zφδµ

2

Γ4(0) = −iλ(1− Zλ) . (121)

These results are consistent with our earlier renormalization equations, up to
some differences in the treatment of finite terms. In particular, our previous
“old” approach gave the results:

Zφ = 1 + Σ′(µ2) +O(λ2
0)

µ2 = µ2
0 + δµ2 = µ2

0 + Σ(µ2)

−iZ−1
λ λ0 = −iλ0 + 3Γ(s0 = 4µ2/3) . (122)

It is easy to see that (121) is the same as (122), to the order that we are
working and as regards the infinite terms. There are finite terms that are
treated differently in the two approaches unless it happens that the physical
mass µ2 = 0 so that the subtraction point employed in the BPH scheme and
the physical particle mass squared are the same.
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For physical mass squared µ2 = 0, we have the mapping:

old (at µ
2

= 0) ↔ new (BPH)

Zφ = 1 + Σ
′
(0) ↔ Σ

′
(0) = Zφ − 1 (123)

δµ
2

= Σ(0) ↔ Σ(0) = −Σ
′
(0)× (µ

2
= 0) + (1 + Σ

′
(0))δµ

2

= −0 + δµ
2

+O(λ
2
0) (124)

−iZ−1
λ
λ0 = −iλ0 + 3Γ(0) ↔ Γ

4
(0) = −iλ(1− Zλ) . (125)

The equivalences (123) and (124) are trivially obvious. To see the equivalence
(125), let us rewrite the left-hand side as

−iλ0

1− Zλ
Zλ

= 3Γ(0) . (126)

Since 1 − Zλ is of order λ already, neglecting terms of order λ2 we may
replace Zλ in the denominator by 1 and λ0 in the numerator by λ to obtain

−iλ(1− Zλ) = 3Γ(0) . (127)

This is the same as the right-hand side of (125) since Γ4(0) = 3Γ(0), i.e.
the sum of the three fish diagrams evaluated in the s0 = t0 = u0 = 0
(off-mass-shell) symmetric configuration.
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The fact that the two schemes differ by finite terms if µ2 6= 0 is perfectly
ok. All that renormalization has to handle is the potentially infinite terms.

Schemes that differ as a result of the renormalization quantities Zφ, Zλ
and δµ2 having different finite terms will give the same final answer after
summing the full perturbation series.

However, it is true that some schemes have faster convergence for the
perturbation series than others. We shall return to this point later.

It is important to again stress that the divergent graphs (B = 2 and
B = 4) gave divergences that corresponded to 2 and 4 point interactions that
were already present in L. We did not have to introduce any new interactions
in order to renormalize the theory.

All of this can be extended to higher orders, but this extension is definitely
more complex than what we discussed above. One gets involved with divergent
subgraphs, “primitively” divergent graphs, Weinberg’s theorem, . . . . We
don’t have time for this material here. We must turn to the more practical
problem at one loop of

Regularization Schemes

A good regularization scheme should maintain Lorentz invariance and the
symmetries of the theory.

An old scheme was to employ a Covariant Cutoff.
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We will focus on the more modern scheme that is very generally useful,
even in the context of supersymmetry, of Dimensional Regularization.

Some key ingredients in this scheme are:

1. Make integrals finite by using n < 4 dimensions.

2. Recognize that Feynman integrals are analytic functions of n.

3. Observe that ultraviolet (high-momentum) divergences ⇒ poles at n = 4.

4. Check that Ward identities are preserved — this is important when
discussing gauge theories.

We begin with the example of one of the fish diagrams.

Γ(p2) =
(−iλ)2

2

∫
d4l

(2π)4

i

(l− p)2 − µ2 + iε

i

l2 − µ2 + iε
. (128)

To define this integral in n dimensions, take

l = (l0, l1, . . . ln−1) , p = (p0, p1, p2, p3, 0, 0, . . .) (129)
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and write

Γ(p2) =
(λ)2

2

∫
dnl

(2π)n
1

(l− p)2 − µ2 + iε

1

l2 − µ2 + iε
, (130)

which is convergent for n < 4. We wish to define this for non-integer n.
To do so, we first combine the denominators using Feynman parameters and
make a Wick rotation.

The Feynman trick is to write

1

ab
=

∫ 1

0

dα

[αa+ (1− α)b]2
. (131)

More generally,

1

a1a2 . . . an
= (n− 1)!

∫ 1

0

dz1 . . . dzn

(a1z1 + . . . anzn)n
δ(1−

n∑
i=1

zi) . (132)

Returning to our Γ(p2), we write

1

(l2 − µ2 + iε)

1

(l− p)2 − µ2 + iε
=

∫
dα

[(1− α)l2 + α(l− p)2 − µ2 + iε]2
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=

∫
dα

[(l− αp)2 + α(1− α)p2 − µ2 + iε]2

≡
∫

dα

[k2 − a2 + iε]2
.

(133)

At this point we shift from l to k:
∫
d4l =

∫
d4k.

The Wick rotation, which is performed in the complex k0 plane, takes
the Minkowski metric to a Euclidean metric without passing the denominator
poles.

The poles in question are determined by

k2 − a2 + iε = (k0)2 − ~k2 − a2 + iε = (k0)2 − [(~k2 + a2)1/2 − iε]2 , (134)

where we have rescaled ε without changing its sign, which gives poles at

k0 = (~k2 + a2)1/2 − iε
k0 = −(~k2 + a2)1/2 + iε . (135)

The idea of the Wick rotation is to rotate the integral along the real k0 axis to
an integral along the imaginary k0 axis without wrapping around either of the
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poles. This specifies a unique direction of rotation. The rotation is pictured in
Fig. 3. Since no poles are contained within C,

∮
C
f(k0) = 0, and further the

contours at ∞ give zero contribution (for well-behaved f(k0)). As a result

∫
real axis

f(k0)dk0 =

∫
imag.−axis

f(k0)dk0 , (136)

where

f(k
0
) =

1[
(k0)2 −

{
(~k2 + a2)1/2 − iε

}2
]2
. (137)

�������

�	��
 ����������������

����� �

�

Figure 3: Graphical illustration of the Wick rotation for k0, with pole locations
indicated.
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This can be written explicitly as∫ ∞
−∞

dk0f(k0) =

∫ +i∞

−i∞
dk0f(k0)

= i

∫ ∞
−∞

dk̄0f(ik̄0) with k0 = ik̄0 , (138)

and

f(ik̄0) =
1[

(k̄0)2 + l21 + l22 + . . . l2n−1 + a2 − iε]2 . (139)

So, now simply relabeling k̄0 → l0 in the Euclidean metric form, we obtain

Γ(p2) =
iλ2

2

∫ 1

0

dα

∫
dn~l

(2π)n
1[

|~l|2 + a2 − iε
]2 ,~l=Euclidean (140)

where a2 = µ2 − α(1 − α)p2. The integral is now independent of angles,
which can be integrated out after defining l = |~l|:∫

d
n~l =

∫ ∞
0

l
n−1

dl

∫ 2π

0
dθ1

∫ π

0
sin θ2dθ2

∫ π

0
sin

2
θ3dθ3 . . .

∫ π

0
sin
n−2

θn−1dθn−1

J. Gunion 230C, U.C. Davis, 63



=
2πn/2

Γ
(
n
2

) ∫ ∞
0

l
n−1

dl . (141)

We employed ∫ π

0

sinm(θ)dθ =

√
πΓ

(
m+1

2

)
Γ
(
m+2

2

) (142)

to obtain the final form above by noting:

Angle stuff = 2π

√
πΓ(1)

Γ(3/2)

√
πΓ(3/2)

Γ(2)
. . .

√
πΓ(n− 1)

Γ(n/2)

= 2π(
√
π)n−2 Γ(1)

Γ(n/2)

=
2πn/2

Γ(n/2)
. (143)

So, the bottom line is that

Γ(p2, n) =
λ2

2

2iπn/2

(2π)nΓ(n/2)

∫
dα

∫ ∞
0

ln−1dl

[l2 + a2 − iε]2
. (144)
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An alternative derivation for the angular integrals is to note that

∫
dΩn = area of unit sphere in n dimensions ≡ Sn =

2πn/2

Γ(n/2)
, (145)

where this latter result might also be derived by noting that
√
π =

∫∞
−∞ dxe

−x2

so that

(
√
π)n =

∫
dx1 . . . dxne

−(x2
1+...x2

n)

=

∫
dΩn

∫ ∞
0

d|~x||~x|n−1e−|~x|
2

=

∫
dΩn

1

2

∫ ∞
0

dyy
n
2−1e−y y = |~x|2

=

∫
dΩn

1

2
Γ

(
n

2

)
. (146)
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Turning this around we get

∫
dΩn ≡ Sn =

2πn/2

Γ
(
n
2

) . (147)

Now, we must do the final
∫
dl. It is well defined for 0 < Ren < 4. But, in

fact, we can extend it to any Ren < 4 by multiple parts integration. Thus,
only n → 4 needs to be analyzed. First, to perform the

∫
dl we use the

identity: ∫ ∞
0

tm−1dt

(t+ a2)n
=

1

(a2)n−m
Γ(m)Γ(n−m)

Γ(n)
. (148)

Our integral can be rewritten in this form by shifting to t = l2, dt = 2ldl =
2
√
tdl:

∫
ln−1dl

[l2 + a2]
2 =

∫
dt

2
√
t

t
n−1

2

[t+ a2]
2

=
1

2

∫
t
n
2−1dt

[t+ a2]
2
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=
1

2

1

(a2)2−n2
Γ
(
n
2

)
Γ
(
2− n

2

)
Γ (2)

=
1

2

1

(a2)2−n2
Γ

(
n

2

)
Γ

(
2− n

2

)
. (149)

Now use

Γ

(
2− n

2

)
=

Γ
(
3− n

2

)
2− n

2

n→4→ 2

4− n (150)

to see that the singularity is a simple pole. To be more precise, let’s expand
everything around n = 4 by writing n = 4 − 2ε 2 and use the general result
that

Γ(−k + ε) =
(−1)k

k!

[
1

ε
+ ψ(k + 1) +

1

2
ε

{
π2

3
+ ψ

2
(k + 1)− ψ′(k + 1)

}
+O(ε

2
)

]
(151)

where ψ(s) ≡ d ln Γ(s)
ds

. The specific values

ψ(1) = −γ

ψ(k + 1) = 1 +
1

2
+ . . .+

1

k
− γ

2Ryder writes n = 4− ε, so be careful if you are looking at his book.
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ψ′(1) =
π2

6

ψ′(k + 1) =
π2

6
−

k∑
l=1

1

l2
(152)

will be of particular use. In the immediate context, we write

Γ

(
2− n

2

)
= Γ

(
2− 4− 2ε

2

)
= Γ(ε)

=

[
1

ε
− γ +

1

2
ε

{
π2

3
+ γ2 − π

2

6

}
+O(ε2)

]
. (153)

We need to do one more thing. We note that when n 6= 4, then λ is
not dimensionless any longer. To relate always to a dimensionless coupling
constant, we need to rescale with some mass:

λold = λnew(µ2)2−n2 =ε (154)

where λnew is dimensionless. That this is the appropriate scaling is argued as
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follows:

1.
∫
dnx(∂µφ)2 must be dimensionless.

2. Meanwhile dnx = d4−2εx has mass dimension in the amount M2ε−4, while
each ∂µ has mass dimension M .

3. Thus, the net dimension of M2ε−2 must be compensated by the dimension
of φ2, implying that φ should have dimension M1−ε.

4. Next, we examine the dnxλφ4 part of the Lagrangian which has mass
dimension M2ε−4Mdim[λ]M4−4ε.

To get M0 requires that λ has mass dimension M2ε which we have written
in the conventional form (µ2)ε.

Apologies for the multiple use of µ, but both are conventional. The µ
above is called the renormalization scale.

However, in what follows, the µ scalar mass will be called m.

Anyway, dropping the new subscript on the λ, our net result is

Γ(p
2
) =

λ2

2
(µ

2
)
2ε iπ

4−2ε
2

(2π)4−2ε

[
1

ε
− γ +

1

2
ε

{
π2

3
+ γ

2 − π
2

6

}
+O(ε

2
)

] ∫
dα

1[
m2 − p2α(1− α)

]ε
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=
λ2

2
(µ

2
)
ε
e

2ε lnµ iπ2

(2π)4
e
ε ln(4π)

[
1

ε
− γ +

1

2
ε

{
π2

3
+ γ

2 − π
2

6

}] ∫ 1

0
dαe

−ε ln[m2−p2α(1−α)]
,

(155)

where we have isolated the power (µ2)ε, which is the dimension of λold which
must also be the net dimension of Γ, as we shall see. The above can be
rewritten in the form

Γ(p2) =
iπ2

2(2π)4
λ2(µ2)ε

[
1

ε
− γ +

1

2
ε

{
π2

3
+ γ2 − π

2

6

}] ∫
dαe

−ε ln
m2−p2α(1−α)

4πµ2 ,

(156)
which may be expanded up to power ε0 in the form:

iπ2

2(2π)4
λ2(µ2)ε

[
1

ε
− γ −

∫
dα ln

m2 − p2α(1− α)

4πµ2

]
. (157)

(Notice how the ε1 from the exponential expansion canceled against the 1/ε
from the ultraviolet singularity. This is a typical thing that one must always
be careful to keep.)
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We write

− ln

{
m2 − p2α(1− α)

4πµ2

}
= − ln

{
m2

4πµ2

[
1− p2

m2
α(1− α)

]}
= ln

4πµ2

m2
− ln

[
1 +

4

b
α(1− α)

]
(158)

with b = −4m2

p2 . Of course,
∫
dα of the first term just gives 1 × ln 4πµ2

m2 . If

we temporarily take p2 < 0 so that b > 0, we can use the result below to
evaluate the integral of the 2nd term, and then later continue to p2 > 0.∫

dα ln

[
1 +

4

b
α(1− α)

]
b>0
= − 2 +

√
1 + b ln

(√
1 + b+ 1√
1 + b− 1

)
(159)

The result we obtain in this manner is

Γ(p
2
) =

iλ2

32π2
(µ

2
)
ε

1

ε
− γ + 2 + ln

4πµ2

m2
−
√

1− 4m2

p2
ln


√

1− 4m2

p2 + 1√
1− 4m2

p2 − 1


 . (160)

This equation will be applied for all three of our fish diagrams, that is for
p2 = s, t and u.
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Next, we need to turn our attention to Σ. The diagram in question is the
one-loop tadpole-like insertion.

−iΣ(p2) =
−iλ(µ2)ε

2

∫
dnl

(2π)n
i

l2 −m2 + iε

=
λ

2
(µ2)ε

∫
dnl

(2π)n
1

l2 −m2 + iε

= i
λ

2
(µ2)ε

∫
dn~l

(2π)n

[
1

−|~l|2 −m2 + iε

]

= −iλ
2

(µ2)ε
1

(2π)n
2πn/2

Γ
(
n
2

) ∫ ∞
0

ln−1dl

l2 +m2

= −iλ
2

(µ2)ε
1

(2π)n
2πn/2

Γ
(
n
2

) 1

2

∫
t
n
2−1dt

t+m2

= −iλ
2

(µ2)ε
1

(2π)n
2πn/2

Γ
(
n
2

) 1

2

1

(m2)1−n2
Γ
(
n
2

)
Γ
(
1− n

2

)
Γ(1)
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= −iλ
2

(µ2)ε
2

(4π)n/2

1

2

1

(m2)−1+ε
Γ(−1 + ε)

=
−iλm2

32π2

(
4πµ2

m2

)ε
Γ(−1 + ε) . (161)

We now do an expansion, using Eq. (151):

Γ(−1 + ε) = −
[
1

ε
+ ψ(2) +O(ε)

]
, (162)

where ψ(2) = 1− γ. Substituting this in we find:

−iΣ(p2) =
iλm2

32π2

[
1

ε
+ 1− γ + ln

4πµ2

m2
+O(ε)

]
. (163)

Again, there was a O(ε) term from the expansion of

(
4πµ2

m2

)ε
= e

ε ln

(
4πµ2

m2

)
∼ 1 + ε ln

(
4πµ2

m2

)
(164)
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that multiplied the 1
ε

term to give a term of order O(ε0).

Also, we should note: (a) there is no p2 dependence in this one-loop
expression; (b) Γ(−1 + ε = 1 − n

2
) also has a pole at n = 2 reflecting the

quadratic divergence.

We are now in a position to explicitly carry out the renormalization
procedure. Define

∆L =
1

2
Σ(0)φ2 +

1

2
Σ′(0)(∂µφ)(∂µφ) +

iΓ4(0)

4!
φ4 (165)

as before, where Σ′(0) is zero because of the lack of p2 dependence at the
present order λ at which we are working. For the non-φ4 part of ∆L, the
appropriate expression is

∆L = −1

2
φ2

[
λm2

32π2

] [
1

ε
+ F (ε,

4πµ2

m2
)

]
, (166)

where F is an arbitrary function except for being analytic as ε → 0 and

a function of the dimensionless ratio µ2

m2. The counter-term Feynman rule
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associated with this ∆L is

−iλm2

32π2

[
1

ε
+ F

]
, (167)

so that

−iΣ(p2) + C.T. =
iλm2

32π2

[
1− γ + ln

4πµ2

m2
− F

]
. (168)

This can now be combined with the 0th order propagator as indicated in the
figure to obtain:

bare + bare× [1PI insertion + CT insertion]× bare + iterations

=
i

p2 −m2
+

i

p2 −m2

iλm2

32π2

[
1− γ + ln

4πµ2

m2
− F

]
i

p2 −m2
+ . . .

=
i

p2 −m2 + λm2

32π2

[
1− γ + ln 4πµ2

m2 − F
] . (169)
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Figure 4: Graphical illustration of counterterm approach for the propagator.

We now need to play the same game for the φ4 term. Recalling Eq. (160),
the important singular part is

Γ(p2) =
iλ2

32π2
(µ2)ε

1

ε
. (170)

and we must remember that since there are 3 fish diagrams this singular
structure actually appears with a factor of 3. Thus, we will choose (in
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Eq. (165))

Γ4(0) =
3iλ2

32π2
(µ2)ε

[
1

ε
+G(ε,

4πµ2

m2
)

]
, (171)

for which the Feynman rule deriving from the iΓ4(0)
4!
φ4 interaction is given by

−Γ4(0) = −3iλ2

32π2
(µ2)ε

[
1

ε
+G(ε,

4πµ2

m2
)

]
(172)

so that the sum of the 3 fish diagrams plus the vertex counter diagram,

Γ(s) + Γ(t) + Γ(u)− Γ
4
(0)

= 3
iλ2

32π2
(µ

2
)
ε

−γ + 2 + ln
4πµ2

m2
− 1

3

∑
z=s,t,u

√
1− 4m2

z
ln


√

1− 4m2
z + 1√

1− 4m2
z − 1

−G(ε,
4πµ2

m2
)

 , (173)

is finite.
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Figure 5: Graphical illustration of counterterm approach for vertex.

Subtraction “Schemes”

1. In the so-called minimal subtraction (MS) scheme, we take F = G = 0.

2. In the MS subtraction scheme, we choose

F = G = −γ + ln 4π (174)

so as to absorb the obvious constants that appear in both calculations.
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As it happens, the MS scheme often leads to smaller coefficients for higher
order correction expansions, but for the moment we will stick to the MS
scheme.

In the MS scheme, we have the following identifications with the general
form of (after taking µ → m in the basic form to avoid confusion with
the renormalization scale µ and going to the dimensionless coupling λ in n
dimensions)

∆L =
1

2
(Zφ − 1)[(∂µφ)(∂µφ)−m2φ2] +

1

2
Zφδm

2φ2 − λ(µ2)ε(Zλ − 1)

4!
φ4 .

(175)
First, at this order only,

1

2
(Zφ − 1)(∂µφ)(∂µφ) = 0 (176)

since Σ′(0) = 0. The two non-trivial identifications are:

1

2
Zφδm

2φ2 = −1

2
φ2λm

2

32π2

1

ε
. (177)
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−λ(µ2)ε

4!
(Zλ − 1)φ4 = −λ(µ2)ε

4!
φ4 3λ

32π2

1

ε
. (178)

Reading off this matching, we find

Zφ = 1

δm2 = −λm
2

32π2

1

ε

(Zλ − 1) =
3λ

32π2

1

ε
. (179)

What’s in the choice of a subtraction scheme?

As we have seen, there is ambiguity in the choice of the finite part of
the counterterms. This ambiguity leads to different possible definitions of the
coupling constant employed in the perturbative expansions. It turns out to
be the case that some coupling constant definitions lead to a systematically
better expansion in that, for example, using QED notation,

prediction = e2 + ae4 (180)

where a may be small for one definition of e but big for another definition. It
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turns out that this is particularly relevant for QCD.
To see what is at issue more clearly, let us imagine a theory of Quantum

Imaginary Dynamics, QID. Assume that in the far distant future someone is
able to solve QID exactly so that predictions for important measurements are
precisely related to one another.

• At the present time, we imagine that there are two high precision
measurements that are made:

1. the QID “Josephson Effect”

JI = 0.200000000 (13) (181)

2. the magnetic moment of the QID electron

aIe = 0.33333333(12) . (182)

• The exact solution of QID in terms of a parameter x (to be measured)
yields the results

JI = x

aIe =
x

1− 2x
. (183)
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Obviously, if x is measured by JI (so that x = 0.2 . . .) then this exact
solution predicts aIe = 0.333 . . ..

• Unfortunately for the inhabitants of QID land, their stupid physicists have
not solved QID exactly and must instead resort to QID perturbation theory.

They find it convenient to expand in terms of a parameter y which appears
naturally in the calculation of QID perturbation theory diagrams. It happens
that

x = y(1 + 10y) (184)

but the physicists are unaware of that. They attach no particular significance
to x.

• Now, expanding we have

JI = y + 10y2

aIe = y + 12y2 + 44y3 + . . . . (185)
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Keeping only the leading “tree-level” terms linear in y, a measurement of
JI = 0.2 = y predicts aIe = 0.2, in bad disagreement with experiment.
This was all the professors could manage.

• After several years of lengthy QID computations, the graduate students
obtained the next order, i.e. O(y2), results so that now they had

y + 10y2 = 0.2 , ⇒ y = 0.1 (186)

yielding the prediction aIe = y + 12y2 = 0.22, which still gave bad
agreement, despite the fact that y = 0.1 seems like a small expansion
parameter. The problem is that the coefficients in the expansion of aIe in
terms of y are very big.

• Finally, some clever physicist says lets choose an expansion parameter such
that the coefficients in the expansion are better behaved, and perhaps the
expansion parameter has additional physical motivation as well.

An obvious guess, once you compute to order y2 and realize that x =
y + 10y2 has a big y2 coefficient, is to use x instead of y, so that
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JI = x+O(x3). Then, you find from your aIe calculation that

aIe = x+ 2x2 +O(x3) (187)

which is also clearly better behaved in that the expansion coefficient is
much smaller than before when y was used. Using x, one concludes that
the measurement JI = 0.2 ⇒ x = 0.2 which, in turn, ⇒ aIe ∼ 0.28 (up
to corrections of order x3 which they hope are small).

Well this is much better, but still not exactly perfect.

Note that even though x = 0.2 > y = 0.1, the series is much more
convergent in x.

• After another 3 years another graduate student manages to compute the
500+ Feynman diagrams (using some advanced algebraic manipulation
programs and automated integration routines) needed to obtain the next
terms at O(x3) for JI and aIe, discovering that JI = x+O(x4) and that
aIe = x+ 2x2 + 4x3 +O(x4).

The measurement of JI still gives x = 0.2 and, to the computed order,
aIe = 0.312. At this point, the measured value of aIe = 0.333 is in
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sufficiently good agreement with the prediction based on the JI = 0.2
measurement and the perturbative series that QID is declared a correct
theory. (Although some uncertainty must inevitably remain since the O(x4)
terms would require computing several thousand highly complex Feynman
diagrams and the computation is estimated to take more than 5 years — a
project that is deemed excessive even for assigning to a graduate student.)

• In QED, we are fortunate to have a physical observation (the charge of the
electron) which we use to define our expansion parameter e and we are

lucky in that not only is e small (more precisely, α = e2

4π
� 1), but also

the coefficients of powers of α that appear in calculating other quantities
in terms of α are small.

• In QCD, we have no such direct measurement of gs and we must be clever
in the way in which we define our gs (by trying to make it as physical
as possible) in order to keep our perturbation theory coefficients in the

expansion in powers of αs =
g2
s

4π
under control.

Experience has shown that the MS scheme for defining the renormalized
coupling constant is much better in this sense than the MS scheme.
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Dependence on the Renormalization Scale µ

• Another aspect of scheme-dependence is the choice of the renormalization
scale µ.

As one goes to higher and higher orders, there should be less and less
dependence on µ if the theory is well behaved and the renormalization
program makes sense.

• At leading order (often denoted LO), there is usually substantial dependence
on µ of a typical QCD calculation. This dependence upon µ arises because
one must use αs(µ), i.e. evaluated at some scale µ. (We know very well
how αs depends on µ, as we shall see later in the course.)

As a result, the LO correction has a large theoretical error (sometimes
called a “systematic” error from theory).

• At one-loop order (NLO=next-to-leading order), this dependence is typically
substantially reduced. A nice little graph is that from the Bern, Dixon and
Kosower review (hep-ph/9602280) which might form the basis of a possible
final project.
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It should be noted that, in general, it is not the case that the LO and NLO
curves cross at the µ value which gives experimental agreement. There can
be a systematic shift.

0 0.5 1 1.5 2 2.5

µR/ET

0

0.2

0.4
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0.8

dσ
/d

E
T
 (

nb
/G

eV
) ET = 100 GeV

0.1 < |η| < 0.7

NLO
LO

CDF Data

Figure 6: The inclusive cross section for single-jet production in pp collisions at√
s = 1.8 TeV and jet transverse energy ET = 100 GeV (using MRS D′0 structure

functions), showing the sensitivity of the LO result to the choice of renormalization scale,

µR, and the reduced sensitivity at NLO. The CDF data band includes statistical errors only.
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Figure 7: Improvement of the scale dependence in higher orders of perturbation theory for

Re+e−(
√
s = 33 GeV) (taken from the book of Ellis, Stirling and Webber).
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Another example is provided in the review by Djouadi (hep-ph/0503172).
His Fig. 3.7 shows results for the inclusive pp→ HW cross section at the
LHC and Tevatron as a function of Higgs mass, and how these predictions
change as one goes from LO, to NLO, to NNLO.
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Figure 8: K-factors for pp → HW ; Left=LHC, Right=Tevatron. The bands represent

the spread of the cross section when the renormalization and factorization scales (µR and

µF , respectively — we do not have time to get into the definition of the factorization

scale) are varied in the range 1
3MHV ≤ µR(µF ) ≤ 3MHV , the other scale being fixed at

µF (µR) = MHV .
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Here, K is a way of summarizing the net effect on the cross section. It is the
multiplicative factor by which the most naive prediction should be multiplied,
and is defined in these plots so that K = 1 for LO when µF = µR = MHV

(MHV being the invariant mass of the HV system), as indicated by the solid
lines in the figures.

As can be seen, except for the accidental cancellation of the scale
dependence of the LO cross section at the LHC for MH ∼ 250 GeV,
the decrease of the scale variation is strong when going from LO to NLO and
then to NNLO. For MH = 120 GeV, the uncertainty from the scale choice
at the LHC drops from ∼ 10% at LO, to 5% at NLO, and to 2% at NNLO.
At the Tevatron, these numbers are ∼ 10% at LO, 7% at NLO, and 3% at
NNLO.
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Renormalization Group: “Moving” Coupling
Constant and Mass in φ4 theory

The understanding of how to use the renormalization process we have just
gone through to make predictions for how the coupling λ (as measured by
a four-point interaction or scattering) and the mass m (as “measured” by
effective strength in probes of mass, e.g. through Yukawa interactions) change
as a function of the energy scale of the probe, is of fundamental importance.

To proceed, let us summarize the results so far, and generalize a bit.
We recall that

φ = Z
−1/2
φ φ0

λ(µ2)ε = Z−1
λ Z2

φλ0

m2 = m2
0 + δm2 . (188)

Our calculation so far has given

λ0 = (µ2)ελZλ = (µ2)ελ

[
1 +

3λ

32π2

1

ε

]
(189)
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m2
0 = m2 − δm2 = m2

[
1 +

λ

32π2

1

ε

]
. (190)

In higher orders this and the analogues for the other cases will take the forms

λ0 = (µ2)ε

[
λ+

∞∑
k=1

ak(λ)

εk

]

m2
0 = m2

[
1 +

∞∑
k=1

bk(λ)

εk

]

Zφ =

[
1 +

∞∑
k=1

ck(λ)

εk

]
. (191)

So, let us take µ ∂
∂µ

of one of the bare parameters, for example λ0. Well,
obviously λ0, the input Lagrangian parameter, knows nothing about the
arbitrary scale µ that we introduced as part of our renormalization process
in extra dimensions. However, the renormalized parameters λ and m are
implicit functions of the renormalization scale µ: λ(µ), m(µ). Thus, working
to one-loop order we have
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µ
∂λ0

∂µ
= 0

= 2ελ(µ2)ε
[
1 +

3λ

32π2ε

]
+ (µ2)ε

[
µ
∂λ

∂µ
+

6λ

32π2ε
µ
∂λ

∂µ

]
. (192)

Solving, we find

µ
∂λ

∂µ
=
−2ελ(µ2)ε

[
1 + 3λ

32π2ε

]
(µ2)ε

[
1 + 6λ

32π2ε

] . (193)

Now, we want to take the ε → 0 limit. In so doing, we must stick very
consistently to a definite order in perturbation theory, writing

µ
∂λ

∂µ
= −2ελ

[
1 +

3λ

32π2ε
− 6λ

32π2ε
+O(λ2)

]
(194)

ε→0
=

3λ2

16π2

≡ β(λ) . (195)

(A more careful treatment is possible, and perhaps we shall get to it.)
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Similarly, we have

µ
∂m2

0

∂µ
= 0

= µ
∂m2

∂µ

[
1 +

λ

32π2ε

]
+m2µ

∂λ

∂µ

1

32π2

1

ε
, (196)

which can be solved to give

µ
∂m2

∂µ
= −m2µ

∂λ

∂µ

1

32π2

1

ε

[
1− λ

32π2

1

ε

]
, (197)

into which we substitute the result of Eq. (194) (i.e. µ∂λ
∂µ

= −2ελ
[
1− 3λ

32π2
1
ε

]
)

to obtain

µ
∂m2

∂µ
= −m2(−2ελ)

[
1− 3λ

32π2

1

ε

]
1

32π2

1

ε

[
1− λ

32π2

1

ε

]
ε→0
= m2

[
λ

16π2
+O(λ2)

]
. (198)
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This, we usually write in the form

1

2
µ
∂ lnm2

∂µ
=

λ

32π2
≡ γm(λ(µ)) . (199)

So, now the question is how to interpret these µ ∂
∂µ

derivative forms.
We will give a more precise way of phrasing this interpretation in terms
of the renormalization group equations (RGEs), but let us first attempt a
naive/intuitive explanation. For this, let us return to the expression for

bare vertex +
∑

fish diagrams + vertex counter term

= −iλ(µ)(µ2)ε + i
λ2

32π2
(µ2)ε3

[
−γ + 2 + ln

4πµ2

m2
− 1

3
A(s, t, u)

]
,(200)

where

A(s, t, u) =
∑

z=s,t,u

β(z) ln
β(z) + 1

β(z)− 1
, with β(z) =

√
1− 4m2

z
. (201)
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Let us imagine first performing a measurement of the four-point interaction
at an energy such that s, t, u ∼ s0. Then, if µ2 ∼ s0 and m2(µ) ∼ s0

also, everything in the above expression is simply set by the size of λ(µ ∼√
s0). There are no big correction factors coming from the logarithms in the

expression.
Next, we imagine increasing the energy at which the experiment operates

so that s, t, u→ fs0. Let us examine the behavior of A(s, t, u) in this limit.

First, we note that β(s) ∼ 1− 2m2

fs0
for large f so that

A(s, t, u)→ 3 ln
2(
−2m2

fs0

) ∼ 3 ln f + finite . (202)

The idea is to cancel this large logarithmic stuff with some appropriate change
of µ that depends on f . We need

lnµ2(f)− 1

3
A(s, t, u) ∼ lnµ2(f)− ln f + finite ∼ finite . (203)

The obvious way to accomplish this is if

µ2(f) ∼ fs0 . (204)
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If we do not make this change in µ as a function of f , then λ(µ) (the leading
term) would not be a very good measure of the strength of the 4-point
interaction in the high energy experiment. If we do scale up µ2 by a factor of
f , then there are no big logarithmic factors multiplying the λ2(µ) correction to
the leading λ(µ) term in Eq (200). As a result, the leading λ(µ) component
of Eq. (200) is a proper measure of the strength of the interaction at this
higher energy scale if µ2 ∼ fs0 since the λ2(µ)×modest size stuff is a small
correction (assuming, of course, that λ(µ) remains a smallish parameter as µ
increases). Thus, we will wish to know how λ(µ) behaves as µ2 is increased
by some factor f . This is clearly determined by the functional form of β(λ)
through the differential equation given in Eq. (195).

In short, to avoid ratios of large scales in the propagator and vertex
after renormalization, we should take µ of order the energy scale E of the
experimental probe. Then, very roughly,

4− point scattering amplitude|E ∼ −iλ(µ = E) , (205)

so that the behavior of λ(µ) as a function of µ reveals the physical behavior
of 4-point scattering as a function of E.
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So, now let us solve the differential equation

µ
∂λ(µ)

∂µ
=

3λ2(µ)

16π2
(206)

by writing it in the form
dλ

λ2
=
dµ

µ

3

16π2
(207)

which integrates to

−1

λ
=

3

16π2
lnµ+ c (208)

where c can be fixed by specifying λ at some low µ scale, say µs:

− 1

λs
=

3

16π2
lnµs + c . (209)

Subtracting, we obtain
1

λ
− 1

λs
=

3

16π2
ln
µs

µ
(210)
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which can be rewritten in the form

λ =
λs

1− 3
16π2λs ln µ

µs

, (211)

where, to repeat, λs = λ(µ = µs).

Note that λ increases with increasing µ if we start with a small λs. At
larger µ (shorter distance) this means that the number of orders of λ needed
for a reliable result must increase. Eventually, we would leave the domain
where λ is sufficiently small that a perturbative result is trustworthy, regardless
of how many orders in λ are kept.

Conversely, in λφ4 theory, perturbation theory becomes more reliable at
larger distances (small µ). Further, since λ is small at large distances, the
perturbative approach to defining asymptotic states should also be reliable.

However, if the sign of µ∂λ
∂µ

were to be negative, then quite the reverse
situation arises:

1. short distance behavior would be perturbative;

2. long distance behavior would not be easily computed, and asymptotic states
might not be easily defined.
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A negative β function is characteristic of non-Abelian groups, most especially
QCD based on SU(3).

Anyway, now let’s turn to the evolution of m2. We had

1

2
µ
∂ lnm2

∂µ
=
λ(µ)

32π2
(212)

which implies

lnm2 =

∫
dµ

µ

λ(µ)

16π2
. (213)

To integrate this easily, we need to work a bit on our λ(µ) solution:

λ =
λs

1− 3
16π2λs ln µ

µs

=
1

1
λs
− 3

16π2 ln µ
µs

=
−1

3
16π2 ln µ

Λ

(214)
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provided we define
1

λs
≡ 3

16π2
ln

Λ

µs
. (215)

For φ4 theory, it is convenient to think of using this expression for µ < Λ so
that λ as written above will be positive (as needed for stability against large
values of φ). We then obtain

lnm2 = −1

3

∫
d ln µ

Λ

ln µ
Λ

= −1

3
ln

(
ln
µ

Λ

)
+ c , (216)

implying that

m2 = ec
(

ln
µ

Λ

)−1/3

≡ c [−λ(µ)]
1/3

. (217)

Usually the integration constant is determined by the requirement that

m2(m2
physical) = m2

physical (218)

where m2
physical is the physical pole location. (This is not possible in QCD,
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but it is OK in the Higgs sector.) Using this condition gives

c[−λ(mphysical)]
1/3 = m2

physical , ⇒ c = m2
physical[−λ(mphysical)]

−1/3 ,
(219)

implying that

m2(µ) = m2
physical

[
λ(µ)

λ(mphysical)

]1/3

. (220)

In the present case of φ4 theory, if µ ↑ then λ(µ) ↑ and, hence, m2(µ) ↑.
The opposite happens in QCD.

The meaning of this type of m2(µ) dependence will only become apparent
when we discuss the RGE approach to all this. Basically, while the µ
dependence of λ is primarily set by the need to cancel large logarithms, the µ
dependence of m2 is set up to cancel growth of subdominant ln ln terms.

We can also examine what happens in the case of Zφ. From the power
series definition given earlier in Eq. (191) and a careful treatment of the ε
expansions, we find

µ
∂ lnZφ

∂µ
= −2λ

dc1

dλ
. (221)
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Defining

γd =
1

2
µ
∂ lnZφ

∂µ
=

1

2

µ
∂Zφ
∂µ

Zφ
(222)

yields

γd(λ) = −λdc1

dλ
. (223)

In φ4 theory, the first non-zero term for c1 is at order λ2 (from the 3-finger or
sunset propagator insertion graph) and one finds

γd(λ) =
1

12

(
λ

16π2

)2

+O(λ3) . (224)

γd is called the “anomalous dimension” for reasons that will become apparent
when we turn to the RGEs.

Incidentally, you will have noticed that λ
16π2 appears as a factor in all

of our one-loop type contributions. It is this that is the real expansion
parameter. Obviously, the typical one-loop integration factor 1

16π2 greatly
helps the convergence of the perturbation series.
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Renormalization Group Equations for φ4.

The renormalization group is a group of transformations in which µ→ etµ.
For our purposes, it is characterized by the µ ∂

∂µ
type derivatives.

Let us examine a general Green’s function (after amputating the external
legs):

ΓN0 (p1 . . . pN ;λ0,m0, ε) = Z
−N/2
φ ΓN(p1 . . . pN ;λ(µ),m(µ), µ, ε) (225)

where ΓN is the renormalized amputated Green’s function and is finite as
ε→ 0. The Γ0 is independent of µ so that, using the chain rule,

µ
∂ΓN0
∂µ

= 0

=

µ ∂
∂µ

+ µ
∂λ

∂µ

∂

∂λ
+ µ

∂m

∂µ

∂

∂m
− N

2

µ
∂Zφ
∂µ

Zφ

ΓN

=

[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+mγm(λ)

∂

∂m
−Nγd(λ)

]
ΓN . (226)
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This is the renormalization group equation for ΓN .

We can derive another equation obeyed by ΓN by noting that it has an
“engineering” dimension equal to

4−N + ε(N − 2) . (227)

This is most easily seen by noting that the effective term induced in L by ΓN

is ∝ ΓNφN and we know that∫
dnxΓNφN = dimensionless (228)

while φ has dimensions M
n
2−1 as argued earlier. So, if ΓN has dimension

Mn−N(n2−1) then∫
dnxΓNφN ∝M−nMn−N(n2−1)MN(n2−1) ∝M0 . (229)

Substituting n = 4− 2ε gives

Mn−N(n2−1) = M4−2ε−N(1−ε) = M4−N+ε(N−2) . (230)
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This dimension can only be carried by the dimensionful parameters of ΓN .
Hence, we must have[

µ
∂

∂µ
+ s

∂

∂s
+m

∂

∂m
− {4−N + ε(N − 2)}

]
Γ
N

(sp1 . . . spN ;m,λ, µ, ε) = 0 , (231)

where we have used s to set the scale of the momenta. In writing the above,
we have used the fact that ΓN will be a sum of terms, each of which is a
product of various powers of our dimension-carrying objects and that these
powers are “probed” by the logarithmic µ ∂

∂µ
, . . . derivatives. For example,

µ
∂

∂µ
µp = pµp

m
∂

∂m
mq = qmq

s
∂

∂s
(sp1 · sp2)

r = s
∂

∂s
s2r(p1 · p2)

r = 2rs2r(p1 · p2)
r = 2r(sp1 · sp2)

r

(232)

and similarly for other invariants formed from momenta.

We use this 2nd equation to eliminate µ ∂
∂µ

from Eq. (226) to obtain in the
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limit of ε→ 0:[
−s ∂
∂s
−m ∂

∂m
+ (4−N) + β(λ)

∂

∂λ
+ γm(λ)m

∂

∂m
−Nγd(λ)

]
Γ
N

(sp;m,λ, µ) = 0 , (233)

or, using the notation 4−N = dN , the “naive” engineering dimension in 4
dimensions,[

−s ∂
∂s

+ β(λ)
∂

∂λ
+ (γm(λ)− 1)m

∂

∂m
+ dN −Nγd(λ)

]
Γ
N

(sp;m,λ, µ) = 0 . (234)

(At all stages above, one should keep in mind that λ = λ(µ) and m = m(µ).)
Eq. (234) expresses the fact that a change in s may be compensated by a
change in m and λ and an overall engineering factor. So we expect the
solution to be of the form:

ΓN(sp;m,λ, µ) = f(s)ΓN(p;m(s), λ(s), µ) (235)

in which case

∂

∂s
Γ
N

(sp;m,λ, µ) =
∂f(s)

∂s
Γ
N

(p;m(s), λ(s), µ)+f(s)

[
∂m(s)

∂s

∂ΓN(p; . . .)

∂m
+
∂λ(s)

∂s

∂ΓN(p; . . .)

∂λ

]
(236)

or

s
∂

∂s
Γ
N

(sp;m,λ, µ) =

[
s
∂f

∂s
+ f(s)s

∂m(s)

∂s

∂

∂m
+ f(s)s

∂λ(s)

∂s

∂

∂λ

]
Γ
N

(p;m(s), λ(s), µ)
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=

[
s
∂f

∂s
+ f(s)s

∂m(s)

∂s

∂

∂m
+ f(s)s

∂λ(s)

∂s

∂

∂λ

]
1

f(s)
Γ
N

(sp;m,λ, µ) (237)

which we choose to rewrite in the form:[
−s ∂
∂s

+
s

f(s)

∂f(s)

∂s
+ s

∂m(s)

∂s

∂

∂m
+ s

∂λ(s)

∂s

∂

∂λ

]
ΓN(sp;m,λ, µ) = 0

(238)
We now compare Eq. (234) to Eq. (238). Matching coefficients, we conclude

s
∂λ(s)

∂s
= β(λ(s)) (239)

s
∂m(s)

∂s
= m[γm(λ(s))− 1] (240)

s

f(s)

∂f(s)

∂s
= dN −Nγd(λ(s)) . (241)

The last equation can be integrated to give

f(s) = sdN exp

[
−
∫ s

1

Nγd(λ(s′))ds′

s′

]
, (242)
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as can be explicitly checked:

s
∂f

∂s
= dNs

dN exp [. . .] + sdNs

(−Nγd(λ(s))

s

)
exp [. . .]

= [dN −Nγd(λ(s))]sdN exp [. . .]

= [dN −Nγd(λ(s))]f(s) . (243)

Substituting the form of f(s) given above into Eq. (235), we obtain

ΓN(sp;m,λ, µ) = sdN=4−N exp

[
−
∫ s

1

Nγd(λ(s′))ds′

s′

]
ΓN(p;m(s), λ(s), µ)

(244)
where λ(s) and m(s) are solutions of the equations (239) and (240) given
earlier, with implicit boundary conditions of

λ(s = 1) = λ , and m(s = 1) = m. (245)

These equations are, of course, nothing more than the moving coupling
constant and moving mass equations that we have already discussed where
we would write µ = sµs=1 from which we see that µ ∂

∂µ
= s ∂

∂s
.
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To make the boundary conditions explicit, we can write

λ(s) = λ(s, λ) , . . . (246)

Sometimes, it is convenient to use

t = ln s , ⇒ s
∂

∂s
=
∂

∂t
, (247)

in which case, we would have

Γ
N

(sp;m,λ, µ) = s
dN=4−N

exp

[
−
∫ t

0
Nγd(λ(t

′
, λ))dt

′
]

Γ
N

(p;m(t, λ,m), λ(t, λ), µ) . (248)

In any case, our solution for ΓN(sp;m,λ, µ) says that the N -point function
at sp can be obtained from that at p by:

1. supplying naive dimensionful scaling;

2. including an extra scale dependence that comes from the wave-function
renormalization associated with each external leg;

If γd were a constant then
∫ t

0
γddt

′ = γdt = γd ln s and the exp[. . .] →
s−Nγd.
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As a result, γd is referred to as the anomalous dimension associated with
each external leg.

3. changing m and λ to their moving values.
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The form of β(λ) and the ultimate fate of λ

Some of the possibilities for the running coupling constant can be illustrated
by the sample graph for β(λ) shown in Fig. 9, which might be the result if
one could compute exactly in the context of some theory (here we are going
beyond φ4 possibly).

��� ���

��� ���

Figure 9: Graphical illustration of a possible β(λ). Arrows indicate the
direction of flow of λ as t increases.

The points λ = 0, λ1, λ2 where β(λ) vanishes are called fixed points. If
the value of λ is such that β(λ) = 0 then λ will not evolve any further once
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λ reaches such a value. More precisely, using our notation of λ(t, λ), where
λ(t = 0, λ) = λ — i.e. the value λ referenced in the functional form is the
boundary condition value, then if d

dt
λ(t, λ) = β(λ) = 0 we conclude that

λ(t, λ) does not change after reaching such a fixed point.

Note that since perturbation theory tells us (independent of the type of
theory) that β(λ)→ 0 as λ→ 0, λ = 0 is always a fixed point.

Furthermore, we can distinguish two types of fixed points.

1. Consider λ near λ1:

For λ < λ1, β(λ) > 0 and so d
dt
λ > 0 implying that λ is driven towards λ1

as t ↑.
For λ1 < λ < λ2, β(λ) < 0 and so d

dt
λ < 0, implying that λ is again

driven towards λ1 as t ↑.
In short, for 0 < λ < λ2, λ is always driven → λ1 as t increases (i.e.
as momenta become larger). Such a fixed point is called an “ultraviolet
stable” fixed point.

2. Similarly, for λ near λ ∼ 0 or λ near λ ∼ λ2, λ is driven to these values as
t→ 0, i.e. for small momenta.
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Thus, λ = 0 and λ = λ2 are “infrared stable’ fixed points.

Of course, if β(λ) starts at 0 at λ = 0 and then becomes negative for λ > 0,
then for λ > 0 we have d

dt
λ = β(λ) < 0, implying that λ→ 0 as t ↑. In this

case, λ = 0 is an ultraviolet stable fixed point.

Note that since β(λ) = 3λ2

32π2 > 0 for λ near 0, φ4 is a theory for which
λ = 0 is infrared stable.

It turns out that only gauge theories can yield β(λ) < 0 for λ near 0, and
thus, only these can be “asymptotically free” (i.e. λ→ 0 for large t, i.e. large
momenta).

Let us now return to our original β(λ) graph. As we have seen, for
0 < λ < λ2,

lim
t→∞

λ(t, λ) = λ1

lim
t→∞

ΓN(pi, λ(t, λ),m(t,m, λ), µ) = ΓN(pi, λ1,m(t,m, λ1), µ) .(249)

Let us not worry about m for now, and instead focus on the effects of the
presence of γd. Suppose β(λ) has a simple 0 at λ1 [i.e. β(λ) = a(λ1−λ) with

a > 0 according to the graph] and γd(λ1) 6= 0. Then, from dλ
dt

= a(λ1 − λ)
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we obtain
λ(t, λ) = λ1 + (λ− λ1)e

−at . (250)

Let us use this to compute the prefactor in front of ΓN(sp : . . .) in our earlier
equation:

Γ
N

(sp;m,λ, µ) = s
dN=4−N

exp

[
−
∫ t

0
Nγd(λ(t

′
, λ))dt

′
]

Γ
N

(p;m(t, λ,m), λ(t, λ), µ) . (251)

We have [shifting to the integration variable y = λ(t′, λ) and using
d
dt′λ(t′, λ) = β(λ(t′, λ))]

∫ t

0

γd(λ(t′, λ))dt′ =

∫ λ

λ

γd(y)dy

β(y)

' −γd(λ1)

a

∫ λ

λ

dλ′

λ′ − λ1

= −γd(λ1)

a
ln

(
λ− λ1

λ− λ1

)
= γd(λ1)t

= γd(λ1) ln s . (252)
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Then, plugging in, we obtain

ΓN(sp, λ, µ) = sdN−Nγd(λ1)ΓN(pi, λ1, µ) , (253)

implying that, in the high-momentum limit, each of the N fields scales with
an anomalous dimension given by γd(λ1).

A few final remarks/reminders:
A general computation of β(λ) is not possible, but near λ = 0 perturbation

theory is OK, and this region, fortunately, is very useful for comparison to
experiment.

For instance, for Bjorken scaling, . . . , our results indicate that to all
intensive purposes the quarks behave as if almost free when considering the
asymptotic limit in p,Q2, . . . → ∞ provided λ = 0 is an ultraviolet stable
fixed point. As we have said, only gauge theories such as QCD have this
property.

Before proceeding onto QCD and QED, let me return to using the power
series of Eqs. (191) for a more complete and extendable derivation of, for
example, the form of β(λ). Our equations were:

λ0 = (µ2)ε

[
λ+

∞∑
k=1

ak(λ)

εk

]
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m2
0 = m2

[
1 +

∞∑
k=1

bk(λ)

εk

]

Zφ =

[
1 +

∞∑
k=1

ck(λ)

εk

]
. (254)

The results obtained so far to one-loop are, from Eqs. (189) and (190):

a1 =
3λ2

32π2
, b1 =

λ

32π2
, c1 = 0 . (255)

Since the coefficients inside the [. . .]’s do not depend on the mass scales,
m,µ, this scheme that we are employing is also called the mass-independent
renormalization scheme. The m,µ dependence can be avoided to arbitrarily
high order.

Intuitively, the counterterms have just the minimal structure needed to
cancel ∞’s coming from big momenta in the loop integrals, and in the
momenta → ∞ limit, all masses are irrelevant. Mass dependence can then
only appear through the finite parts of the counterterms, and we have chosen
a scheme in which they do not.
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To see more generally why this scheme is so useful, let us reexamine the
coupling constant relation (as an example). Differentiating the top equation
above with respect to µ at fixed λ0 (just as we did before) gives

0 = 2ε

(
λ+

∞∑
k=1

ak(λ)

εk

)
+ µ

∂λ

∂µ

(
1 +

∞∑
k=1

a′k(λ)

εk

)
. (256)

Now, we know that λ and µ∂λ
∂µ

are analytic at ε → 0. As a result, we can
write

µ
∂λ

∂µ
= d0(λ) + d1(λ)ε+ d2(λ)ε2 + . . . . (257)

We can then examine the preceding equation in the form:

2ελ+ (2a1 + µ
∂λ

∂µ
) +

∞∑
k=1

1

εk

[
dak

dλ
µ
∂λ

∂µ
+ 2ak+1

]
= 0 (258)

keeping in mind the substitution of Eq. (257) . Matching powers of ε gives

O(εn>1) ↔ dn +

∞∑
k=1

dak

dλ
dn+k = 0⇒ dn≥2 = 0

J. Gunion 230C, U.C. Davis, 118



O(ε1) ↔ 2λ+ d1 = 0⇒ d1 = −2λ

O(ε0) ↔ 2a1 + d0 + d1

da1

dλ
= 0⇒ d0 = −2a1 + 2λ

da1

dλ

O(
1

εr≥1
) ↔ 2ar+1 + d1

dar+1

dλ
+ d0

dar

dλ
= 0⇒ . . . (259)

Regarding the εn>1 result, we obtain a set of linear equations for d2, d3, d4, . . .,
all with 0 on the right-hand side. So long as the matrix involved has an inverse,
the only solution is d2 = d3 = . . . = 0. There is no reason for the matrix
defined by the dak

dλ
not to have an inverse.

The most important result from the above is that from reading off the d0

and d1 coefficients:

µ
∂λ

∂µ
= d0 + d1ε = (−2a1 + 2λ

da1

dλ
)− 2λε

ε→0→ −2(1− λ d
dλ

)a1(λ)

= β(λ) . (260)

Note that β(λ) depends only λ and is determined by the residue of the
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simplest 1
ε

single pole term. In leading order, we have computed a1(λ) = 3λ2

32π2

from which the form of β that we have been using is obtained:

β(λ) = −2(1− λ d
dλ

)
3λ2

32π2
+ . . .

= −2(λ2 − 2λ2)
3

32π2

=
3λ2

16π2
, (261)

as obtained earlier.

The r ≥ 1 case can be rewritten as

2ar+1 + d1

dar+1

dλ
+ d0

dar

dλ
= 0

⇒ 2(1− λ d
dλ

)ar+1 = −d0

dar

dλ

= (2a1 + d1

da1

dλ
)
dar

dλ
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= (2a1 − 2λ
da1

dλ
)
dar

dλ

= 2(1− λ d
dλ

)a1

dar

dλ
. (262)

This result is remarkable in that it says that all the higher pole terms can be
computed once the r = 1 single pole residue is known. This is equivalent to
saying that the leading logarithms, the next-to-leading logarithms, etc. can
be calculated to all orders by using the renormalization group equation with
the computation of just a few low-order terms.

We can repeat this same sort of analysis for m2. We have

m2
0 = m2

[
b0 +

∞∑
k=1

bk(λ)

εk

]
(263)

where b0 = 1 and b1 = λ
32π2 (to the order we have computed). In fact, b0 = 1

to all orders since it is δm2 that has the ε singularities. Taking the µ ∂
∂µ
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derivative gives

0 = µ
∂m2

∂µ

[
b0 +

∞∑
k=1

bk(λ)

εk

]
+m2

[
µ
∂b0

∂µ
+

∞∑
k=1

µ∂bk
∂µ

εk

]
, (264)

where µ∂b0
∂µ

= 0. Now since bk depends on µ only through λ, we can rewrite
this as

µ
∂m2

∂µ

[
b0 +

∞∑
k=1

bk(λ)

εk

]
= −m2

∞∑
k=1

µ∂λ
∂µ

dbk
dλ

εk
. (265)

At this point, we recall that

µ
∂λ

∂µ
= d0 + d1ε = −2(1− λ d

dλ
)a1 − 2λε , (266)

and proceed with power series matching to obtain:

O(ε0) ↔ µ
∂m2

∂µ
= 2λm2db1

dλ
(267)

O(
1

εr≥1
) ↔ µ

∂m2

∂µ
br = −m2

[
−2(1− λ d

dλ
)a1

dbr

dλ
− 2λ

dbr+1

dλ

]
,(268)
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where this latter equation can be rearranged by canceling a common factor of
2m2 to read

λ
dbr+1

dλ
= λ

db1

dλ
br −

dbr

dλ
(1− λ d

dλ
)a1 . (269)

Obviously, Eq. (267) defines a running mass equation of the form:

γm ≡
1

2
µ
∂ lnm2

∂µ
=

1

2

µ∂m
2

∂µ

m2

= λ
db1

dλ

=
λ

32π2
(270)

to the one-loop order computed, in agreement with our earlier result. This
is supplemented with the recursion relation for the higher 1

ε
power singularity

residues given in Eq. (269).
Finally, we have the Zφ expansion:

Zφ = 1 +
∞∑
k=1

ck(λ)

εk
, (271)
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from which we compute

1

2
µ
∂Zφ

∂µ
=

1

2
µ
∂λ

∂µ

[
dc1

dλ

1

ε
+
dc2

dλ

1

ε2
+ . . .

]
= γd

[
1 +

c1

ε
+
c2

ε2

]
(272)

using γd ≡ 1
2
µ
∂Zφ
∂µ
Z−1
φ . Once again, we insert

µ
∂λ

∂µ
= d0 + d1ε (273)

with d0 = β(λ) and d1 = −2λ, and match powers of ε. The main result is
the ε0 coefficient matching equation:

1

2
d1

dc1

dλ
= γd (274)

which converts to

γd = −λdc1

dλ
, (275)
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as quoted earlier. The more singular 1

εr≥1 matching equations give recursion

relations for ck≥2. For example, the O(ε−1) matching gives

d1

dc2

dλ
+

1

2
d0

dc1

dλ
= γdc1 (276)

which allows a computation of c2 once the residue of the single pole, c1, is
known.
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Renormalization in Gauge Theories

The prototype here is, of course, QED. Our Feynman rules are:

γe−e+ vertex → −ieγµ

photon propagator → −igµν
k2

fermion propagator → i

/k −m . (277)

Degree of Divergence

Denoting by L the number of loops, IB the number of internal vector
boson propagators and IF the number of internal fermion lines,

D = 4L− 2IB − IF . (278)

We want to eliminate IB and IF in terms of external particle counts: EB,
the number of external photons; and EF , the number of external fermion or
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antifermion lines. Note that EF must be even since every incoming fermion
line must exit somewhere. Let us use the notation V for the number of
internal vertices, each of which comes with a δ4(. . .). And, there is one
overall δ4(

∑
pexternal) that must pop out.

Thus, the number of independent loops is given by

L = IB + IF − V + 1 . (279)

The total number of fermion lines available to attach to vertices is 2IF +EF
(each internal line can run from one vertex to another, but each external line
has only one end to attach to a vertex). Since each vertex eats up 2 fermion
lines, we have

2IF + EF = 2V , or IF = V − 1

2
EF . (280)

Similarly, the number of photon lines available to attach to vertices is 2IB +
EB, but, each vertex accepts only one photon line. Hence,

2IB + EB = V , or IB =
1

2
(V − EB) . (281)
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Substituting L into the D expression, and then the results for IF and IB,
we obtain

D = 2IB+3IF−4V+4 = (V−EB)+(3V−3

2
EF )−4V+4 = 4−3

2
EF−EB .

(282)
Note: there is no dependence on V , the number of vertices, i.e. the order of
the perturbative graph.

Generalization to QCD

If we go to QCD, we have to add the 3 and 4 gluon vertices. There are also
ghost-ghost gluon vertices, but these act completely parallel to the 3-gluon
vertex and need not be treated separately — for every diagram containing two
internal gluons connected to two 3-gluon vertices, there is a corresponding
diagram in which the two internal gluons are replaced by ghosts. (Of course,
there are no external ghosts.) The important new thing to keep track of is
that the 3G (and also ghost-ghost gluon) vertex is proportional to a single
power of momenta.

Thus, our D expression is modified to

D = 4L− IF − 2IB + V3G (283)
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while L is as before

L = IB + IF − V + 1 , V = VGFF + V3G + V4G . (284)

Substituting into D we obtain

D = 2IB + 3IF − 4V + 4 + V3G . (285)

Now, we also have, just like QED,

2IF + EF = 2VGFF , → IF = VGFF −
1

2
EF , (286)

and the generalized result

2IB+EB = 3V3G+VGFF+4V4G , → 2IB = 3V3G+VGFF+4V4G−EB ,
(287)

where the coefficients are simply the number of gluons entering a given kind
of vertex.

We now substitute these results into the last expression for D to obtain:

D = (3V3G + VGFF + 4V4G − EB) + (3VGFF −
3

2
EF )− 4V + 4 + V3G
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= 4(V3G + VGFF + V4G)− 4V + 4− EB − 3

2
EF

= 4− EB − 3

2
EF , (288)

i.e. exactly the same result as in QED!

As expected, in both cases we are dealing with what we hope are
renormalizable theories since they have dimensionless coupling constants (in 4
dimensions) and the degree of divergence is purely determined by the external
line counts. This means that there are only a certain subset of diagrams
that can be primitively divergent. Hopefully, this subset of diagrams can be
counter-termed by ∆L structures that are like those already present in L.

The basic divergent diagrams in QED and QCD are summarized in the table
below. The superficial degrees of divergence are those given by Eq. (288).
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The actual degrees of divergence will be discussed below.

Tabulation of Divergent Diagrams (Tadpole & ghost diagrams not shown)

EF EB 1-loop prototypes Superficial D Actual D

0 2 2 0 by GI

0 3 1 0 (= 0 in QED)

0 3 1 0 by GI

0 4 0 < 0 by GI

2 0 1 0 by l sym.

2 1 0 0

For QED, just eliminate all diagrams with 3g or 4g vertices.
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The above table does not show the diagrams in which a single photon or
gluon attaches to a closed fermion loop, nor the QCD diagram in which a
single gluon attaches to a closed gluon loop.

• The superficial D for these diagrams is D = 3.

• But, in fact the diagrams are zero.

This is because they correspond to the vacuum expectation value of an
electromagnetic (color) current coupling to the polarization vector for a
photon (gluon).

But, the vacuum expectation value of any such current must be zero if the
vacuum is not to have a preferred 4-vector direction, contrary to invariance
of the vacuum under Lorentz transformations.

• In the case of QED, the vanishing of this type of diagram can also be
derived assuming that the vacuum is charge conjugation invariant.

A non-zero value of the vacuum expectation value of the electromagnetic
current would change sign under C.
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• Another way of realizing that these diagrams must be zero is to note that
it would be inconsistent for the vacuum to carry a net electromagnetic or
color current.

• In fact, as discussed momentarily, it is easy at one-loop to explicitly show
that these diagrams are zero.

In general, there are many subtleties that can cause the actual degree of
divergence to differ from the superficial value of D. First is the fact that
sometimes the naive degree of divergence is reduced by virtue of gauge
invariance requirements on the structure of the diagram or by symmetry. The
important cases are:

1. the bubble insertions into a gluon or photon propagator.

Gauge invariance demands that the sum of the diagrams be proportional to
kµkν − k2gµν, i.e. there are two powers of external momentum that must
pop out, thereby decreasing the value of D by 2 units. Actually, this works
separately for fermion and gluon loops.

2. the gauge loop correction to a fermion propagator.
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We can understand easily at one loop what the issue is. Consider very large
values of the loop integration momentum l. Since the internal fermion
propagator goes like 1//l = /l/l2 while the internal gauge propagator goes

like 1/l2, the divergence would be
∫
d4l /l

(l2)2 which is odd under l → −l.
Thus, the leading term cannot survive. Instead of being linearly divergent,
the diagram is only log divergent.

3. the loop corrections to the four-gluon vertex.

Again, there is a gauge requirement that means this correction must
be proportional to appropriate gauge structures for the external gluons.
Roughly, one must have a momentum structure that is the Fourier transform
of (Fµν)

4, a dimension 8 form. So, even though D = 0 superficially, in fact
D < 0. This works separately for fermion and gluon loops.

4. the fermion loop possibility for a three-photon or a three-gluon vertex.

In the three-photon case, there is the theorem that the fermion-loop
correction must be 0 by virtue of charge conjugation symmetry (Furry’s
theorem). This is also needed for renormalizability in the sense that if
we had a divergence for this graph, then the counter term (a 3 photon
vertex) would correspond to an interaction that is not present in the QED
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Lagrangian. This goes “counter” to the counter-term Lagrangian approach.
In fact, it would mean a break down in gauge invariance; there should be no
self-interactions of photons regardless of the order of perturbation theory
considered.

In QCD, the fermion loop correction to the three-gluon vertex is non-zero.
The actual D is 0 by virtue of the leading contribution being odd under

l→ −l for the loop integration,
∫
d4l
(

1
/l

)3

.

5. the gluon loop corrections to the three-gluon vertex.

Here, gauge invariance structure requirements for the vertex (which means
it must look like our bare vertex which was linear in external momenta
arranged in the appropriate antisymmetrized form — constructed so
that pαεβεγVαβγ(p, q, r) = . . . = 0 for example), reduce the degree
of divergence from 1 to 0.

The second subtlety is that the divergence of a diagram can actually be
larger than D when it contains divergent subdiagrams corresponding to the
basic primitive divergences isolated above and discussed below. We will return
to this point later.
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For now, let us consider just our basic primitively divergent types of graphs.
Before considering ghosts, we have:

1. gluon (or photon) propagator corrections;

2. fermion propagator corrections;

3. gluon (or photon) fermion-antifermion vertex corrections;

4. three-gluon vertex corrections (but not three-photon vertex corrections,
since these are 0 by virtue of Furry’s theorem).

Well, I hope it is obvious that all these divergences can be compensated
by counter terms of the same form as terms already present in the bare
Lagrangian.

After including ghosts, the additional divergent items are:

1. ghost propagator corrections;

2. gluon-ghost-ghost vertex corrections.
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Again, the necessary counterterms have the same form as terms already
present in the ghost addition to the bare Lagrangian.

Another interesting point will emerge once we consider dimensional
regularization. One finds that the propagator tadpole diagrams are 0 for
massless virtual propagators when regularized via dimensional regularization.
This is another great advantage of dimensional regularization. This feature is
related to the fact that dimensional regularization preserves gauge invariance.
This is something that we shall return to once we do explicit calculations.

Let us next briefly return to discuss why, at one loop, the diagrams with
one external photon or gluon are simply zero. In the case of QED, we have

εµ
∫
d4l

Tr[γµ(/l+m)]

l2 −m2
= εµ

∫
d4l

4lµ

l2 −m2
= 0 (289)

by l → −l symmetry. The same applies to the QCD fermion loop diagram.
The QCD gluon loop diagram is zero partly because of similar symmetry
arguments, but also requires using the same result for a massless gluon
propagator in the internal loop as stated in the previous paragraph.

Next, let us return to the fact that a diagram can have D < 0, for
example, and actually be divergent. An example of this kind is photon
exchange between two scattering electrons in which a fermion loop is inserted
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in the exchanged photon. Naively, D = −2 for this diagram (EF = 4,
EB = 0), but the fermion loop insertion actually gives a D = 0 logarithmic
divergence. This, however, is rendered finite once the photon propagator
counter term component of ∆L is introduced. So, the value of a diagram’s
superficial divergence D only applies once all divergent subdiagrams (at lower
order in perturbation theory) have been rendered finite by the counterterm
∆L.

Before turning to the explicit calculations, it’s useful to discuss a couple
of additional things. First, let us understand a little bit more about non-
renormalizable cases. Suppose we lived in 6 dimensions instead of 4. Then,
sticking to QED for simplicity (but a similar result appears in QCD), we would
have

D = 6L− IF − 2IB = 4IB + 5IF − 6V + 6

= (2V − 2EB) + (5V − 5

2
EF )− 6V + 6

= V + 6− 2EB − 5

2
EF . (290)

We see that D increases with the vertex number V which we know is a
problem. To be more specific, suppose we had a diagram with 2 incoming
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fermions, 2 outgoing fermions, one incoming photon and one outgoing photon.
Suppose we constructed a V = 8 diagram for this case, being careful not
to choose a diagram with subdiagrams having a higher degree of superficial
divergence. One such diagram is constructed as follows. Take the two external
photons and attach them to a closed fermion loop which then emits two virtual
photons (#1 and #2). The first of these emits an external fermion (#1)
and a virtual fermion, the latter turning into a 2nd external fermion (#2) and
another (#3) virtual photon. Virtual photons #2 and #3 then both attach
to a fermion line that begins with external fermion #3 and ends with external
fermion #4, with a virtual fermion propagator between the attachments of the
#2 and #3 virtual photons. This diagram would have D = 0. A counter term
to correct for this would have the structure (ψψ)2A2 and/or (ψ/Aψ)2 (I have
not worked it out) with infinite coefficient constructed so that the 1

ε
structure

of the counterterm cancels the 1
ε

of the explicit diagram. Well, obviously such
a counterterm is not a structure that appears in the bare Lagrangian.

The moral is that one would have to introduce counter terms for diagrams
with any arbitrarily large number of external fermions and photons. This is
characteristic of a non-renormalizable theory.

Finally, we want to consider the connection between renormalizability and
dimensionless coupling constant: gauge theory version.

Consider a QED-like theory with just one type of interaction or vertex, and
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define:

• B = # of boson lines entering or exiting a vertex;

• F = # of fermion lines entering or exiting a vertex;

• d= # of derivatives associated with the vertex interaction.

Then we can generalize our earlier results as follows.

2IF + EF = FV

2IB + EB = BV

(291)

and as before the number of loops is

L = IB + IF − V + 1 , (292)

from which we derive (noting that each derivative at a vertex gives a
momentum power upstairs — just like the 3-gluon vertex example)
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D = 4L− 2IB − IF + dV

= 4(IB + IF − V + 1)− 2IB − IF + dV

= 2IB + 3IF − 4V + dV + 4

= (BV − EB) +
3

2
(V F − EF ) + dV − 4V + 4

= 4− 3

2
EF − EB + V (B +

3

2
F + d− 4)

≡ 4− 3

2
EF − EB + V δV . (293)

As we have come to understand, standard renormalizability corresponds to
δV = 0. We will now show that the dimensionality of the coupling constant
associated with the vertex is related to δV . Let us recall:

• dim[ψ] =dim[ψ] = M3/2;

• dim[A] = M1;

• dim of a derivative = M1.
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Then, since ∫
d4xgvertex(ψ or ψ)F (A)B(∂x)

d = M0 (294)

we must have
M−4(M)dim[g]M3F/2MBMd = M0 (295)

or, equivalently,

dim[g] = 4−B − 3

2
F − d = −δV . (296)

From this result, we see that in a vector fermion theory such as QED (also
QCD) only a theory with dimensionless coupling constant(s) is renormalizable.

If δV > 0, then D increases with the number of vertices V so that higher
order diagrams are increasingly divergent and a process involving arbitrary
numbers of external particles will be divergent if a sufficiently high order of
perturbation is considered. In this case, the coupling constant has negative
mass dimension M−δV . This is the case of non-renormalizability.

If δV < 0, then D decreases with the number of vertices, implying that
only some lower order diagrams will be divergent. The coupling constant has
positive mass dimension M−δV = M |δV | in this case. This is the case of
super-renormalizability.
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Explicit 1-loop renormalization and computations
for QED

At the moment I plan to follow Ryder to a large extent, so that will be a
useful reference.

We will carry out the procedure in the Feynman version of the Lorentz
gauge, for which the appropriate L is

L = iψγµ∂µψ −mψψ − eAµψγµψ

−1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)− 1

2
(∂µA

µ)(∂νA
ν) . (297)

First, we must do some dimensional analysis to see what the dimensions of
things are in n dimensions in order that the mass dimension dim[

∫
dnxL] = 0.

• From iψγµ∂µψ we determine that dim[ψ] = n−1
2

so that

dim[iψγµ∂µψ] = 2
n− 1

2
+ 1 = n (298)

cancels dim[dnx] = −n.
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• If dim[m] = 1 then the mψψ form will also have net dimension of n as
required.

• From the −1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) part of L we find that

dim[A] = n
2
− 1.

• This is consistent also for the gauge fixing term of L.

• Thus,

dim[−eAµψγµψ] = dim[e] + 2
n− 1

2
+
n

2
− 1 = n (299)

requires

dim[e] = 2− n
2
. (300)

Thus, in close analogy to what we did in φ4 theory, we will replace

e→ e(µ)2−n2 = eµε . (301)

As regards external spinors, e.g. u(p), . . ., these may be kept as in n = 4
dimensions. We only need to go to n 6= 4 dimensions for stuff in the loop
computations.
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This brings up the question of how we deal with Dirac algebra and matrices
in n dimensions. There are actually two approaches.

1. Dimensional regularization, which is the approach we follow and in which
there will be some changes from 4 dimensions.

2. Dimensional reduction, in which the numerator algebra is done as if in 4
dimensions and only the non-Dirac part of the propagators are treated in n
dimensions.

At one-loop the two approaches give the same results. There is an ongoing
debate as to the number of loops to which this equivalence extends.

In dimensional regularization, we modify the Dirac algebra as follows. We
begin with the anticommutator

{γµ, γν} = 2gµν (302)

where we consider gµν to be defined in n dimensions so that δµµ = n. For
consistency, this then implies that

γµγµ = n, γµγ
νγµ = (2− n)γν , γργµγνγ

ρ = 4gµν + (n− 4)γµγν .
(303)
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We will also define
Tr[I] = 2n/2 (304)

(any regular function approaching 4 as n→ 4 would have been ok) for which
consistency with γµγµ = n then requires

Tr[γµγν] = 2n/2gµν , Tr[γµγνγργσ] = 2n/2[gµνgρσ − gµρgνσ + gµσgνρ] .
(305)

However, γ5 becomes a problem in this approach as we need all 4 gamma
matrices to define it. In our QED renormalization we don’t have to face this
problem, but in parity-violating theories we do. This is a long story and is
related to “anomalies” that can destroy the renormalizability of a theory. We
don’t have time to go into this during these lectures.

So now let us do a few QED calculations.

• The photon loop correction to the fermion propagator.

−iΣ(p) = (−ieµε)2
∫

dnk

(2π)n
γ
µ i

/p− /k−m
−igµν
k2

γ
ν

= −e2
µ

2ε
∫

dnk

(2π)n
γµ(/p− /k +m)γµ

[(p− k)2 −m2]k2

= −e2
µ

2ε
∫
dα

∫
dnk

(2π)n
γµ(/p− /k +m)γµ

[α(p− k)2 − αm2 + (1− α)k2]2
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= −e2
µ

2ε
∫
dα

∫
dnk′

(2π)n
γµ[(1− α)/p− /k′ +m]γµ

[k′ 2 − αm2 + α(1− α)p2]2

= −e2
µ

2ε
∫
dαγµ[(1− α)/p +m]γ

µ
∫
dnk′

(2π)n [k′ 2 − αm2 + α(1− α)p2]2
.(306)

In the above, we introduced k′ = k−αp in order to write the denominator
in a diagonal form, i.e. no terms of the form k′ · p. At this point, the /k′

disappears because it is odd under k′→ −k′, and the integral then reduces
to a logarithmically divergent integral.

We now do the same thing we did before of performing a Wick rotation
on the k′0 integration and then reducing the integration to something that
corresponds to a certain Γ function. The result is (where we use n = 4−2ε
at a certain point — don’t forget that Ryder uses n = 4 − ε if you are
looking at his stuff):

−iΣ(p) = −ie2
µ

2εΓ(2− n/2)

(4π)n/2

∫
dαγµ[(1− α) /p +m]γ

µ
[αm

2 − α(1− α)p
2
]
n/2−2

= −ie2
µ

2εΓ(2− n/2)

(4π)n/2

∫
dα[(1− α) /p(2− n) +mn][αm

2 − α(1− α)p
2
]
n/2−2

= −ie2 Γ(ε)

16π2

∫
dα[(1− α) /p(−2 + 2ε) +m(4− 2ε)]

[
αm2 − α(1− α)p2

4πµ2

]−ε

= −ie2(1
ε − γ)

16π2

∫
dα[(1− α) /p(−2 + 2ε) +m(4− 2ε)]

[
αm2 − α(1− α)p2

4πµ2

]−ε
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= −ie2(1
ε − γ)

16π2

∫
dα[(1− α) /p(−2 + 2ε) +m(4− 2ε)]

[
1− ε ln

(
αm2 − α(1− α)p2

4πµ2

)]

= −i e2

16π2ε
(− /p + 4m)− i e

2

16π2

 /p(1 + γ)− 2m(1 + 2γ)

+2

∫
dα[ /p(1− α)− 2m] ln

(
αm2 − α(1− α)p2

4πµ2

) (307)

where the singularity of interest is contained entirely in the first term.

Derivation of the integral in a general form

The result for the dnk′ integral employed in going from the last line of
Eq. (306) to the first line of Eq. (307) can be read off of our old φ4 case,
but it is useful to derive a more general result for later use. We consider
an integral over l and then Wick rotate the l0 component to il0, so that

l2 → −(l
2

0 + l21 + . . .) = −~l2E. Using these manipulations below we have
the following sequence of steps:
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∫
dnl

(2π)n
1

[l2 − a2]A
= i

∫
dnlE

(2π)n
1

[−~l2E − a2]A

= i
2πn/2

(2π)nΓ
(
n
2

) ∫ ∞
0

ln−1dl

[−l2 − a2]A
with l = |~lE|

= i
2πn/2

(2π)nΓ
(
n
2

)(−1)
A
∫ ∞

0

ln−1dl

[l2 + a2]A

= i
2πn/2

(2π)nΓ
(
n
2

)(−1)
A
∫ ∞

0

dt

2
√
t

t
n−1

2

[t + a2]A

= i
πn/2

(2π)nΓ
(
n
2

)(−1)
A
∫ ∞

0
dt

t
n
2−1

[t + a2]A

= i
πn/2

(2π)nΓ
(
n
2

)(−1)
A 1

[a2]
A−n2

Γ
(
n
2

)
Γ
(
A− n

2

)
Γ(A)

= i
πn/2

(2π)n
(−1)

A 1

[a2]
A−n2

Γ
(
A− n

2

)
Γ(A)

= i(−1)
n/2 1

(4π)n/2

1

[−a2]
A−n2

Γ
(
A− n

2

)
Γ(A)

= i(−1)
A 1

(4π)n/2

1

[a2]
A−n2

Γ
(
A− n

2

)
Γ(A)

(308)
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• The photon propagator correction

Next, we have the correction to the photon propagator coming from the
fermion loop diagram. For reasons that will become apparent after we do
the usual geometric sum of iterated 1PI diagrams, we wish to denote it by
iΠµν, where the µ and ν indices refer to the Lorentz indices of the photons
entering and exiting the diagram. The form is (remembering the minus sign
for a closed fermion loop and shifting to p′ = p− αk at a certain stage):

iΠµν = −(−ieµε)2
∫

dnp

(2π)n
Tr

(
γµ

i

/p−mγν
i

/p− /k−m

)

= −e2
µ

2ε
∫

dnp

(2π)n
Tr
[
γµ(/p +m)γν(/p− /k +m)

]
(p2 −m2)[(p− k)2 −m2]

= −e2
µ

2ε
∫
dα

∫
dnp′

(2π)n
Tr
[
γµ(/p′ + α/k +m)γν(/p′ − (1− α)/k +m)

]
[p′ 2 −m2 + k2α(1− α)]2

(309)

At this point, let us work on simplifying the numerator. We must remember
that terms that are odd in p′ will integrate to 0. Further, we must recall
that the trace of an odd number of γ matrices is 0. Using these two
ingredients, we obtain:

N = [p
′ ρ
p
′σ − kρkσα(1− α)]Tr[γµγργνγσ] +m

2
Tr[γµγν]
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= [p
′ ρ
p
′σ − kρkσα(1− α)]2

n/2
(gµρgνσ − gµνgρσ + gµσgνρ) +m

2
2
n/2

gµν]

= 2
n/2

{
2p
′
µp
′
ν − 2α(1− α)(kµkν − k2

gµν)− gµν[p
′ 2

+ k
2
α(1− α)−m2

]
}

(310)

where we organized the k2gµν term in to two pieces so that the coefficient
of the final gµν piece above has precisely the same form as the denominator.

An aside on some useful integrals

Now we need some theorems for integrals containing integrated momenta
in the numerator. What we, in particular, wish to show is that the 2p′µp

′
ν

terms cancels the −gµν[p′ 2 + k2α(1−α)−m2] term, which will leave the
gauge invariant piece proportional to (kµkν − k2gµν).

A good approach is to begin with what we have already shown, which I
write using a general notation.

∫
dnl

(2π)n
1

[l2 +M2 + 2l · q]A
=

∫
dnl

(2π)n
1

[(l + q)2 +M2 − q2]A

= i(−1)
n/2 Γ(A− n2 )

(4π)n/2Γ(A)

1

(M2 − q2)
A−n2

, (311)

where the above expression follows from Eq. (308) using the identification
of −a2 = M2 − q2.
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Starting from this expression, we may generate other useful expressions by
differentiation.∫

dnl

(2π)n
lµ

[l2 +M2 + 2l · q]A
= −1

2

1

A− 1

∂

∂qµ

∫
dnl

(2π)n
1

[l2 +M2 + 2l · q]A−1

= −1

2

1

A− 1

∂

∂qµ

i(−1)
n/2 Γ(A− 1− n2 )

(4π)n/2Γ(A− 1)

1

(M2 − q2)
A−1−n2


= −i(−1)

n/21

2

Γ(A− 1− n2 )

(4π)n/2Γ(A)
[−(A− 1− n

2
)](−2qµ)

1

(M2 − q2)
A−n2

= −i(−1)
n/2 Γ(A− n2 )

(4π)n/2Γ(A)

qµ

(M2 − q2)
A−n2

. (312)

From this result, we may proceed to∫
dnl

(2π)n
lµlν

[l2 +M2 + 2l · q]A

= −1

2

1

A− 1

∂

∂qµ

∫
dnl

(2π)n
lν

[l2 +M2 + 2l · q]A−1

= −1

2

1

A− 1

∂

∂qµ

i(−1)
n/2 −Γ(A− 1− n2 )

(4π)n/2Γ(A− 1)

qν

(M2 − q2)
A−1−n2



= i(−1)
n/21

2

Γ(A− 1− n2 )

(4π)n/2Γ(A)

[−(A− 1− n
2

)](−2qµ)qν
1

(M2 − q2)
A−n2

+
gµν

(M2 − q2)
A−1−n2


= i(−1)

n/2 1

(4π)n/2Γ(A)

1

2
gµν

Γ(A− 1− n2 )

(M2 − q2)
A−1−n2

+
Γ(A− n2 )qµqν

(M2 − q2)
A−n2

 . (313)
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Back to the main Πµν calculation

The case of current interest, referring back to our expression for the
numerator N of Eq. (310), is l = p′, q = 0, M2 = k2α(1− α)−m2 and
A = 2, for which we have∫

dnl

(2π)n
2lµlν

[l2 +M2]2
= i(−1)

n/2
2

1

(4π)n/2Γ(2)

[
1

2
gµν

Γ(1− n
2 )

(M2)
1−n2

]

= i(−1)
n/2 1

(4π)n/2

[
gµν

Γ(1− n
2 )

(M2)
1−n2

]
, (314)

which we wish to compare to the explicit gµν term of N which is reduced
as follows:

−gµν
∫

dnl

(2π)n
l2 +M2

[l2 +M2]2
= −gµν

∫
dnl

(2π)n
1

[l2 +M2]1

= −gµνi(−1)
n/2 1

(4π)n/2Γ(1)

[
Γ(1− n

2 )

(M2)
1−n2

]

= −i(−1)
n/2 1

(4π)n/2

[
gµνΓ(1− n

2 )

(M2)
1−n2

]
, (315)

which does indeed cancel the 2p′µp
′
ν = 2lµlν term. Of course, there were
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simpler ways to get this one result, but the above general procedure will be
useful in other computations.

So, now the remainder of the iΠµν expression is

iΠµν(k) = −e2
µ

2ε
2
n/2

[kµkν − k2
gµν ]

∫
dα

∫
dnp′
(2π)n

{
− 2α(1− α)

[p′ 2 + k2α(1− α)−m2]2

}

= −e2
µ

2ε
2
2−ε

[kµkν − k2
gµν ]

∫
dα

{
−2α(1− α)i(−1)

2−ε Γ(ε)

(4π)2−εΓ(2)

1

[k2α(1− α)−m2]ε

}

= ie
2
µ

2ε
2
2−ε

[kµkν − k2
gµν ]

∫
dα

{
2α(1− α)

Γ(ε)

(4π)2−εΓ(2)

1

[m2 − k2α(1− α)]ε

}

= i
e2

2π2
[kµkν − k2

gµν ]

∫
dα

α(1− α)Γ(ε)

[
m2 − k2α(1− α)

2πµ2

]−ε
= i

e2

2π2
[kµkν − k2

gµν ]

{
1

6

(
1

ε
− γ

)
−
∫
dαα(1− α) ln

[
m2 − k2α(1− α)

2πµ2

]
+O(ε)

}
, (316)

where the ln [. . .] came from 1
ε

(−ε ln[. . .]). You will notice some
differences between this and Ryder’s expression. Partly it is 2εme = εRyder,
partly because I used what Ryder calls f(d) = 2n/2, whereas he set
f(d) = 1, and partly because I believe he has the wrong sign for the
m2−k2α(1−α) after performing the Wick rotation and properly accounting
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for the (−1)n/2 = (−1)2−ε = (−1)−ε which can be absorbed in the form

(−1)−ε[k2α(1− α)−m2]−ε = [m2 − k2α(1− α)]−ε . (317)

Please let me know if you disagree with my sign after checking this through.
There was a similar discrepancy in the sign of the ln argument in the −iΣ
expression for exactly the same reason. Incidentally, my signs agree with
those in Ramond’s QFT textbook, Eqs. (8.2.20) and (8.2.32), once you
realize that he is using a Euclidean notation so that to compare to my
expressions you must take /pE → −/p and p2

E → −p2 where pE is the
Euclidean momentum employed by Ramond (called p in his book).

The most important property of the result of Eq. (309) is the [kµkν−k2gµν]
structure. This is the form required by gauge invariance in the form
kµΠµν = 0. In fact, this structure is the only form that Πµν could have
and obey the gauge invariance requirement. It is because we had to get
proportionality to this structure that the naive D = 2 divergence level was
reduced to D = 0. Two of the momenta powers were eaten up in creating
this form. In the explicit calculation above, the quadratically divergent
terms cancelled one another.

We will see that the above GI structure is also critical in order to
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retain zero mass for the photon after including one-loop corrections and
performing dimensional regularization. You should also know that not every
regularization procedure produces this kind of explicitly gauge invariant
form.

We shall return to these issues shortly. But first, we need to compute

• The vertex correction.

The result of the photon exchange contribution to the vertex will be denoted
by −ieΛµ in 4 dimensions or, in n = 4 − 2ε dimensions we will pull out
the necessary mass scale and write −ieµεΛµ. We have from the diagram
(using q for the momentum on the photon, p′ for the outgoing electron
momentum, and p for the incoming electron momentum):

−ieµεΛµ = (−ieµε)3
∫

dnk

(2π)n
−igνρ
k2

γν
i

/p′ − /k−mγµ
i

/p− /k−mγρ

= −(eµ
ε
)
3
∫

dnk

(2π)n
γν( /p′ − /k +m)γµ( /p− /k +m)γν

k2[(p′ − k)2 −m2][(p− k)2 −m2]

= −2(eµ
ε
)
3
∫ 1

0
dα

∫ 1−α
0

dβ

∫
dnk

(2π)n
γν( /p′ − /k +m)γµ( /p− /k +m)γν

[k2 −m2(α + β)− 2k · (αp + βp′) + αp2 + βp′ 2]3
,

(318)

where we used the Feynman parameter trick for three denominators in the
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form:

1

abc
= 2

∫ 1

0

dα

∫ 1−α

0

dβ
1

[a(1− α− β) + αb+ βc]3
. (319)

We will now shift to k′ = k − αp − βp′ in order to diagonalize the
denominator above so that we get (after redefining k′→ k)

Λµ = −2i(eµ
ε
)
2
∫ 1

0
dα

∫ 1−α
0

dβ

∫
dnk

(2π)n
γν( /p′(1− β)− α /p− /k +m)γµ( /p(1− α)− β /p′ − /k +m)γν

[k2 −m2(α + β) + α(1− α)p2 + β(1− β)p′ 2 − αβ2p′ · p]3

≡ Λ
(1)
µ + Λ

(2)
µ ,

(320)

where Λ(1)
µ is the divergent piece where we keep the two /k terms in the

numerator (the linear terms vanish by k → −k symmetry) and Λ(2)
µ is the

remaining convergent piece containing no k’s in the numerator. Let us
write

γν /kγµ/kγ
ν = kρkσγνγ

ργµγ
σγν (321)
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and then use Eq. (313) to write

∫
dnk

(2π)n
kρkσ

[k2 −m2(α + β) + α(1− α)p2 + β(1− β)p′ 2 − αβ2p′ · p]3

= i(−)
n/2 1

(4π)n/2Γ(3)

1

2
gρσ

Γ(2− n2 )

[−m2(α + β) + α(1− α)p2 + β(1− β)p′ 2 − αβ2p′ · p]
2−n2

= i
1

4(4π)n/2
gρσ

Γ(ε)

[m2(α + β)− α(1− α)p2 − β(1− β)p′ 2 + αβ2p′ · p]ε
. (322)

Next, we use Eq. (303) to write

gρσγνγ
ργµγ

σγν = γνγ
ργµγργ

ν

= γν(2− n)γµγ
ν

= (2− n)2γµ . (323)

Putting all this into our expression for Λµ we get for just the coefficient of
the singular 1

ε
part of Γ(ε) and setting n = 4 (ε = 0) everywhere else:

Λ
(1)
µ = −2ie

2
∫ 1

0
dα

∫ 1−α
0

dβ

[
i

1

4(4π)2ε

]
4γµ + finite

=
e2

16π2

1

ε
γµ + finite . (324)
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For completeness, we could write out the finite part of Λ(1)
µ as well and,

of course, we have Λ(2)
µ which is finite from the beginning. For the latter,

we can simply set n = 4 and consider the non-k parts of the numerator.
Using the integral of Eq. (311), we obtain

Λ
(2)
µ =

e2

16π2

∫ 1

0
dα

∫ 1−α
0

dβ
γν( /p′(1− β)− α /p +m)γµ( /p(1− α)− β /p′ +m)γν

[−m2(α + β) + α(1− α)p2 + β(1− β)p′ 2 − αβ2p′ · p]
, (325)

which we could compute explicitly if we really wanted to, as we should
have to for precision comparisons with data, but will for the moment leave
as it is. (Note: in this case I have an opposite overall sign wrp to Ryder. I
think I am right, but please check.) Meanwhile, it will be useful to keep in
mind that the finite part of Λ(1)

µ is also proportional to γµ.

The 1-loop renormalization of QED

To summarize, we have found the singular structures:

Σ(p) =
e2

16π2ε
(−/p+ 4m) + finite (326)

Πµν(k) =
e2

12π2ε
(kµkν − k2gµν) + finite (327)
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Λ(1)
µ (p, q, p′) =

e2

16π2ε
γµ + finite . (328)

Note that for the 1/ε terms above,

Λµ = −∂Σ(p)

∂pµ
. (329)

This is one consequence of a very general result called the QED Ward identity.

An aside on the Ward identity

• This Ward identity holds to all orders in perturbation and it can be proved
in a variety of ways. A path integral proof is given in Ryder, Sec. 7.4.
Here, I will give a diagrammatic type of proof.

• The general statement of the Ward identity is

∂S−1
F (p)

∂pµ
= Γµ(p, 0, p) , (330)
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where SF is the complete electron propagator and eΓµ is the complete
photon-fermion-antifermion vertex function:

SF (p)−1 = −i[/p−m− Σ(p)] , eΓµ = −ieγµ − ieΛµ . (331)

• The Ward identity is actually the qµ → 0 limit of a more general identity
called the Ward-Takahashi identity, which reads:

qµΓµ(p, q, p+ q) = S−1
F (p+ q)− S−1

F (p) . (332)

To see how this comes about, let us imagine a diagram for −iΣ(p). It
will have an e line coming in and and e line exiting, and this e line will
undergo various interactions at vertices within the diagram. There will
also in general be internal closed e loops — we shall return to those in
a moment. We establish a labeling for the vertices to which the photons
internal to the diagram are attached, beginning with γλ0 at the entry point
of the e line and ending with γλn at the exit point of the e line. In between,
we have vertices ranging from γλ1 to γλn−1. The fermion line running from
the γλ0 vertex to the γλ1 vertex will have momentum p1, and so forth with
the final fermion line from γλn−1 to γλn having pn.
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We can generate a set of diagrams for the (amputated) γee vertex from
the above diagram contributing to the propagator by inserting the γ(q) (q
is taken as ingoing) at every possible location along the e line and shifting
all the momenta of the internal e propagators subsequent to the insertion
point up by the additional momentum q. Each such insertion will have
the standard −ieγµ interaction. When we multiply by qµ, as we wish to
do when we want to get the WT identity, this becomes an insertion of
−ieqµγµ.

One then notes the following simple identity (factors of the charge e are
removed in defining Λµ and Γµ):

−iqµγµ = −i[(/pi + /q −m)− (/pi −m)] , (333)

where pi is the momentum on the e line to which we attached the γ(q).
Now, on either side of this insertion, we have an e propagator. Including
these, we have the structure

i

/pi + /q −m(−i/q) i

/pi −m
=

(
i

/pi −m
− i

/pi + /q −m

)
. (334)

Including still more neighboring vertices and propagators, we end up with
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an expression of the form

. . .

(
i

/pi+1 + /q −m

)
γ
λi

(
i

/pi −m
− i

/pi + /q −m

)
γ
λi−1

(
i

/pi−1 −m

)
γ
λi−2 . . . (335)

Now consider what happens if we insert −i/q into line i− 1. We generate
a structure of the form

. . .

(
i

/pi+1 + /q −m

)
γ
λi

(
i

/pi + /q −m

)
γ
λi−1

(
i

/pi−1 −m
− i

/pi−1 + /q −m

)
γ
λi−2 . . . (336)

Clearly the 1st term in the 2nd expression cancels the 2nd term in the 1st
expression. This will continue to work in this way until we get to the very
ends of the fermion line, leaving us with two uncanceled forms so that we
end up with (still need to return to closed fermion loops that we can show
don’t contribute)

[
qµΛµ(p, q, p + q)

]
=

−γλn
(

i
/pn+ /q−m

)
γ
λn−1 . . .

(
i

/pi+1+ /q−m
)
γλi

(
i

/pi+ /q−m
)
γ
λi−1

(
i

/pi−1+ /q−m

)
γ
λi−2 . . .

×γλ1

(
i

/p1+ /q−m
)
γλ0

+γλn
(

i
/pn−m

)
γ
λn−1 . . .

(
i

/pi+1−m
)
γλi

(
i

/pi−m
)
γ
λi−1

(
i

/pi−1−m

)
γ
λi−2 . . . γλ1

(
i

/p1−m
)
γλ0

= −[−iΣ(p + q)] + [−iΣ(p)] (337)
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where the −iγµ part of −i/q is included in the Γµ as being the vertex
to which the external photon attaches (remember that in our definitions
we have removed the explicit charge part, e, of the coupling — the full
amputated vertex is eΓµ).

• If we include the bare vertex part of Γµ (i.e. Γµ = −iγµ+higher order)
and recall that

S−1
F (p) = −i[/p−m− Σ(p)] (338)

so that

S−1
F (p+ q)− S−1

F (p) = −i/q + iΣ(p+ q)− iΣ(p) , (339)

we obtain the net result,

qµΓµ(p, q, p+ q) = S−1
F (p+ q)− S−1

F (p) . (340)

In the limit as q → 0, we can write

S−1
F (p+ q)− S−1

F (p) = qµ
∂S−1

F

∂pµ
. (341)
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Inserting above, and matching coefficients of qµ as qµ→ 0 yields the Ward
identity:

Γµ(p, 0, p) =
∂S−1

F

∂pµ
. (342)

It is always useful to remember this by simply referring to the zeroth order
version of the above which says that

−iγµ =
∂
[

(/p−m)
i

]
∂pµ

. (343)

• Returning to the issue of closed loops, I hope the following is obvious.

After inserting −i/q at every possible location on the closed loop, since the
loop is closed one ends up with the closed loop written in terms of the
unshifted pi’s that appeared in the loop minus exactly the same structure
with every pi → pi + q. In other words, we will have a result proportional
to

Tr

−γ
λn

(
i

/pn+ /q−m
)
. . .

(
i

/pi+1+ /q−m
)
γλi

(
i

/pi+ /q−m
)
γ
λi−1

(
i

/pi−1+ /q−m

)
γ
λi−2 . . .

(
i

/p1+ /q−m
)
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+γλn
(

i
/pn−m

)
. . .

(
i

/pi+1−m
)
γλi

(
i

/pi−m
)
γ
λi−1

(
i

/pi−1−m

)
γ
λi−2 . . .

(
i

/p1−m
) . (344)

But, every one of these pi’s is given in terms of the loop integration
variable, lets use p1 as the free loop momentum, plus momenta that are
brought in at the vertices that are present on the closed loop. These
“external” momenta can be regarded as fixed as we perform the p1 loop
integration. But, then the term with all the pi replaced by pi + q can be
converted to the same form as the term without any q’s added simply by
shifting the integration variable, p1 + q → p1, which will also shift all the
other pi + q → pi. Because there was a relative minus sign between the
pi + q and the pi structures, they cancel after this shift.

It should be noted that this shift is not always valid. Theories such as QED
for which this shift is valid are called “non-anomalous”. If the theory has an
anomaly, this shift is not valid. Anomalies can emerge when considering axial
vector currents such as those encountered in the electroweak interactions.
We will not have time to pursue this topic, but you will want to read about
it in one of the standard texts (e.g. Peskin section 19.2). In the context
of dimensional regularization, the problem is associated with defining γ5 in
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n 6= 4 dimensions. One finds (see Peskin section 19.4) that the electroweak
theory will be anomalous (certain unphysical states would fail to cancel and
the S matrix would not be unitary) unless quarks and leptons come in just
the right representations. The condition that the electroweak theory be
anomaly free is Tr[Q] = 0, where Q is the charge operator and Tr[Q] is the
sum over all the charges of the fermions of the theory. For one family of
quarks and leptons we have

Tr[Q] = 3

(
2

3
− 1

3

)
+ (0− 1) = 0 , (345)

where the first term comes from the quarks with three colors and the second
term comes from the leptons. Thus, if quarks have fractional charge, they
must have three colors for this to work. The structure of each family and
the need for complete families is no accident!

Back to the renormalization program

The Ward identity is very critical to proving renormalizability to all orders.
As we have seen, it is already incorporated in our explicit one-loop results.

So let us now construct the counter-term Lagrangian, ∆L.
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• We begin with an appropriate term to counter the singularity in −iΣ(p).
There are actually two independent singularities:

−iΣ(p) = −i e2

16π2ε
(−/p+ 4m) + finite (346)

which must be countered by terms of the form

∆L = iBψ/∂ψ −Aψψ . (347)

The Feynman rules that go with these ∆L terms are simply iB /p and
−iA, respectively. (We always have to multiply by i from the exp[i∆L]
expansion to first order, and /∂ → −i/p in momentum space.) What we
need is for

−iΣ(p)−iA+iB /p = −i e2

16π2ε
(−/p+4m)+finite−iA+iB /p = finite.

(348)
This is the case provided

A = −me
2

4π2ε
, B = − e2

16π2ε
. (349)
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So, if we match L+ ∆L to L0 for the purely fermionic part, we must have

i(1 +B)ψ/∂ψ − (m+A)ψψ = iψ0/∂ψ0 −m0ψ0ψ0 . (350)

As we know, this is accomplished by wave function and mass renormalization
in the form

ψ0 =
√
Z2ψ , m0 = m+ δm , (351)

where the convention is to call the QED wave function renormalization
factor Z2. From this we see that

Z2 = 1 + B = 1− e2

16π2ε
,

m0 = Z
−1
2 (m +A) = m

(
1 +

e2

16π2ε

)(
1− e2

4π2ε

)
= m

(
1− 3e2

16π2ε

)
= m + δm .(352)

To repeat what we have already considered in the φ4 theory case, we have
the relation

〈0|T{ψ0(x)ψ0(y)}|0〉 = Z2〈0|T{ψ(x)ψ(y)}|0〉 (353)

which, in words, says that Z2 < 1 is the probability of finding a full
renormalized electron (represented by ψ) propagating in the propagation of
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a bare electron (represented by ψ0). Alternatively, we say that in order to
get full one-particle normalization for ψ propagation, we must boost up ψ0

propagation by Z−1
2 > 1.

There is one more important feature of the result for δm. Note that
δm → 0 as m → 0. This is a consequence of chiral symmetry. You
should recall that the Dirac L has an extra symmetry under e−iαγ5 chiral
transformations in the m = 0 limit. This symmetry is retained by the
full QED Lagrangian (keeping m = 0). Thus, this symmetry should be
respected to all orders of perturbation theory. In order for this to be the
case, a non-zero value for the electron mass should not be generated by loop
corrections. We see that our explicit 1-loop result verifies this requirement.

This behavior means that the chiral symmetry has “protected” the electron
mass from hierarchy/fine-tuning problems. To understand what we mean
by this, let us compare to the φ4 theory. There, the one-loop correction to
the scalar propagator gives rise to a quadratically divergent correction to
the scalar particle mass-squared. The net result is that

m2 = m2
0 + λΛ2 (354)

where Λ is the cutoff of the loop momentum integration. If the observed
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m is of modest observable size (e.g. of order a TeV), then if Λ is very large
(for example of order MP ∼ 1019 GeV) this modest size becomes unnatural
in the sense that a very precise cancellation (to a few parts in 1038) between
m2

0 and λΛ2 would be required. This is termed the “fine-tuning” problem
that derives from the “hierarchy” problem of understanding how two such
diverse scales as MP and 1 TeV can be accommodated in the theory. Of
course, this problem for the scalar field is why we have come to favor a new
symmetry, such as supersymmetry, in which there are, for example, spin-1/2
supersymmetric partners of mass ∼ mSUSY to the scalar particles that also
give quadratically divergent contributions to m2. However, these quadratic
divergences come with the opposite sign of the fermion loop and the
supersymmetry also implies that the couplings involved are of exactly the
correct size such that once the loop momentum l exceeds mSUSY ∼ 1 TeV
there is exact cancellation of the scalar loop correction against the fermion
loop correction. In this case, Λ is replaced by mSUSY and if mSUSY ∼ 1 TeV
there is no fine-tuning problem even if the ultimate ultraviolet completion
of the theory (but now including SUSY) is at MP.

In the electron/QED case, the above kind of problem and the necessity of
some such dramatic solution does not arise. Whatever the mass, m, of the
electron is, the 1-loop-corrected mass has the form m(1 + α

4π
ln Λ

µ
), where
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I have replaced the 1
ε

by the momentum cutoff equivalent. Now, even if

Λ ∼MP the correction factor is not particularly big (∼ 1 + 1
516π
× 19) and

so even if it is gravity that provides the ultraviolet completion of the theory
there is no particular fine-tuning problem.

• Now let us turn to the vacuum polarization correction to the photon
propagator and see what role it plays.

First, we must figure out what the counter term Lagrangian ∆L must be
for this part of things. We are dealing with the

L 3 −1
4
FµνF

µν − 1

2
(∂µA

µ)2 =
1

2
Aµgµν2A

ν (355)

part of L. The allowed counter terms are then of the form

∆L = −C
4
FµνF

µν − E
2

(∂µA
µ)2 . (356)

Note that C and E are not necessarily equal in the counter term, even
though they were for L. It is simply a matter of what is required and it
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turns out that C 6= E is required. Now, the Feynman rules coming from
the above ∆L are:

−iC(k2gµν − kµkν) ,
−iEk2gµν . (357)

Meanwhile our singularity structure is purely of the form

iΠµν(k) = i
e2

12π2ε
(kµkν − k2gµν) = −i e2

12π2ε
(k2gµν − kµkν) . (358)

From this, we see that, as far as singularities are concerned we may take
E = 0. This is important since it means we can remain in Feynman gauge
for which the precise L 3 −1

2
(∂µA

µ)2 form and normalization is required.
Thus, subsequent calculations in still higher order can again be done in
Feynman gauge. This is not to say that the resummed photon propagator
will have a Feynman gauge form, but that is a different issue as we shall
see.
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Anyway, the above requires that

C = − e2

12π2ε
(359)

at least as far as the singular part is concerned.

Before continuing on, let me return to a schematic derivation of the claim
that the Feynman rule for the C term of ∆L is indeed as stated above in
Eq. (357). We begin by using the antisymmetry to write

LFF = −1
4
FµνF

µν = −1

2
(∂µAν − ∂νAµ)(∂µAν) . (360)

In order to determine the corresponding Feynman rule, we must compute
the S matrix for a photon to turn back into a photon after interacting with
LFF . The Feynman rule for iM will be extracted from the S form by
“pulling away” the usual factors (which you will see shortly). We thus have
to compute, leaving aside the C coefficient for the moment,

〈0|as~k
[
i

∫
d

4
xLFF

]
a
t †
~k
|0〉 = 〈0|as~k

∫
d

4
x

[
−i

2
(∂µAν − ∂νAµ)(∂

µ
A
ν

)

]
a
t †
~k
|0〉 (361)
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where, as always, the decomposition of the Aµ fields looks like

Aµ(x) =
∑
~q,r

1√
2V E~q

(
ar~qε

r
µ(~q)e−iq·x + ar †~q ε

r
µ(~q)eiq·x

)
(362)

assuming a real εr polarization basis. Obviously we must introduce two
such expansions. We write the 2nd expansion as a

∑
~p,r′ expansion. Let

us focus first on just one of the two equivalent contraction matchings, or
“killing” operations. We contract the ar

′
~p with the at †~k and the as~k with

the ar †~q , yielding δr′tδ~p~kδrsδ~q~k. We write the derivatives in terms of the
momenta q and p appearing in the expansions. However, after employing
the above δ’s, we have p = q = k. The result is:

〈0|as~k
∫
d

4
x

[
− i

2
(∂µAν − ∂νAµ)(∂

µ
A
ν

)

]
a
t †
~k
|0〉contraction 1

= − i
2

1√
2V E~k

√
2V E~k

∫
d

4
xe
−ik·x+ik·x

ε
s
ν(−ikµ)(+ik

µ
)ε
t ν − εsµ(−ikν)(+ik

µ
)ε
t ν


= ε

s µ
ε
t ν 1√

2V E~k

√
2V E~k

(2π)
4
δ
4
(k− k)

(−i
2

) [
k

2
gµν − kµkν

]
. (363)

The other possible contraction arrangement doubles this answer. Removing
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the usual factors in extracting iM, we get the Feynman rule for iM of

−i [k2gµν − kµkν
]

(364)

as claimed.

So, the net form of the pure gauge part of the Lagrangian is:

L+∆L 3 −
(

1 + C

4

)
FµνF

µν− 1

2
(∂µA

µ)2 ≡ −Z3

4
FµνF

µν− 1

2
(∂µA

µ)2 ,

(365)
where at 1-loop we have

Z3 = 1 + C = 1− e2

12π2ε
. (366)

The above pure gauge part of L + ∆L is to be identified with the bare
Lagrangian form

L0 = −1
4
F0µνF

µν
0 + gauge terms , (367)
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where Fµν0 = ∂µAν0 − ∂νAµ0 . This means that we should relate the
unrenormalized (“bare”) gauge field to the renormalized gauge field by:

Aµ0 =
√
Z3A

µ . (368)

We would have a relation very much like that for the fermion field:

〈0|T{Aµ0 (x)Aν0(y)}|0〉 ∼ Z3〈0|T{Aµ(x)Aν(y)}|0〉 (369)

giving rise to the interpretation that Z3 is the probability that the bare field
Aµ0 will propagate freely like a non-interacting particle.

In any case, we have seen that we can choose C so that the sum of the
actual vacuum polarization diagram iΠµν of Eq. (316) plus the counter
term leaves us with a form

iΠ̃µν = iΠ(k2)
[
k2gµν − kµkν

] ≡ iΠ(k2)Pµν(k) , (370)

where Π(k2) is finite, and depends upon the scheme (i.e. on the finite
terms in addition to the 1

ε
that we put into C).
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Now a crucial identity:

Pαβ(k)
gβλ

k2
Pλµ(k) = PαβP

β
µ

1

k2

= (k2gαβ − kαkβ)(k2gβµ − kβkµ)
1

k2

= (k4gαµ − 2kαkµk
2 + kαkµk

2)
1

k2

= Pαµ(k) . (371)

With this in hand, we can iterate this 1PI irreducible object to develop a
result for the full propagator:

Dρσ(k) =
−igρσ
k2

+
−igρα
k2

iΠ̃αβ(k2)
−igβσ
k2

+
−igρα
k2

iΠ̃αβ(k2)
−igβλ
k2

iΠ̃λν(k
)−igνσ
k2

+ . . .

=
−igρσ
k2

+
−i(k2gρσ − kρkσ)

k4

[
Π(k2) + Π2(k2) + . . .

]
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=
−igρσ
k2

+
−i(k2gρσ − kρkσ)

k4

Π(k2)

1−Π(k2)

=
−igρσ
k2

1

1−Π(k2)
+
ikρkσ

k4

Π(k2)

1−Π(k2)
. (372)

We can basically ignore the 2nd “gauge” term of this expression; it will not
contribute to any physical amplitude because of the kµMµ = 0 type of
identity (which is actually a consequence of the Ward-Takahashi identity).
From this, we see that so long as Π(k2) does not have a singular behavior
as k2 → 0 (e.g. Π(k2) = a

k2), which it does not by explicit calculation,
the full photon propagator will still have a pole at k2 = 0 implying that
renormalization has not ended up giving a mass to the photon. We see
that this is intimately related to the gauge invariant structure, namely
Π̃µν(k) ∝ Pµν(k). Note that had there been such a singular behavior for
Π(k2), the full photon propagator would behave as 1

k2−a, corresponding

(roughly, i.e. modulo whatever other finite terms are present for k2 → a)
to a photon mass-squared = a.

• Finally, we have the vertex correction to deal with.
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To cancel the infinity in Λ(1)
µ we must introduce a counter term of the form:

∆L 3 −Deµεψ/Aψ (373)

which in the standard fashion will give rise to a Feynman rule of form:

−iDeµεγµ . (374)

D must be chosen, therefore, so that

−ieµε(Λ(1)
µ +Dγµ) = finite , with Λ(1)

µ =
e2

16π2ε
γµ+finite . (375)

We make the simple choice of

D = − e2

16π2ε
. (376)

The full structure is then:

L+ ∆L 3 −(1 +D)eµεAµψγµψ

≡ −Z1eµ
εAµψγµψ , (377)
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with

Z1 = 1 +D = 1− e2

16π2ε
. (378)

Thus, in the end we have the three multiplicative renormalization factors:

Z1 = Z2 = 1− e2

16π2ε
, Z3 = 1− e2

12π2ε
. (379)

And, you should of course realize that Z1 = Z2 is no pure coincidence; it
is required by the Ward identity as we have already stressed.

Finally, we can work out the relation between the bare charge, e0, and the
renormalized charge, e. We must have

L+ ∆L = L0 , (380)

which for the photon fermion fermion interaction term leads to the
requirement

−Z1eµ
ε
A
µ
ψγµψ = −e0A

µ
0ψ0γµψ0 = −e0

√
Z3(

√
Z2)

2
A
µ
ψγµψ , (381)

where we inserted the relations of the bare fields to the renormalized fields
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established earlier. This implies the relation

e0 = eµε
Z1

Z2Z
1/2
3

= eµεZ
−1/2
3 , (382)

where the latter equality follows from the Ward identity requirement (and
also our explicit 1-loop result) of Z1 = Z2.

• Summary

We have absorbed all the infinite quantities by establishing appropriate
relations between the renormalized fields and renormalized mass and the
bare fields and bare mass. The fact that we were able to do so, keeping a
L of the same form as the original means that, to this 1-loop order, QED
is indeed renormalizable. The proof that the renormalization procedure can
be carried out to all orders appears in Ryder and other books.

Here, I wish to focus on some more implications of the 1-loop results.

• The asymptotic behavior of e(µ).
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We begin with the result of Eq. (382):

e0 = eµεZ
−1/2
3

= eµε
(

1− e2

12π2ε

)−1/2

= eµε
(

1 +
e2

24π2ε

)
+O(e4) . (383)

We now differentiate in the usual fashion:

0 = µ
∂e0

∂µ
= εeµε

(
1 +

e2

24π2ε

)
+ µ

∂e

∂µ

[
µε
(

1 +
e2

24π2ε

)
+ eµε

e

12π2ε

]
= εeµε

(
1 +

e2

24π2ε

)
+ µ

∂e

∂µ
µε
[
1 +

e2

8π2ε

]
. (384)

Solving for µ∂e
∂µ

gives

µ
∂e

∂µ
= −εe1 + e2

24π2ε

1 + e2

8π2ε
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= −εe
(

1− e2

12π2ε
+O(e4)

)
ε→0→ e3

12π2

≡ β(e) . (385)

Thus, as in φ4 theory, β(e) > 0. The solution of the above equation, which
is obvious after rewriting it in the form:

µ
∂e2

∂µ
=

(e2)2

6π2
(386)

is

e2(µ) =
e2(µ0)

1− e2(µ0)
6π2 ln µ

µ0

(387)

and we see that e2(µ) increases with increasing µ or decreasing distance
scale. The singular point at

µ = µ0 exp

(
6π2

e2(µ0)

)
(388)
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is sometimes referred to as the Landau singularity.

This increase of e(µ) at short distances has the following interpretation.
We begin at large distances and imagine the photon probing an electron,
e−. At large distances, the photon has lots of sequential fermion loop
(bubble) insertions of e+e− pairs in its propagator before it interacts with
the electron. These bubbles polarize (like a dielectric medium) so that the
e+ of each bubble insertion spends more time near the source e− than
does the e− of each bubble. Thus, the fundamental charge of the source
e− is substantially shielded by the “polarization of the vacuum” (that is
where the name comes from). As we probe on shorter and shorter distance
scales (higher momentum scales), we penetrate further and further inside
this cloud of bubbles and we see more and more of the bare e− charge.

• What is the best evidence for a running α? An analysis by OPAL of their
LEP data on small angle Bhabha scattering claims to be the best.
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Figure 10: The comparison between Bhabha scattering data and QED
(including some quark-related diagrams) predictions as a function of the
momentum transfer t. LEP data from OPAL. CERN-PH-EP/2005-14.
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• The anomalous magnetic moment of the electron.

For this we will need to return to Λ(2)
µ . To set the stage, we first derive

the standard tree-level result that ge = 2, the so-called Dirac magnetic
moment for the electron.

Before proceeding, we need to prove the Gordon identity. One begins with
the vertex γµ. This we sandwich between spinors in the form u(p′)γµu(p)
to establish the interaction of an electron with the photon at tree-level.
Recalling that

γµγν + γνγµ = 2gµν , γµγν − γνγµ = −2iσµν (389)

we can write, using the Dirac equation for the spinors,

u(p′)γµu(p) =
1

2m
u(p′)(/p′γµ + γµ/p)u(p)

=
1

2m
u(p′)(p′ νγνγµ + γµγνp

ν)u(p)

=
1

2m
u(p′)(p′ ν[gµν + iσµν] + [gµν − iσµν]pν)u(p)
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=
1

2m
u(p′)[(p′µ + pµ) + iσµνq

ν]u(p) . (390)

This is the so-called Gordon identity.

To use this identity, we first consider the full vertex Γµ. Given the 4-vectors
available, the most general possible expression is

Γµ(p, q, p′ = p+ q) = γµA+ (p′ + p)µB + (p′ − p)µC . (391)

We have already seen that the other possible form, σµνqν, is equivalent
to a linear combination of the first two terms above when the structure is
sandwiched between spinors. Further, the coefficients A, B, and C could
all contain Dirac matrices contracted with vectors, i.e. /p, or /p′. But, if
we plan to sandwich Γµ between spinors, u(p′)Γµu(p), then /p → m and
/p′ → m and so there is for our purposes no need to consider A,B,C
as anything other than simple numbers. Given that we will also require
p2 = p′ 2 = m2, the only non-trivial number is q2 = −2p · p′ + 2m2.
A,B,C can be functions of q2. However, we can simplify even further.
Gauge invariance for the on-shell external in and out electron situation being
considered requires that qµu(p′)Γµu(p) = 0. This follows from the Dirac
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equation for the γµ term, and from (p′−p) ·(p′+p) = p′ 2−p2 = m2−m2

for the 2nd term, but is not true for the 3rd term. Thus, C = 0 is required.

At this point, it is conventional to replace the (p′ + p)µ term using the
Gordon identity, and so we can say that the most general structure for the
vertex is

u(p′)Γµu(p) = u(p′)
[
γµF1(q

2) +
iσµνq

ν

2m
F2(q

2)

]
u(p) . (392)

F1 and F2 are called form factors. The hall-mark of an elementary particle
is that at tree-level F1 = 1 and F2 = 0.

To see how this structure is related to the magnetic moment of the electron,
we must allow the electron to interact with a classical vector potential,
Aµcl(x) = (0, ~Acl(~x)). It is the Fourier transform of this potential that
appears in the iM matrix element for the electron scattering from this
classical potential. To see exactly how, you consider a

∆Hint =

∫
d3~xeAµcljµ , with jµ(x) = ψ(x)Γµψ(x) . (393)

In the leading order of perturbation theory, the S-matrix element for
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scattering from this classical field is3

iM(2π)δ(p0 ′ − p0) = −ieu(p′)Γµu(p)Âµcl(p
′ − p) (394)

where Âµcl(p
′ − p) is the 4-dimensional Fourier transform of Aµcl(x) which

for a time-independent potential always takes the form

Âµcl(p
′ − p) = (2π)δ(p0 ′ − p0)Ãµcl(~q) (395)

where Ãµcl(~q) is the 3-dimensional Fourier transform. The result is that

iM = −ieu(p′)Γµu(p)Ãµcl(~q) . (396)

In the case of Aµcl(x) = (0, ~Acl(~x)), as appropriate for a magnetic field,
3The (2π)3δ3(~p′ − ~p) is missing since 3-momentum conservation does not apply when dealing with scattering from

a classical potential which is “infinitely massive” and can absorb any amount of momentum. To get the expression given,
one simply considers the 1st order term in the expansion of exp[−i ∫ dt∆Hint] sandwiched between initial and final

states, 〈p′| − i ∫ dt∆Hint|p〉, does the 1-particle contractions, and removes the usual 1/
√

2V E factors for the
initial and final particles.
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the above expression for iM takes the form4

iM = ieÃicl(~q)u(p′)

[
γiF1(q

2) +
iσiνqν

2m
F2(q

2)

]
u(p) . (397)

The coefficient of Ãcl vanishes as q → 0 and so we must be careful to
extract the linear term in q. We need the nonrelativistic expansion of the
spinors u(p) and u(p′). The relevant expansion is

u(p) =

( √
p · σξ√
p · σξ

)
' √m

(
(1− ~p·~σ

2m
)ξ

(1 + ~p·~σ
2m

)ξ

)
. (398)

Then, the F1 term can be simplified in the form:

u(p
′
)γ
i
u(p)

=
√
m

(
ξ
′†
[
1− ~p ′ · ~σ

2m

]
, ξ
′†
[
1 +

~p ′ · ~σ
2m

])(
0 1

1 0

)
4The usual − sign has been compensated by my having 2 up i indices rather than one up and one down. This is just

the first of many such little sign changes associated with raised or lowered spatial indices. You have to be careful to get
them all in correctly.
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×
(

0 σi

−σi 0

)√
m

 [
1− ~p·~σ

2m

]
ξ[

1 + ~p·~σ
2m

]
ξ


= m

(
ξ
′†
[
1− ~p ′ · ~σ

2m

]
, ξ
′†
[
1 +

~p ′ · ~σ
2m

])( −σi 0

0 σi

) [
1− ~p·~σ

2m

]
ξ[

1 + ~p·~σ
2m

]
ξ


= m

(
ξ
′†
[
−σi +

~p ′ · ~σ
2m

σ
i

]
, ξ
′†
[
σ
i

+
~p ′ · ~σ
2m

σ
i

]) [
1− ~p·~σ

2m

]
ξ[

1 + ~p·~σ
2m

]
ξ


= mξ

′†
([
−σi +

~p ′ · ~σ
2m

σ
i

] [
1− ~p · ~σ

2m

]
+

[
σ
i

+
~p ′ · ~σ
2m

σ
i

] [
1 +

~p · ~σ
2m

])
ξ

= 2mξ
′†
(
~p ′ · ~σ
2m

σ
i

+ σ
i~p · ~σ

2m

)
ξ = ξ

′ †
(
~p
′ j
σ
j
σ
i

+ σ
i
~p
j
σ
j
)
ξ

= ξ
′ †
(
~p
′ j

(δ
ij

+ iε
jik
σ
k
) + ~p

j
(δ
ij

+ iε
ijk
σ
k
)
ξ

= ξ
′ †
[(
~p
′ i

+ ~p
i
)
− i

(
~p
′ j − ~p j

)
ε
ijk
σ
k
)
ξ

= ξ
′ †
[(
~p
′ i

+ ~p
i
)
− iqjεijkσk

)
ξ , (399)

where we used σiσj = δij + iεijkσk. The first of these terms substituted
into Eq. (397) gives the contribution of the operator [~pop · ~A + ~A · ~pop]
coming from minimal substitution in the standard kinetic energy term of
nonrelativistic quantum mechanics. The 2nd term is the magnetic moment

J. Gunion 230C, U.C. Davis, 192



interaction we are after, which we rewrite in the form

u(p′)γiu(p) 3 2mξ′†
(−i

2m
εijkqjσk

)
ξ . (400)

The F2 term already contains an explicit factor of q, so we can evaluate it
using the leading term in the spinor expansion and the fact that

σij =
1

2
εijk

(
σk 0
0 σk

)
, (401)

as derived long ago, to obtain (sign change since we raise the index on qj)

u(p′)
(
i

2m
σiνqν

)
u(p) = 2mξ′†

(−i
2m

εijkqjσk
)
ξ . (402)

Thus, the full spin-dependent structure takes the form

u(p′)

(
γiF1 +

iσiνqν

2m
F2

)
u(p)

q→0→ 2mξ′ †
(−i

2m
εijkqjσk [F1(0) + F2(0)]

)
ξ ,

(403)
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which gives, see Eq. (397),

iM = ieÃicl(~q)u(p′) [. . .]u(p)
q→0→ ieÃicl(~q)2mξ

′ †
(−i

2m
εijkqjσk [F1(0) + F2(0)]

)
ξ

= −i(2m)eξ′ †
(−1

2m
σk [F1(0) + F2(0)]

)
ξB̃k(~q) , (404)

where
B̃k(~q) = −iεijkqiÃjcl(~q) (405)

is the Fourier transform of the magnetic field ~B = ~∇ × ~A produced by
~Acl(~x). We interpret this expression as the Born approximation to the
scattering of the electron from a potential. The potential takes the form5

of a magnetic moment interaction

V (~x) = −〈~µ〉 · ~B(~x) (407)
5The 2m factor in (404) is part of our relativistic normalization and should be dropped in comparing to the usual Born

approximation — see Peskin Eq. (4.123) and surrounding discussion. The general rule in relativistic normalization is that

iM = −i2mṼcl(~q) , (406)

where Ṽcl(~q) is the 3-dimensional Fourier transform of the effective spatial potential Vcl(~x).
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with the identification of

〈~µ〉 =
e

m
[F1(0) + F2(0)] ξ′ †

~σ

2
ξ . (408)

This should be compared to the standard form of

~µ = g

(
e

2m

)
~S (409)

where ~S is the electron spin operator ~σ
2

. Doing so, we find

g = 2 [F1(0) + F2(0)] = 2 + 2F2(0) = 2 +O(α) , (410)

where g is called the Lande g-factor.

You might ask how I can write so confidently that F1(0) = 1 without
doing the loop calculation, i.e. without evaluating the finite part of Λ(1)

µ

(remember Λ(1)
µ ∝ γµ and thus would contribute to F1.). Well, it is

because F1(0) defines the charge! To see this, we must again turn to a
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non-relativistic reduction but now in the case of a classical vector potential
of the form Aµcl(~x) = (φ(~x),~0). The Fourier transform of this Aµcl is again
what appears in iM and so we have, referring to Eq. (396):

iM = −ieu(p′)Γ0u(p)φ̃(~q) . (411)

For definition of the charge, we want to consider a potential that is
essentially constant as a function of ~x over some large region in which the
charge is being probed. In this case, φ̃(~q) will be concentrated at ~q = 0.
Thus, it is appropriate to take ~q → 0 in defining the charge, and the F2

term then drops out and we evaluate F1 at ~q = 0. Then, we only need to
compute

u(p′)γ0u(p)
q→0→ u†(p)u(p) = 2mξ†ξ = 2m (412)

so that we end up with

iM = −ieF1(0)φ̃(~q)2m (413)

which is the Born approximation for scattering from a potential of the form

V (~x) = eF1(0)φ(~x) , (414)

J. Gunion 230C, U.C. Davis, 196



where, see previous footnote, the −i2m factor appears in iM multiplying
the fourier transform of the classical potential. This means that F1(0) is
the electric charge of the electron in units of e, which by definition means
that F1(0) = 1 is required after carrying out the renormalization program.
Since F1(0) = 1 at the 0-loop level (tree-level), radiative corrections to
F1(q

2) should vanish as q2 → 0.

To compute F2(0), we first identify that part of Λ(2)
µ that gives rise to the

iσµνq
ν structure that defines F2. Referring to Eq. (325), we find

u(p
′
)Λ

(2)
µ u(p) = u(p

′
)

{
e2

16π2

∫ 1

0
dα

∫ 1−α
0

dβ
γν( /p ′(1− β)− α /p +m)γµ( /p(1− α)− β /p ′ +m)γν

[−m2(α + β) + α(1− α)p2 + β(1− β)p′ 2 − αβ2p′ · p]

}
u(p)

(415)

To proceed, we need to do some work on the numerator. Remembering
that γν /a/bγν = 4a · b, γν /a/b/cγν = −2/c/b/a, γν /aγν = −2/a, we have

γν( /p
′
(1− β)− α /p +m)γµ( /p(1− α)− β /p ′ +m)γ

ν

= −2( /p(1− α)− β /p ′)γµ( /p
′
(1− β)− α /p) + 4m(pµ(1− α)− βp′µ) + 4m(p

′
µ(1− β)− αpµ)− 2γµm

2

→ −2( /p(1− α)− βm)γµ( /p
′
(1− β)− αm) + 4m(pµ(1− α)− βp′µ) + 4m(p

′
µ(1− β)− αpµ)− 2γµm

2

(416)

where the → indicates that we used the Dirac equation for the spinors.
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We now need a couple of intermediate results.

/pγµ /p
′

= 2pµ /p
′ − γµ /p/p ′

= 2pµ /p
′ − γµ2p · p′ + γµ /p

′
/p

= 2pµ /p
′ − γµ2p · p′ + 2p

′
µ /p− /p

′
γµ /p

→ 2pµm− γµ2p · p′ + 2p
′
µm− γµm2

= 2(pµ + p
′
µ)m− 3m

2
γµ (417)

where in the last step we used the kinematics p2 = m2, p′ 2 = m2 and
(p− p′)2 = 2m2− 2p · p′ = q2 = 0 which implies 2p · p′ = 2m2. We also
have

/pγµ = 2pµ − γµ /p→ 2pµ − γµm, (418)

γµ /p
′

= 2p
′
µ − /p

′
γµ → 2p

′
µ − γµm. (419)

Altogether, we get for the numerator

N = −2

[
(1− α)(1− β)(2(p + p

′
)µm− 3m

2
γµ)− β(1− β)m(2p

′
µ −mγµ)

−α(1− α)m(2pµ −mγµ) + αβm
2
]

+ 4m
[
p
′
µ(1− 2β) + pµ(1− 2α)

]
− 2γµm

2

= −2γµm
2
[−3(1− α)(1− β) + β(1− β) + α(1− α) + αβ + 1]

+4pµm[β − αβ − α2
] + 4p

′
µm[α− βα− β2

] (420)
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Meanwhile, the denominator takes the form (using the same kinematics as
already discussed)

D = −m2(α+ β)2 . (421)

Because of the symmetry of the denominator, we can rewrite N in the
form

N = −2γµm
2
[4(β + α)− (α + β)

2 − 2] + 2(pµ + p
′
µ)m[(α + β)− (α + β)

2
] (422)

so that we now have

u(p
′
)Λ

(2)
µ u(p)

= u(p
′
)
−e2

16π2m2

∫ 1

0
dα

∫ 1−α
0

dβ
1

(α + β)2(
−2γµm

2
[4(β + α)− (α + β)

2 − 2] + 2(pµ + p
′
µ)m[(α + β)− (α + β)

2
]
)
u(p)

= u(p
′
)
−e2

16π2m2

∫ 1

0
dα

∫ 1−α
0

dβ
1

(α + β)2(
−2γµm

2
[4(β + α)− (α + β)

2 − 2] + 2[2mγµ − iσµνqν ]m[(α + β)− (α + β)
2
]
)
u(p)

= u(p
′
)
−e2

16π2m2

∫ 1

0
dα

∫ 1−α
0

dβ
1

(α + β)2(
−2γµm

2
[2(β + α) + (α + β)

2 − 2]− 2iσµνq
ν
m[(α + β)− (α + β)

2
]
)
u(p) . (423)
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We actually don’t care about the γµ part. For the anomalous magnetic

moment we only want the coefficient of +
iσµν
2m

which contains the two
integrals

∫ 1

0
dα

∫ 1−α
0

dβ
1

(α + β)
=

∫ 1

0
dα ln(α + β)

β=1−α
β=0

= −
∫ 1

0
dα lnα = −[α lnα− α]

1
0 = 1 (424)

and

∫ 1

0
dα

∫ 1−α
0

dβ =
1

2
(425)

yielding
iσµνq

ν

2m

[
e2

8π2

]
=
iσµνq

ν

2m

[
α

2π

]
. (426)

The above is the well-known result from Schwinger in 1948 for the
anomalous magnetic moment addition to the bare contribution yielding
a total of

iσµνq
ν

2m

[
1 +

α

2π

]
. (427)

where the relation to the usual ge is

ge

2
= 1 +

α

2π
. (428)
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Please note that I got the correct sign for my sign of the denominator and
that Ryder slipped in an extra sign.

The electron anomalous magnetic moment

At present, ge
2

has been calculated to order α5 (see arXiv:1205.5368)
yielding impressive agreement between theory and experiment. Until very
recently, the comparison was

athe =
1

2
(ge − 2)

= (1159652.4± 0.4)× 10−9

aexpe = (1159652.4± 0.2)× 10−9 . (429)

Actually, experiment (denoted by HV for Harvard) has gotten a lot better
recently:

aexpe = ae(HV ) = (1159652180.73± 0.28)× 10−12 . (430)
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The latest theoretical prediction is

athe = 1159652181.78(6)(4)(3)(77)× 10−12 (431)

where α is being determined using h/mRb, the Rydberg constant and
mRb/me. In the above, the first, second, third, and fourth uncertainties
come from the eighth-order term, the tenth-order term, the hadronic
corrections, and the above means of determining the fine- structure
constant, respectively.

Going to a still higher accuracy and higher order in α for the theoretical
prediction of the QED contribution is difficult to justify at the moment. The
above prediction already includes the very small hadronic and electroweak
loop diagrams:

ae(had. vac pol) = 1.875(18)× 10−12

ae(NLO had. vac pol) = −0.225(5)× 10−12

ae(had. light by light scattering) = 0.035(10)× 10−12

ae(weak) = 0.0297(5)× 10−12 . (432)
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At this point, agreement is impressive:

ae(HV )− ae(theory) = −1.06(0.82)× 10−12 . (433)

More rigorous comparision between experiment and theory is hindered by
the uncertainty of α−1(Rb10),

α−1(Rb10) = 137.035999049(90) . (434)

as determined from the precise measurements of h/mRb, the Rydberg
constant and mRb/me.

Note that the sum 1.685(21)× 10−12 of the hadronic contributions is now
larger than the exp. / theory difference. It is thus desirable to reexamine
and update the values of the hadronic contributions.

The result of Eq. (431) shows clearly that the largest source of uncertainty is
the fine-structure constant. To put it differently, it means that a non-QED
α, even the best one available at present, is too crude to test QED to the
extent achieved by the theory and measurement of ae. Thus it makes more
sense to test QED by an alternative approach, namely, compare α−1( Rb10)
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with α−1 obtained from theory and measurement of ae. This leads to

α−1(ae) = 137.0359991736(68)(46)(26)(331) , (435)

where the first, second, third, and fourth uncertainties come from the
eighth-order and the tenth-order QED terms, the hadronic and electroweak
terms, and the measurement of ae(HV ), respectively.

From the broader perspective, the SM calculation agrees very well with the
best available laboratory measurements, and it is this kind of agreement
that makes us think that this whole business of QED and renormalization
really does make sense.

In the past, one employed ae as the means of determining α, then you can
use this value of α to predict aµ. This was the approach used in the PDG
prior to the 2011 update. However, the determination of α from Rb10 is
(at the moment) regarded as a better approach.

The muon anomalous magnetic moment

The above sets the stage for computing aµ.
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Representative diagrams contributing to the muon anomalous magnetic
moment appear below.

γ

γ

µ µ

γ

Z
µ µ

γ

W W

ν

µ µ

γ

γ γ

µ µhad

Figure 11: Lowest order Electromagnetic (EM), Electroweak (EW) and
Hadronic (HD) contributions to aµ.

In fact, the QED part has been computed to order (α/π)5 with α
determined as described above from the Rb10 data, leading to

aQEDµ = 116584718.95(0.08)× 10−11 . (436)

The story regarding the other contributions is too lengthy for us to cover
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here. Suffice it to say that in the end it is the HD contributions that lead
to the biggest error. Indeed, there are 2 ways of computing these that give
slightly discrepant results from one another:

– using e+e− collision data directly to measure the hadronic bubble insertion
— the integral over the bubble is most sensitive to low energy data, such
as around the ρ(770) resonance, such data having been obtained some
time ago and not necessarily that accurate;

– using τ → ντ+hadrons decays (which are precisely measured) and then
using isospin symmetry to relate to e+e−→ hadrons at low energy, the
latter involving some uncertainties related to isospin breaking.

Also, different groups have worked on the theoretical prediction as summarized
in the figure below.
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Using either the direct e+e− data approach or the τ -decay data approach
one finds a discrepancy between the SM prediction for aµ and the
experimental measurement of aµ.

For the direct e+e− measurement approach, the PDG summary is:

athµ =
1

2
(ge − 2) = aQEDµ + aEWµ + aHADµ

= (116591803± 1± 42± 26)× 10−11 , (437)
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to be compared to

aexpµ = (11659208.9± 5.4± 3.3)× 10−10 . (438)

In the theory prediction, the errors are due to the electroweak, lowest-order
hadronic, and higher-order hadronic contributions, respectively. In the
experimental result, the errors are from statistical and systematic errors,
respectively.

The result is that

∆aµ = aexpµ − athµ = 288(63)(49)× 10−11 . (439)

corresponding to a 3.6σ discrepancy. Using τ data instead of e+e− data
directly in a critical low energy regime for the HD contribution reduces the
discrepancy to 2.4σ.

Please look at the PDG chapter on this for more details.

One interpretation of this discrepancy should it turn out to be real is the
existence of supersymmetric particles, which would also contribute loop
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corrections to aµ. Generically, supersymmetric models predict an additional
contribution

aSUSYµ ∼ sign(µ)× 130× 10−11

(
100 GeV

mSUSY

)2

tanβ (440)

where mSUSY is a representative supersymmetric mass scale, tanβ =
3−40 a potential enhancement factor, and sign(µ) = ±1. Supersymmetric
particles in the mass range 100 − 500 GeV could be the source of the
deviation, ∆aµ. If so, those particles should be directly observed at the
Large Hadron Collider at CERN.
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How to use the Ward identity in the proof of renormalizability

I will give just a simple illustration of why the WI is so useful: Overlapping
Divergences.

Consider the diagram for −iΣ that corresponds to two overlapping virtual
photon loops. Labeling the photon vertices as ρ, µ, ρ, µ (after already using
the g... of the photon propagators) and using k1 and k2 for the µ→ µ photon
and the ρ→ ρ photon, respectively, the expression for the diagram takes the
form∫

d4k1d
4k2

1

k2
1

1

k2
2

γρ
1

/p− /k2 −m
γµ

1

/p− /k1 − /k2 −m
γρ

1

/p− /k1 −m
γµ ,

(441)
which is superficially D = 1 divergent. If k1 is held fixed, then the d4k2

integral has D = 0. In other words the overlapping divergences from the
two integrations cannot be separated out. The WI allows one to circumvent
this difficulty. The idea is to remember that the WI says that ∂Σ

∂pα
= −Λα

and to begin by showing that in Λα the divergences can be separated. In
fact, this latter separation is always possible. There are 3 associated Λα
graphs corresponding to the 3 different locations in the Σ graph at which a
photon can be attached on an internal electron propagator. Let us consider,
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for example, the diagram in which the photon (index α) is attached in the
left-most location. For our purposes, the photon can have q = 0. The
expression for this diagram takes the form∫
d4k1d

4k2

1

k2
1

γρ
1

/p− /k2 −m
γµ

1

/p− /k1 − /k2 −m
γρ

1

/p− /k1

γα
1

/p− /k1

γµ
1

k2
2

.

(442)

Now, for fixed k2, we have
∫
d4k1

k5
1

which is convergent and only
∫
d4k2 must

be dealt with, but this can be done using the usual procedures (dimensional
regularization). The story is the same for all the diagrams. But, now we can
figure out how to write Σ by using the WI differential equation.

At this point, I could discuss the 2-loop calculation for the photon
propagator. A version of this calculation appears in Itzykson and Zuber
(who employ Euclidean conventions). The discussion in the case of the QCD
correction to the photon propagator appears towards the end of these pdf
notes. You could go and look at this later presentation and remove the color
factors and change g2 to e2 and so forth. It is more convenient to delay this
two-loop calculation until we can see its relevance to the QCD calculation of
the correction to the famous Rhad ratio of e+e− annihilation.
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Renormalization of QCD

Because the gluon-quark-quark and 3-gluon vertex are both given by g
times appropriate structure, we could compute the 1-loop corrections to either
in order to figure out how g behaves as a function of the scale µ. Hopefully,
they would continue to be tied together at 1-loop. This is, indeed, the case.
For us, it is simpler to use the gluon-quark-quark vertex to define g since then
we can relate the required calculations in part to those already done for QED.
We will do our calculations in Feynman gauge, which means that at some
points we will have to consider ghosts. Relevant Feynman rules can be found
in the Path Integral Notes pdf file.

−iΣ

The calculation is much like the QED one. For the main ”non-tadpole”
diagram,6 we have the −iΣAB contribution written below, where A,B are

6The tadpole diagrams are the gluon attachment with (a) fermion loop at the top, (b) gluon loop at the top and (c)
ghost loop at the top — all are zero as we will discuss in the case of the corresponding gluon propagator corrections.
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the initial and final quark color indices. We have:

−iΣAB =

∫
dnk

(2π)n
(igµεγµ)

i

/p− /k −m(igµεγν)
−igµν
k2

(Lc)AD(Lc)DB .

(443)
(Here, LaAB is our notation for the specific fundamental triplet representation
matrix.) Thus, we very quickly obtain

−iΣAB = CFδ
AB ×−iΣ(QED, e→ g) = −i g2

16π2ε
(−/p+ 4m)CFδ

AB .

(444)
Using CF = 4/3 for SU(3), and using the /p coefficient to determine Z2, we
obtain

Z2 = 1− g2

16π2ε
CF = 1− g2

12π2ε
. (445)

iΠ

The one loop diagrams are: gluon-loop insertion; ghost-loop insertion;
fermion-loop insertion; gluon loop quartic vertex “tadpole”; gluon-loop true
tadpole; ghost-loop true tadpole; the fermion-loop true tadpole. The loop
integration momentum will typically be called p and the external gluon
momentum will be called k.
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The fermion-loop true tadpole is 0 for exactly the same reason as in QED
—
∫

dnp
(2π)n

Tr[γα(/p+m)]
p2−m2 = 0 due to Tr[γα] = 0 and oddness of Tr[γα/p] = 4pα

under p → −p, whereas the denominator is even. Here α was the Lorentz
index of the virtual q = 0 gluon running from the propagating gluon and
attaching to the fermion loop.

The gluon-loop true tadpole and ghost-loop true tadpole are both 0 for
the same basic reason: they both are proportional to

∫
dnp

(2π)n
1
p2 × pα = 0.

The quartic vertex “tadpole” is 0 for a more subtle reason. The gluon
loop integral does not contain any numerator momenta. Thus, the integral in
question is ∫

dnp

(2π)n
1

p2
. (446)

To evaluate this, we temporarily introduce an m2 and then later take m2 → 0.
We have, using our master formula,∫

dnp

(2π)n
1

p2 −m2
= (−1)n/2 i

(4π)n/2

Γ(1− n
2
)

Γ(1)
[−m2]n/2−1

m2→0→ 0 , (447)

provided that n/2− 1 > 0, which is of course the case for n→ 4. Note that
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for n→ 2, we cannot use this argument and there is in fact a pole at n→ 2
reflecting the basic quadratic divergence of this integral.

To make this more explicit and to illustrate some important lessons we
evaluate the basic integral using a different set of tricks. We write

∫
dnp

(2π)n
1

p2
=

∫
dnp

(2π)n
1

p2

(p + k)2

(p + k)2

=

∫
dα

∫
dnp

(2π)n
(p + k)2

[α(p + k)2 + (1− α)p2]2

=

∫
dα

∫
dnp′
(2π)n

(p′ + (1− α)k)2

[p′ 2 + α(1− α)k2]2
using shift to p′ = p + αk

=

∫
dα

∫
dnp′
(2π)n

[
1

[p′ 2 + α(1− α)k2]
+

(1− α)(1− 2α)k2

[p′ 2 + α(1− α)k2]2

]
dropping terms odd in p′

=

∫
dα(−1)

n/2 i

(4π)n/2

Γ(1− n2 )

Γ(1)

1

[α(1− α)k2]
1−n2

+
Γ(2− n2 )

Γ(2)

(1− α)(1− 2α)k2

[α(1− α)k2]
2−n2


=

∫
dα(−1)

n/2 i

(4π)n/2

1

[α(1− α)k2]
2−n2 ]

[
Γ(1− n

2
)k

2n

2
α(1− α) + Γ(2− n

2
)k

2
(1− α)

2
]
,

(448)
where in the last step we used

α(1− α)Γ(1− n
2

) + (1− α)(1− 2α)Γ(2− n
2

)

= α(1− α)

[
Γ(1− n

2
)− Γ(2− n

2
)

]
+ (1− α)

2
Γ(2− n

2
) = α(1− α)Γ(1− n

2
)
n

2
+ (1− α)

2
Γ(2− n

2
) . (449)
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Now, as n→ 4, we can still check that we get 0 by virtue of cancellation
of the two terms. We must use (as n→ 4)

Γ(1− n
2

) =
Γ(2− n

2 )

1− n
2

∼ −Γ(2− n
2

) ,

∫
dαα(1− α) =

1

6
,

∫
dα(1− α)

2
=

1

3
. (450)

But, we want to keep the form given so that we can see how this term
combines with the other 1-loop Π contributions when n 6= 4. In particular, we
want to see that we get a gauge-invariant structure even when n 6= 4, thereby
demonstrating that dimensional regularization preserves gauge invariance.

Of course, we have not written down this “tadpole” contribution with all
the correct factors and couplings and color structure. To see what we get
when we do that, we start with our basic Feynman expression, including color
factors, in the form (using gluon color labels ordered clockwise as a, d, c, b
going with µ, σ, ρ, ν — also note contraction symmetry factor of 1/2 and use
gρρ = n):7

iΠ
ab
µν 3 1

2

∫
dnp

(2π)n
−igρσ
p2

δ
cd

(ig
2
)

[
ic
dce

ic
eba

(g
σν
g
µρ − gµσgνρ) + ic

dbe
ic
eca

(g
µν
g
ρσ − gµσgνρ) + ic

dae
ic
ebc

(g
σν
g
ρµ − gσρgµν)

]
7The version of the Feynman rule employed below is taken from Fig. 12 of QFT-III notes in which the canonical

icdce, . . . color factors are separated out. Thus the +ig2 overall factor is correct.
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=
1

2
g

2
∫

dnp

(2π)n
1

p2

[
0 + (−CAδab)[(n− 1)gµν ] + (CAδ

ab
)[−(n− 1)gµν ]

]
= −g2

CAδ
ab

(−1)
n/2 i

(4π)n/2

∫
dα

(n− 1)gµν

[α(1− α)k2]
2−n2

[
Γ(1− n

2
)k

2n

2
α(1− α) + Γ(2− n

2
)k

2
(1− α)

2
]

(451)

where the color diagram created by δcdicdaeicebc ⇒ +CAδ
ab (no crossed

gluons) whereas that created by δcdicdbeiceca has a crossed gluon configuration
that must be “unwrapped” (leading to a minus sign because of c... antisymmetry)
to obtain a diagram that leads to −CAδab.

So, now we must work on the other diagrams.
The fermion-loop diagram works just like QED except for the extra color

factor of 1
2

from our representation matrix product trace and a factor of nf
which is the number of different “flavors” of quarks that should be put into
the fermion loop. Referring back to Eq. (309), we have (for the singular
piece):

iΠab
µν 3

ig2

12π2
δab(kµkν − k2gµν)Γ(2− n

2
)(

1

2
nf) , (452)

where as ε→ 0, Γ(2− n
2
) = Γ(ε)→ 1

ε
.

Next comes the gluon-loop diagram. Here, the color calculation just gives
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us CAδab. Below, we discuss the Feynman-momentum space calculation.
Starting with a gluon vertex µ, ρ, σ (moving clockwise) on the left and
ρ′, ν, σ′ on the right, and using p flowing into the left-hand vertex along the
(bottom) σ, σ′ gluon line and p+ k flowing out of the left-hand vertex along
the (top) ρ, ρ′ line, we have

iΠ
ab
µν = CAδ

ab(−igµε)2

2

∫
dnp

(2π)n
Nµν

(p + k)2p2

= CAδ
ab(−igµε)2

2

∫
dα

∫
dnp

(2π)n
Nµν

[(p + αk)2 + α(1− α)k2]2
(453)

where

Nµν = [gµσ(−k + p)ρ + gµρ(p + 2k)σ + gρσ(−2p− k)µ]×

[gσ′ν(p− k)ρ′ + gρ′σ′(−2p− k)ν + gρ′ν(p + 2k)σ′](−ig
ρρ′

)(−igσσ
′
)

= −gµν [5k
2

+ 2p
2

+ 2k · p]− (n− 6)kµkν − (4n− 6)pµpν − (2n− 3)(pµkν + pνkµ)

p=p′−αk→ −gµν [k
2
(5− 2α(1− α)) + 6(p

′
)
2n− 1

n
]− kµkν [(6− 4n)α(1− α) + n− 6]

∫
dnp′→ (−1)

n/2 i

(4π)n/2

1

[α(1− α)k2]ε

−gµν
[
k

2
[5− 2α(1− α)]Γ(2− n

2
)
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+3(n− 1)k
2
α(1− α)Γ(1− n

2
)

]
− kµkν ([6− 4n]α(1− α) + n− 6) Γ(2− n

2
)


n→4→ i

(4π)2
Γ(ε)

−gµν (k2
[5− 11α(1− α)]

)
− kµkν (−10α(1− α)− 2)


∫
dα→ i

(4π)2
Γ(ε)

−19

6
gµνk

2
+

11

3
kµkν

 , (454)

where we isolated only the singular part. This leads to

iΠ
ab
µν = CAδ

ab

(
−g2

2

)
i

(4π)2
Γ(ε)

{
−19

6
gµνk

2
+

11

3
kµkν

}
, (455)

which can be compared to Ryder’s result. However, we really want to back
track to the expression obtained after

∫
dnp′. At that stage our result is

iΠ
ab
µν = CAδ

ab
(
−g2

2

)∫
dα(−1)

n/2 i

(4π)n/2

1

[α(1− α)k2]ε

−gµν
[
k

2
[5− 2α(1− α)]Γ(2− n

2
)

+3(n− 1)k
2
α(1− α)Γ(1− n

2
)

]
− kµkν ([6− 4n]α(1− α) + n− 6) Γ(2− n

2
)


(456)
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So, finally, we have to compute the ghost-loop diagram. You will notice
that if we sum the “tadpole” and the gluon-loop diagram, we do not have the
required gauge invariant structure yet. Also, both diagrams have a Γ(1− n

2
)

piece (reflecting a quadratic divergence) and these do not cancel, suggesting
that we could have a hierarchy problem. The ghost-loop diagram will take
care of both problems.

The expression we must evaluate is (remember − sign for ghost loop)

iΠ
ab
µν = (−1)CAδ

ab
∫

dnp

(2π)n
i

p2

i

(p + k)2
(−ig)

2
(p + k)µpν

= −g2
CAδ

ab
∫
dα

∫
dnp

(2π)n
(p + k)µpν

[(p + αk)2 + α(1− α)k2]2

= −g2
CAδ

ab
∫
dα

∫
dnp′
(2π)n

(p′)ν(p′)µ − α(1− α)kµkν

[(p′)2 + α(1− α)k2]2
dropping terms odd in p′

= −g2
CAδ

ab
∫
dα(−1)

n/2 i

(4π)n/2

1

[α(1− α)k2]ε

[
1

2
gµνk

2
α(1− α)Γ(1− n

2
)− α(1− α)kµkνΓ(2− n

2
)

]
(457)

We are now in a position to collect our results together. Let us first
examine the Γ(1 − n

2
) terms. These are (from the quartic “tadpole” loop,
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gluon loop and ghost loop, respectively — the fermion loop did not have a
quartic divergence since it was proportional to the GI structure on its own)

iΠ
ab
µν 3 gµν(−1)

n/2 ig2

(4π)n/2
CAδ

ab
Γ(1− n

2
)

∫
dα

k2α(1− α)

[k2α(1− α)]ε

[
−(n− 1)

n

2
+

3(n− 1)

2
− 1

2

]

= gµν(−1)
n/2 ig2

(4π)n/2
CAδ

ab
Γ(1− n

2
)

∫
dα

k2α(1− α)

[k2α(1− α)]ε

[
(1− n

2
)(n− 2)

]

= gµν(−1)
n/2 ig2

(4π)n/2
CAδ

ab
Γ(2− n

2
)

∫
dα

k2α(1− α)

[k2α(1− α)]ε
(n− 2) . (458)

Note that all the singularities at 1 − n
2

= 0 from Γ(1 − n
2
) have been

canceled by the explicit factor of 1 − n
2

that emerged after summing all the
gauge-related diagrams. We now combine the residual above with all the
other gµν terms and also accumulate the kµkν terms to obtain:

iΠ
ab
µν = (−1)

n/2 ig2

(4π)n/2
CAδ

ab
Γ(2− n

2
)

∫
dα

[k2α(1− α)]εgµνk
2
[
−(n− 1)(1− α)

2
+

1

2
[5− 2α(1− α)] + (n− 2)α(1− α)

]

+kµkν

[
0 +

1

2
[(6− 4n)α(1− α) + n− 6] + α(1− α)

] (459)
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In the gµν coefficient expression, the 1st term comes from the Γ(2 − n
2
)

quartic “tadpole” terms, the 2nd term from the gluon loop stuff proportional
to Γ(2− n

2
) and the last term is the residual after summing all the Γ(1− n

2
)

stuff so that it reduces to Γ(2 − n
2
) as described just above. In the kµkν

coefficient expression, the 1st 0 entry is for the quartic “tadpole” graph, the
2nd entry is for the gluon-loop graph, and the 3rd term is the Γ(2− n

2
) part

of the ghost-loop graph.
The above expression can be simplified by making the gµν coefficient

explicitly symmetric in α → 1 − α using the symmetry of the denominator.
This means we want to write

(1− α)
2

=
1

2

[
(1− α)

2
+ α

2
]

=
1

2
− α(1− α) . (460)

The gµνk
2 coefficient then becomes

−(n− 1)[
1

2
− α(1− α)] +

1

2
[5− 2α(1− α)] + (n− 2)α(1− α)

= −n
[

1

2
− 2α(1− α)

]
+

[
1

2
− α(1− α) +

5

2
− α(1− α)− 2α(1− α)

]
= −n

2
[1− 4α(1− α)] + [1− 4α(1− α) + 2]

= (1− n
2

)(1− 2α)
2

+ 2 (461)

Meanwhile, the kµkν coefficient is:

1

2
[(6− 4n)α(1− α) + n− 6] + α(1− α)
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= n

[
−2α(1− α) +

1

2

]
+ [4α(1− α)− 3]

=
n

2
[1− 4α(1− α)]− [1− 4α(1− α) + 2]

= (
n

2
− 1)(1− 2α)

2 − 2 . (462)

Inserting these results, we obtain:

iΠ
ab
µν = (−1)

n/2 ig2

(4π)n/2
CAδ

ab
Γ(2− n

2
)

∫
dα

[k2α(1− α)]ε

(
gµνk

2 − kµkν
) [

(1− n
2

)(1− 2α)
2

+ 2

]
.(463)

Note that after summing all the contributions to iΠab
µν, we obtain an

expression that has manifest gauge invariance built in, i.e. kµiΠab
µν = 0. We

knew this had to happen, but as you see it is very essential to combine all
contributions in order to arrive at a GI invariant form.

It is now easy to isolate the 1
ε

singularity of the above expression. We find:

iΠab
µν →

1

ε

ig2

(4π)2
CAδ

ab
(
gµνk

2 − kµkν
) (5

3

)
. (464)

We shall see how this fits into things later on, but you should note how this
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compares to our QED result (cf. Eq. (358))

iΠµν →
1

ε

ie2

(4π)2

(
gµνk

2 − kµkν
) (−4

3

)
. (465)

Note the opposite sign. This is the signal that QCD will be (or at least can
be, assuming not too many flavors of fermions) asymptotically free whereas
QED was the opposite.

We now bring in the fermion-loop contribution to the 1
ε

singularity [see
Eq. (452)] and find

iΠab
µν →

1

ε

ig2

(4π)2
δab

(
gµνk

2 − kµkν
) (5

3
CA −

4

3
(
1

2
nf)

)
, (466)

where sometimes 1
2
nf is written as C(r)nf where C(r) expresses the

normalization of the fermion representation matrices, which we know have
traces normalized to 1

2
in the fundamental representation that we have been

assuming.

Finally, we can immediately read off from the above what the the gluon field
renormalization factor is. Recall the procedure. We introduce a counter-term
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L component of the form

∆L 3 −C
4

(∂µA
a
ν − ∂νAaµ)(∂µAa ν − ∂νAaµ) (467)

which leads to Feynman rule

−iC(k2gµν − kµkν)δab (468)

and we must choose C so that the sum of this and the 1
ε

component of iΠab
µν

is finite. This clearly leads to

C =
g2

(4π)2

1

ε

(
5

3
CA −

4

3
(
1

2
nf)

)
. (469)

The net (quadratic in A) part of the Lagrangian form is then

L+ ∆L 3 −1 + C

4
(∂µA

a
ν−∂νAaµ)(∂

µ
A
a ν−∂νAaµ) ≡ −Z3

4
(∂µA

a
ν−∂νAaµ)(∂

µ
A
a ν−∂νAaµ)

(470)

leading to

Z3 = 1 +
g2

(4π)2ε

(
5

3
CA −

4

3
(
1

2
nf)

)
. (471)
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iΛ

We must now work on the gluon-quark-quark vertex. There are two
diagrams. In one, the gluon attaches to the quark line of the gluon loop
insertion on a quark line. In the second, the gluon attaches to the gluon
line. The result for the first can easily be read off of our earlier QED result.
Everything is just as in QED except that we have the group calculation that
we did some time ago, which found that the appropriate group factor was
− 1

2n
which can also be written as CF − 1

2
CA. We must also remember that

the basic vertex in our notation is

+igµεγµ × (LaAB) (472)

where La is the representation matrix and we have supplied the appropriate
dimensional factor for n dimensions. Thus, the appropriate notation for the
one-loop correction is to write

+igµεΛµ × (LaAB). (473)

After introducing the above color factor, the divergent component coming
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from the fermion attachment graph is

Λµ =
g2

16π2ε
γµ(CF −

1

2
CA) . (474)

Now, let me show you a quick a dirty approach to rederiving this result. For
the momentum space component of the calculation we have (neglecting the
electron mass for simplicity):

+igµ
ε
Λµ = (igµ

ε
)(igµ

ε
)
2
∫

dnk

(2π)n
γ
ν i

/p′ + /k
γµ

i

/p + /k
γ
λ
(−igνλ

k2

)

= (igµ
ε
)(igµ

ε
)
2
i

∫
dnk

(2π)n
γν( /p′ + /k)γµ( /p + /k)γν

(p′ + k)2(p + k)2k2

→ (igµ
ε
)i(ig)

2
∫

dnk

(2π)n
γν /kγµ /kγν

(k2)3
keeping only the most divergent stuff

= (igµ
ε
)(−ig2

)

∫
dnk

(2π)n
(2− n)

/kγµ /k

(k2)3

= (igµ
ε
)(−ig2

)

∫
dnk

(2π)n
(2− n)

γργµγ
σkρkσ

(k2)3

= (igµ
ε
)(−ig2

)

∫
dnk

(2π)n
(2− n)

γργµγ
σgρσ
n k2

(k2)3

= (igµ
ε
)(−ig2

)

∫
dnk

(2π)n
(2− n)2

n
γµ

1

(k2)2
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= (igµ
ε
)(−ig2

)(−1)
n/2 i

(4π)n/2

(2− n)2

n
Γ(2− n

2
)γµ

→ (igµ
ε
)
g2

(4π)2

1

ε
γµ , (475)

which reproduces the expected result once the color factor of CF − 1
2
CA

is supplied. The reason we could not use this technique for iΠ is that the
contributing diagrams had quadratic Γ(1 − n

2
) divergences that had to be

combined to get the residual Γ(2− n
2
) logarithmic divergence. In the present

case, the superficial divergence of each diagram is from the beginning only
logarithmic, Γ(2− n

2
).

We may attack the final diagram in which the gluon attaches to the gluon
in the triangle graph in the same simplified manner. The diagram notation is
that the fermion flows into the diagram with momentum p, encounters vertex
γν after which it changes to momentum k, then encounters γλ and turns
into p′. The three-gluon vertex has momentum p− k entering from left with
associated index σ which exits with momentum p′ − k with associated index
ρ. Meanwhile, the external gluon entering from the top has momentum p′−p
and index µ. The resulting non-color part of the calculation is:

igµ
ε
Λµ =

∫
dnk

(2π)n
(igµ

ε
γλ)

i

/k
(igµ

ε
γν)

(
−igνσ

(p− k)2

)(
−igρλ

(p′ − k)2

)
×

(−igµε)
[
gσρ(−(p− k)− (p

′ − k))µ + gµρ((p
′ − k) + (p

′ − p))σ + gµσ(−(p
′ − p) + (p− k))ρ

]
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→ g
3
∫

dnk

(2π)n
γλγ

α
γν

kα

(k2)3

[
g
νλ

2kµ − gλµkν − gνµkλ
]

keeping only the most singular stuff

→ 1
4g

3
∫

dnk

(2π)n
γλγ

α
γν

1

(k2)2

[
g
νλ

2gµα − gλµgνα − gνµgλα
]

using kαkβ → k2gαβ/n with n→ 4

→ 1
4g

3
∫

dnk

(2π)n
1

(k2)2

[−12γµ
]

using γ matrix identities in 4-dimensions

→ −3g
3
γµ

i

(4π)2
Γ(2− n

2
) using n = 4 everywhere except in singular Γ function

→ −3g
3
(−1

2
CA)γµ

i

(4π)2ε
after bringing in the color factor we computed earlier

(476)

So, now let us assemble the 1
ε

pieces, neglecting all finite corrections,

igΛµ = ig
g2

(4π)2

1

ε
γµ

(
CF −

1

2
CA +

3

2
CA

)
= ig

g2

(4π)2

1

ε
γµ(CF + CA) ,

(477)
to be multiplied (in the convention we are using) by the color matrix La.
We must counter this 1

ε
piece by a counter term. We introduce (taking into

account the basic sign of the gluon-quark-antiquark interaction, +gψ/Aψ,
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/A = γµAaµL
a)

∆L = Dgψ/Aψ (478)

which yields Feynman rule iDgγµLa from which we see that we require

D = − g2

(4π)2

1

ε
(CF + CA) . (479)

The net form of the Lagrangian is then

L+ ∆L 3 (1 +D)gψ/Aψ ≡ Z1gψ/Aψ (480)

which gives

Z1 = 1− g2

(4π)2

1

ε
(CF + CA) . (481)

We also recall our earlier results of

Z2 = 1− g2

(4π)2

1

ε
CF (482)

and

Z3 = 1 +
g2

(4π)2

1

ε

(
5

3
CA −

4

3
(
1

2
nf)

)
. (483)
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The final stage is to relate the bare coupling to the renormalized coupling:

g0ψ0/A0ψ0 = gµεZ1ψ/Aψ

= gµε
Z1

Z2

√
Z3

ψ0/A0ψ0 (484)

from which we have

g0 = gµ
ε Z1

Z2
√
Z3

= gµ
ε
(

1− g2

(4π)2

1

ε

[
(CF + CA)− CF +

1

2

(
5

3
CA −

4

3
(
1

2
nf )

)])

= gµ
ε
(

1− 1

2

g2

(4π)2

1

ε

[
11

3
CA −

4

3
(
1

2
nf )

])
. (485)

Taking the µ∂g0
∂µ

derivative gives us

0 = εgµ
ε
(

1− 1

2

g2

(4π)2

1

ε

[
11

3
CA −

4

3
(
1

2
nf )

])
+ µ

ε
µ
∂g

∂µ

(
1− 3

2

g2

(4π)2

1

ε

[
11

3
CA −

4

3
(
1

2
nf )

])
(486)

leading to (after dividing through, expanding the denominator, and taking
ε→ 0)

µ
∂g

∂µ
≡ β(g) = − g3

(4π)2

[
11

3
CA −

4

3
(
1

2
nf)

]
. (487)
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For CA = 3 we have

µ
∂g

∂µ
≡ β(g) = − g3

(4π)2

[
11− 2

3
nf

]
, (488)

which is indeed negative so long as nf < 33/2. We have 2 colored fermions
per family and 3 families, for a total of 6 flavors that we know of. So, we are
not very close to 17. It is actually a closer call when we go to supersymmetry.
But that is the subject of (hopefully) later discussion.

Some further notes

Before continuing, it is worth noting that Z1 6= Z2 for this calculation
because of the important CA part coming into Z1 from the graph in which
the gluon attaches to the gluon propagator of the gluon loop correction to
the fermion propagation. This is expected in Feynman gauge.

However, there is still an underlying Ward Identity. In fact, if one were
to carry out this calculation in an appropriate axial gauge, one would find
that Z1 = Z2 and that all the moving coupling constant information would
be contained in Z3 (which of course takes a (required) different value than in
Feynman gauge).

We also reemphasize the fact that we could have gotten our relation
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between g0 and g using any of the other fundamental interactions that define
g at tree-level. Altogether there are 4 vertices that we can use:

1. the gqq vertex, as employed here;

2. the ggg vertex;

3. the g − ghost− ghost vertex;

4. the 4g vertex.

Explicit calculation for 2, 3, or 4 would result in our obtaining exactly the same
relation between g and g0 as we have found. This is required by the gauge
invariance of the theory, which is present at tree-level and would otherwise be
destroyed by going to the one-loop or higher level. Gauge invariance should
be preserved at all orders of perturbation theory.

β(g)

Of course, Eq. (488) can be integrated. For the moment, we write

µ
∂g

∂µ
= − b

16π2
g3 ⇒ dg

g3
= − b

16π2

dµ

µ
⇒ dg−2 =

b

8π2
d lnµ (489)
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which integrates to (g0 refers to an initial value at µ0)

1

g2(µ)
− 1

g2
0

=
b

8π2
ln
µ

µ0

(490)

or, equivalently,

g2(µ) =
g2

0

1 + b
8π2g

2
0 ln µ

µ0

(491)

or, equivalently, defining αs = g2

4π

αs(µ) =
α0

1 + b
2π
α0 ln µ

µ0

. (492)

As in the QED case, we can define a Λ such that the above equation can be
rewritten as

αs(µ) =
1

b
2π

ln(µ/Λ)
=

4π

(11− 2nf/3) ln(µ2/Λ2)
. (493)

For 11− 2nf/3 > 0 (as we believe), αs decreases with increasing µ2.
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The quantity Λ is sometimes denoted by ΛQCD. A fit to the αs behavior
of high momentum transfer scattering gives a determination of ΛQCD ∼
500 MeV÷ 1 GeV. This is consistent with the fact that we know that strong
interactions become truly strong as we approach the hadron mass scale/size,
which we know resides at the <∼ GeV scale. The connection between
hadron masses and the like and large momentum transfer scales (ranging from
>∼ 2 GeV as probed in the early days at SLAC up to the current >∼ 100 GeV
scales being probed at the Tevatron as well as LEP and SLD) can be made
reasonably precise using the lattice calculation techniques for the hadron mass
computations and performing a careful matching. Some plots are below.
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QCD αs(Mz) = 0.1185 ± 0.0006
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Figure 12: Experimental results for αs from the current 2014 PDG.
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Some discussion of these experimental extractions is perhaps worthwhile.

The most rigorous manner for extracting αs is to employ the order g2 (and
higher) QCD predictions for e+e− → hadrons based on computations of
e+e− → qq with appropriate QCD corrections. The first such correction
takes the form (I hope that we will have time to get to this calculation, but
we might have to rush — you should try to read about it if we don’t).

σe+e−→hadrons = σ0

(
1 + CF

αS

2π

3

2

)
(494)

= σ0

(
1 +

αS

π

)
. (495)

⇒ R(e+e−→ hadrons) = 1 +
αS

π
. (496)

To calculate the total cross section for e+e−→ hadrons, we must sum over
all e+e− → partons processes. At the e2g2 order of perturbation theory
of interest, only the qq̄g and qq̄ final states are relevant.

For the qq̄g final state, the amplitudes are those in which the incoming
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e+e− annihilate to give you an outgoing qq pair, either one of which can
radiate the additional g. We sum these two amplitudes and then square
the net amplitude and integrate over the three-parton phase space in n
dimensions. The net result is of order e2g2 and it has 1

ε2 and 1
ε

singularities
and various finite terms. Since this result corresponds to an absolute square,
equivalently, a cross section, it is positive definite. In particular, the singular
terms are positive.

For the qq̄ final state, the diagrams of interest are the three virtual
correction diagrams shown in Fig. 13. We compute these diagrams using
dimensional regularization.

Figure 13: One-loop diagrams for e+e−→ qq̄.
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It is important to note that these diagrams are one power of αS relative to
the tree-level diagram,

M1 ∝ αSM0. (497)

Therefore |M1|2 is two powers down and hence negligible at the order
g2 to which we are working. The order e2g2 terms are obtained as the
interference IRe{M∗0M1}. This order e2g2 interference again has 1

ε2 and 1
ε

singularities and finite terms. Since this result comes from an interference
term, there is no necessity that it be positive definite. In particular, the
singular terms are negative in sign.

The net result is obtained by combining the qqg final state result with the
qq final state result. One finds that all the singular terms cancel, leaving
us with the finite result stated earlier.

R(e+e− → hadrons) is one of the most fundamental quantities in QCD
and is certainly one of the most well-calculated and measured.

Despite the fact that the αS/π is a relatively small correction to the total
rate, experimental and theoretical systematic errors are so small that they
can almost be neglected – even with the large statistics of τ decays and Z
decays at LEP, the statistical errors dominate. This means that not only
does e+e− → hadrons provide one of the most accurate measurements
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of αS, but the accuracy is rather easy to interpret and implement in
global analyses for example, unlike measurements that are dominated by
systematics.

The β function has, of course, been computed now to quite high order.
Writing

µ2dαS

dµ2
= β(αS) = −(b0α

2
S

+ b1α
3
S

+ b2α
4
S

+ . . .) (498)

one finds 8

b0 = (11CA − 4nfTR)/(12π) = (33− 2nf)/(12π)

b1 = (17C2
A − nfTR(10CA + 6CF ))/(24π2) = (153− 19nf)/(24π2)

b2 = (2857− 5033

9
nf +

325

27
n2
f)/(128π3)

b3 = complicated but computed (499)

Here, nf is always the number of active quark flavors, i.e. those having
mq < µ.

8b2 and b3 are scheme-dependent and given here in the MS scheme.
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As noted above, the β-function coefficients above, the bi, are given for the
coupling of an effective theory in which nf of the quark flavors are considered
light (mq � µ), and in which the remaining heavier quark flavors decouple
from the theory. One can relate the coupling for the theory with nf + 1
light flavors to that with nf flavors through an equation of the form

α
(nf+1)
S (µ2) = α

(nf)
S (µ2)

(
1 +

∞∑
n=1

n∑
l=0

cnl

[
α

(nf)
S (µ2)

]n
lnl

µ2

m2
h

)
, (500)

where mh is the mass of the (nf + 1)th flavor, and the first few cnl
coefficients are c11 = 1

6π
, c10 = 0, c22 = c2

11, c21 = 19
24π2, and c20 = − 11

72π2

when mh is the MS mass at scale mh (c20 = 7
24π2 when mh is the pole

mass.) For more information see the PDG QCD section. Terms up to c4l

are known. Numerically, when one chooses µ = mh, the matching is a
small effect, owing to the zero value for c10.

For constant nf , a simple exact analytic solution to Eq. (498) exists only if
one neglects all but the b0 term, giving

αS(µ
2) =

1

b0 ln(µ2/Λ2)
, (501)
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where Λ is a constant of integration as discussed previously. A convenient
approximate analytic solution to Eq. (498) that includes also the b1, b2 and
b3 terms is given by

αS(µ
2) ' 1

b0t

(
1− b1

b2
0

ln t

t
+
b2

1(ln
2 t− ln t− 1) + b0b2

b4
0t

2

−b
3
1(ln

3 t− 5
2

ln2 t− 2 ln t+ 1
2
) + 3b0b1b2 ln t− 1

2
b2

0b3

b6
0t

3

)
, (502)

where t ≡ ln µ2

Λ2 . This is only one of several possible approximate 4-loop
solutions for αS(µ

2) and Λ depends on which particular approximation is
being used.

One can also solve Eq. (498) numerically. Then Λ is not defined. Rather
the results must be phrased in terms of the value of αS at a given scale,
the canonical scale being mZ, as we do here.
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Returning to R, Eq. (496) is now known up to order α4
S
.

σe+e−→hadrons = σ0

{
1 +

αS(µ)

π
+ C2

(
µ2

s

)(
αS(µ)

π

)2

+C3

(
µ2

s

)(
αS(µ)

π

)3

+ C4

(
µ2

s

)(
αS(µ)

π

)4
}
.(503)

Numerically, the coefficients above are, using µ = Q,

C1 = 1, C2 = 1.9857− 0.1152nf ,
C3 = −6.63694− 1.20013nf − 0.00518n2

f − 1.24 η

C4 = −156.61 + 18.77nf − 0.7974n2
f + Cη (504)

where η = (
∑
q eq)

2/(3
∑
q e

2
q) and C has yet to be determined. Note the

big coefficients at higher orders; this slows down the convergence of the
series.

We can display explicitly the µ dependencies:

C1(µ
2/Q2) = 1,

J. Gunion 230C, U.C. Davis, 243



C2(µ
2/Q2) = C2 + πb0C1 ln(µ2/Q2)

C3(µ
2/Q2) = C3 + (2b0C2π + b1C1π

2) ln(µ2/Q2)

+b2
0C1π

2 ln2(µ2/Q2) (505)

Thus, renormalization introduces a renormalization scale dependence not
only into αs but also into the coefficient functions beyond the first one.

(Note: the above results are for photon exchange only; including Z
exchange is necessary unless Q� mZ.)

Note that large logs develop if µ is very different from Q. Nonetheless, after
summing enough terms there is little µ dependence of the final answer.

Reducing this renormalization-scale dependence is one of the biggest reasons
for going to higher orders.

A graph of the reduced µ dependence up to including C3 terms is in Fig. 14
— the scale-dependence is indeed significantly smaller at each order, giving
stability over a wider range of µ.
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Figure 14: The QCD prediction for the corrections to Re+e− at
√
s = 33 GeV

as a function of renormalization scale at leading, next-to-leading and
next-to-next-to-leading order.

It can also be seen that provided µ is of order Q, the higher order corrections
are relatively small. We will see shortly that simply taking the leading order
result with µ =

√
s does surprisingly well and is certainly sufficient to

understand the phenomenology.

J. Gunion 230C, U.C. Davis, 245



10

-8

10
-7

10

-6

10
-5

10

-4

10

-3

10
-2

1 10 10
2

σ
[m

b]

ω

ρ

φ

ρ′

J/ψ

ψ(2S)
Υ

Z

10

-1

1

10

10
2

10
3

1 10 10
2

R
ω

ρ

φ

ρ′

J/ψ ψ(2S)

Υ

Z

√
s [GeV]

Figure 15: Green dashed line is naive parton model; red solid is 3-loop pQCD
prediction.J. Gunion 230C, U.C. Davis, 246



10
-1

1

10

10
2

0.5 1 1.5 2 2.5 3

Sum of exclusive
measurements

Inclusive
measurements

3 loop pQCD

Naive quark model

u, d, s

ρ

ω

φ

ρ′

2

3

4

5

6

7

3 3.5 4 4.5 5

Mark-I

Mark-I + LGW

Mark-II

PLUTO

DASP

Crystal Ball

BES

J/ψ ψ(2S)

ψ3770

ψ4040

ψ4160

ψ4415

c

2

3

4

5

6

7

8

9.5 10 10.5 11

MD-1
ARGUS CLEO CUSB DHHM

Crystal Ball CLEO II DASP LENA

Υ(1S)
Υ(2S)

Υ(3S)

Υ(4S)

b

R

√
s [GeV]

Figure 16: R in Light-Flavor, Charm, and Beauty Threshold Regions.
Green/red as above.J. Gunion 230C, U.C. Davis, 247



As noted above, the experimental measurement of Re+e− gives one of the
best measurements of αs. In fact the LEP combined Z-pole value of Rhad
is

R(LEP ) = 20.767± 0.025, (506)

while the tree-level prediction is

R0(mZ) = 19.984. (507)

Combining the two, and simply using the leading order result with µ = mZ,
we obtain our first measurement of αS,

αS(mZ) = 0.124± 0.004, (508)

surprisingly close to the current world average value of 0.1184± 0.0007.

Since QCD predicts the scale dependence of αS, one measurement at any
scale is sufficient to give a prediction for all scales. We can therefore
phrase measurements at other scales either as tests of QCD throughout
the intervening energy range or, by translating them all into measurements
at a single scale, as different measurements of the same quantity that can
be combined to give a better overall measurement.
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As an example, the average measurement of R over several energy points
around 34 GeV is

R(PETRA) = 3.88± 0.03, (509)

while the tree-level prediction is

R0(34 GeV) = 3.69. (510)

Again using the leading order result, we obtain

αS(34 GeV) = 0.162± 0.026. (511)

Finally, using the one-loop renormalization group equation, we can convert
this into a measurement of αS(mZ),

αS(mZ) = 0.134± 0.018. (512)

This is in good agreement with the value from LEP, although with much
larger uncertainties, simply due to the fact that the statistics of the PETRA
experiments were much lower.

As a final example, we consider τ decays. The QCD corrections to the
hadronic decay rate actually have two effects: on the ratio of various
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branching fractions, and also directly on the total decay rate of the τ .
These can form the basis for two analyses in which the experimental errors
are largely independent. The combined result for the two is

αS(Mτ = 1.77 GeV) = 0.33± 0.03. (513)

This time, because we are translating over such a wide energy range the
one-loop renormalization group equation does not do quite such a good
job. From the above experimental result and using one-loop evolution one
finds

α
(one-loop)
S (mZ) = 0.126± 0.004, (514)

compared to the ‘official’ value

αS(mZ) = 0.1184± 0.0007, (515)

but it is not so far out. Including higher loops yields a value very close to
the official value. In fact, one should note in this case the phenomenon
of the “incredible shrinking error”. Although the measurement at the τ
mass scale only has a precision of 10%, after evolving it to mZ the relative
uncertainty gets scaled down by the ratio of the two αs values, and τ
decays give one of the best measurements of αs(mZ).
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Grand Unification in SU(5)

First, we must endure a few more technical details.

Two-component fermion results vs. Dirac four-component

The first of these is to simply note that the computation that we did of the
fermion-loop contribution to Πµν implicitly employed a full Dirac fermion loop
with coupling to the gauge boson current given by igµεγµ — i.e. no helicity
restriction was imposed at the vertex. For what is about to come, we need
to note the alteration that occurs if we deal only with a right- or left-handed
fermion, with coupling −ieµεγµ1

2
(1± γ5). Referring back to Eq. (309)

iΠµν = −(−ieµε)2
∫

dnp

(2π)n
Tr

(
γµ

i

/p−mγν
i

/p− /k−m

)

= −e2
µ

2ε
∫

dnp

(2π)n
Tr
[
γµ(/p +m)γν(/p− /k +m)

]
(p2 −m2)[(p− k)2 −m2]

= −e2
µ

2ε
∫
dα

∫
dnp′

(2π)n
Tr
[
γµ(/p′ + α/k +m)γν(/p′ − (1− α)/k +m)

]
[p′ 2 −m2 + k2α(1− α)]2

(516)

but inserting the helicity projected vertices above, we would have had
(remembering the minus sign for a closed fermion loop and shifting to
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p′ = p− αk at a certain stage and assuming a left-handed fermion):

iΠµν = −(−ieµε)2
∫

dnp

(2π)n
Tr

(
γµ

1

2
(1− γ5)

i

/p−mγν
1

2
(1− γ5)

i

/p− /k−m

)

= −e2
µ

2ε
∫

dnp

(2π)n

Tr
[
γµ

1
2(1− γ5)(/p +m)γν

1
2(1− γ5)(/p− /k +m)

]
(p2 −m2)[(p− k)2 −m2]

= −e2
µ

2ε
∫
dα

∫
dnp′

(2π)n

Tr
[
γµ

1
2(1− γ5)(/p′ + α/k +m)γν

1
2(1− γ5)(/p′ − (1− α)/k +m)

]
[p′ 2 −m2 + k2α(1− α)]2

= −e2
µ

2ε
∫
dα

∫
dnp′

(2π)n

Tr
[
γµ

1
2(1− γ5)(/p′ + α/k)γν(/p′ − (1− α)/k)

]
[p′ 2 −m2 + k2α(1− α)]2

(517)

At this point, let us work on simplifying the numerator. We must remember
that terms that are odd in p′ will integrate to 0. Further, we must recall that
the trace of an odd number of γ matrices is 0. Finally, the trace involving the
γ5 is 0 for the terms even in p′ because of the appearance of either two /p′’s
or two /k’s. Using these ingredients, we obtain:

N =
1

2
[p
′ ρ
p
′σ − kρkσα(1− α)]Tr[γµγργνγσ]

=
1

2
[p
′ ρ
p
′σ − kρkσα(1− α)]2

n/2
(gµρgνσ − gµνgρσ + gµσgνρ)] . (518)

If we neglect the m2 term in our earlier Eq. (310) (to get the m2 terms
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correct, we would have to get involved with helicity flip diagrams — this is
unnecessary for the important point below) then this is the same result as in
our earlier calculation, but with one difference — the extra factor of 1

2
.

This 1
2

carries through everything and so for a fermion of given helicity we
get just half of our earlier contribution to Z3. As a result, the β function
contribution is 1

2
of what we had for a 4-component Dirac particle. For each

2-component fermion of definite helicity we get (cf. Eq. (358))

ie2

24π2

1

ε

[
kµkν − k2gµν

]
=

ie2

16π2

(
2

3

)
1

ε

[
kµkν − k2gµν

]
. (519)

A spin-zero loop — e.g. a Higgs boson loop

Imagine that we have a charged Higgs boson in QED, with charge 1, i.e.
the same absolute charge as that of the electron. In order to include its effect
in the running of e, we need to compute its impact on Z3 through its impact
on Πµν.9

9One-loop diagrams for the fermion −iΣ and the photon-electron-electron vertex, Λµ, in which the charged Higgs
boson is emitted by the electron, leaving behind a neutrino, and then the neutrino reabsorbs the charged Higgs can be
neglected in the small m limit — Higgs bosons couple proportional to mass. Thus, only Πµν needs to be computed.
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So, first recall the Feynman rules for a charged spin-zero particle coupling
to the photon. These are generated from the Lagrangian form

[(∂µ−ieAµ)φ]†[(∂µ−ieAµ)φ] 3 −ieAµ[∂µφ†]φ+ieAµφ†∂µφ+e2AµAµφ
†φ .

(520)
(Note the opposite sign of the −ieAµ in the covariant derivative compared to
our convention for the electron. This is because I am discussing a positively
charged Higgs vs. the negatively charged electron.)

These generate two Feynman rules. The first is one generated by the
first two terms above and is one in which the H+ enters from the left with
momentum p, absorbs a photon with momentum q and Lorentz index µ and
exits to the right with momentum p′ = p + q. The Feynman rule for this
vertex is

ie(p′ + p)µ . (521)

The second diagram is generated by the last term above. It is a 4-particle
interaction involving two photons with Lorentz indices µ and ν connected to
an incoming H+ and an outgoing H+. There are two contractions of the two
external photons with the AµAµ fields yielding a factor of 2. The resulting
Feynman rule is

2ie2gµν . (522)
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With these Feynman rules, we find there are two one-charged-Higgs-loop
diagrams contributing to Πµν. These are: a) photon to charged Higgs pair
(H+ with k entering vertex µ and exiting with p + k), following by charged
Higgs pair recombining at vertex ν; and b) charged Higgs “tadpole” correction
to the photon propagator, with tadpole loop momentum k. (For some reason,
I switched p and k in this derivation.) The expressions for these are

• a)

(ieµε)2

∫
dnk

(2π)n
i

k2 −m2
(p+ 2k)µ

i

(p+ k)2 −m2
(p+ 2k)ν ; (523)

• b)

2ie2gµν

∫
dnk

(2π)n
i

k2 −m2
. (524)

These we evaluate using standard techniques.

a) = (ieµ
ε
)
2
∫

dnk

(2π)n
i

k2 −m2
(p + 2k)µ

i

(p + k)2 −m2
(p + 2k)ν

= (eµ
ε
)
2
∫
dα

∫
dnk

(2π)n
(p + 2k)µ(p + 2k)ν

(k2 + 2αk · p + αp2 −m2)2
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= (eµ
ε
)
2
∫
dα

∫
dnk′
(2π)n

((1− 2α)p + 2k′)µ((1− 2α)p + 2k′)ν
(k′ 2 + α(1− α)p2 −m2)2

= (eµ
ε
)
2
∫
dα

∫
dnk′
(2π)n

(1− 2α)2pµpν + 4k′µk′ν
(k′ 2 + α(1− α)p2 −m2)2

n→4
= e

2 i

(4π)2

∫
dα

[
(1− 2α)

2
pµpνΓ(2− n

2
) + 4(

1

2
gµν)[α(1− α)p

2 −m2
]Γ(1− n

2
)

]

=
ie2

(4π)2

[
1
3pµpνΓ(2− n

2
) + (1

3p
2 − 2m

2
)gµνΓ(1− n

2
)

]

b) = 2i(eµ
ε
)
2
gµν

∫
dnk

(2π)n
i

k2 −m2

= 2i(eµ
ε
)
2
gµν

∫
dnk

(2π)n
i

k2 −m2

(p + k)2 −m2

(p + k)2 −m2

= 2i(eµ
ε
)
2
gµνi

∫
dα

∫
dnk′
(2π)n

(1− α)2p2 + k′ 2 −m2

[k′ 2 + α(1− α)p2 −m2]2

= 2i(eµ
ε
)
2
gµνi

∫
dα

∫
dnk′
(2π)n

[
[(1− α)2 − α(1− α)]p2

[k′ 2 + α(1− α)p2 −m2]2
+

1

k′ 2 + α(1− α)p2 −m2

]

n→4
= −2e

2
gµν

i

(4π)2

[
1

6
p

2
Γ(2− n

2
) +

(
1

6
p

2 −m2
)

Γ(1− n
2

)

]

a) + b) =
ie2

(4π)2

[
1
3pµpνΓ(2− n

2
)− 1

3p
2
gµνΓ(2− n

2
)

]
n→4

=
ie2

48π2

1

ε

[
pµpν − p2

gµν
]
. (525)

This should be compared to the old result for the 4-component Dirac electron
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which was
ie2

12π2

1

ε

[
pµpν − p2gµν

]
. (526)

The rule is: a charged spin-0 loop gives 1/4 the result of a Dirac fermion (i.e.
including both electron helicities) or 1/2 the result for a fermion of definite
helicity.

In the above, you will see I used the same sort of trick as previously
for gauge boson loop corrections to a gauge propagator to cancel away the
Γ(1− n

2
) that cannot actually be present. (There should be no quadratically

divergent contribution to Πµν because of gauge invariance requirements: the
Ward identity pµΠµν = 0 should hold in an arbitrary number of dimensions.)

Putting it all together

So let us summarize where we are.

1. For SU(3) we have

β3(g3) = − g3
3

16π2

[
11

3
3− 2

3

(
1

2

)
nSU(3) triplets of given helicity

]
, (527)

where we have introduced the 1
2

in the last term appropriate when counting
fundamental representations of given helicity. We have also introduced the
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notation g3 for the SU(3) strong coupling constant which we had been
calling g.

Each generation or family has uL, dL, uR, dR (L,R denote helicity),
each coming with three “colors” of the fundamental SU(3) triplet. Thus,
nSU(3) triplets of given helicity = 4Ng, and we obtain

β3(g3) = − g3
3

16π2

[
11− 4

3
Ng

]
. (528)

Note that the Higgs boson does not have “color” (does not interact
strongly) and so is not counted above.

2. For the weak SU(2) we have

β2(g2) = − g3
2

16π2

[
11

3
2− 2

3

(
1

2

)
nweak−isospin doublets of given helicity

]
,

(529)
What weak-isospin doublets do we have in the SM? In each family or

generation we have:

(
u
d

)
L

in three colors and

(
νe
e−

)
L

(uncolored).
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The right-handed quarks and right-handed electron are weak-isospin singlets
(i.e. are not seen by the SU(2) gauge bosons) and do not contribute.
Thus, we have nweak−isospin doublets of given helicity = 4Ng leading to

β2(g2) = − g3
2

16π2

[
22

3
− 4

3
Ng

]
(530)

from the family members. But, we are not done! In the SM, we

have a (complex) Higgs doublet:

(
H+

H0

)
. It counts 1

2
as much as a

fermion doublet of given helicity. (This is a slight generalization of the
QED calculation we did under the technical notes precursor discussion.)
(Note, I will do the counting ignoring electroweak symmetry breaking —
the β functions obtained are those appropriate above the EWSB scale of
v ∼ 246 GeV.)

Adding this guy in (I actually allow for an arbitrary number of such Higgs
doublets) gives:

β2(g2) = − g3
2

16π2

[
22

3
− 4

3
Ng −

1

6
ND1

]
(531)
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where D means doublet and the 1 subscript indicates the Y = 1
hypercharge needed for the Q = T3 + 1

2
Y operator to give correct charges

to the two components of the Higgs doublet.

3. Finally, we have the SM U(1) group. I will temporarily keep the notation

g′ for the coupling. For reasons to be explained, g′ =
√

3
5
g1.

For this group, the well-known coupling is g′Y
2

. This is the charge that
replaces the QED charge e. We must count all particles that can give a
contribution to Z3. The list is extensive. In the case of fermions, we count
separately different helicities and remember that we have to reduce the
4-component QED result by a factor of 1

2
. That is we employ Eq. (519) with

e→ g′ for each helicity state. The definite helicity states to be considered
are:
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particle Y
(
Y
2

)2 ×Ncolors

uL
1
3

1
36
× 3

dL
1
3

1
36
× 3

uR
4
3

16
36
× 3

dR −2
3

4
36
× 3

e−L −1 1
4
× 1

νL −1 1
4
× 1

e−R −2 1× 1

Sum = 10
3

(532)

This is what we get for each of the Ng generations.

For the Higgs doublet, we get

particle Y
(
Y
2

)2
H+ 1 1

4

H0 1 1
4

Sum = 1
2

(533)

Here, we have to use the spin-0 calculation which showed that a scalar
particle comes in with 1/2 the weight of a fermion of given helicity.
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The result is

β(g′) =
g′ 3

24π2

[
10

3
Ng +

1

2

(
1

2

)
ND1

]
. (534)

If we now throw in the g′ =
√

3
5
g1 factor, the effective β1(g1) is

β1(g1) =
g3

1

16π2

[
4

3
Ng +

1

10
ND1

]
. (535)

(Recall that β(g) is defined by µ∂g
∂µ

= β(g) for a general coupling g. Thus,

if we define g = fĝ, since β(g) = Kg3, the β function for ĝ only picks up
a factor of f2: β(ĝ) = Kf2ĝ3. In our case f2 = 3/5.)

The only question is why is it appropriate to consider g1 (when discussing
coupling constant unification) as opposed to g′? This has to do with the
idea that a group such as SU(5) is the appropriate unification group.

SU(5)

The idea of grand unification is that all of our fundamental forces should
actually be manifestations of a single force. In the QFT language, this means
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that there should be a single group that contains subgroups corresponding
to the subgroups required for the forces we observe: i.e. we need a master
non-abelian group that contains SU(3)×SU(2)×U(1). One will then write
a covariant derivative in the form

∂µ − igGUTAµ (536)

where Aµ is a matrix of some sort defined by

Aµ =
∑
a

AaµL
a (537)

where the a runs over all the generators for the group and La are the matrices
that represent that group in some representation or other. So, it is then
convenient to think of this matrix set in the fundamental representation of the
group and in that fundamental representation the matrices being used must
be “big” enough to incorporate as distinct matrices all of the matrices needed
to include SU(3)× SU(2)L × U(1).

This means that the master group should be large enough to contain the 4
commuting generators of the SM — 2 from color SU(3) (denoting colors by
1, 2, 3 = r, g, b the diagonal traceless ones could be chosen as 1√

2
(rr̄ − gḡ)
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and 1√
6
(rr̄ + gḡ − 2bb̄)) and 1 for the SU(2) T 3 generator associated with

the W 3 field and 1 for the U(1) generator associated with the B field. The
generator for the U(1) group must be chosen so that it commutes with the
SU(3) and SU(2) representation matrices.

The simplest such group is SU(5). SU(5) contains 24 generators
associated with 24 fields, which we might denote by Aij. They belong
to the adjoint representation, which is a 24 and decomposes to SU(3) and
SU(2) representations as

24 = (8, 1) + (1, 3) + (1, 1) + (3, 2) + (3̄, 2). (538)

We will denote the fundamental representation matrices for SU(5) by T a

(a = 1, . . . , 24).

Considering the generators in a 5 × 5 traceless matrix (fundamental)
representation, we would associate:

1. the upper 3×3 sub-block matrix with SU(3) (Aab , a, b = 1, 2, 3, associated
with the gluon fields Gab – more or less, as we shall explain) — this would
be the (8, 1) part of the 24;

2. the lower 2 × 2 sub-block with SU(2) (Ars, r, s = 4, 5, which can be
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identified with the W±,W 3 fields of the SM) — this would be the (1, 3)
part of the 24;

3. the remaining orthogonal traceless composition of the diagonal matrices
that commute with all upper 3 × 3 matrices and all lower 2 × 2 matrices
with the U(1) generator — this would be the (1, 1) part of the 24.

This means that the U(1) generator should be a linear combination of
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 (539)

and 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 . (540)
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The appropriate matrix, T 0, normalized so that Tr[T 0T 0] = 1
2

(our
convention) is (up to a sign, which is chosen by convention)

T
0

=
1

2
λ

0
=

1

2
√

15


−2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 3 0
0 0 0 0 3

 =



−1√
15

0 0 0 0

0
−1√

15
0 0 0

0 0
−1√

15
0 0

0 0 0
√

3
20 0

0 0 0 0
√

3
20


. (541)

The corresponding T 3 generator associated with the W 3 is

T 3 =
1

2
λ3 =

1

2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1

 . (542)

The B field of the U(1) will then multiply T 0.

An overall matrix representation of the full set of Aji fields would take the
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form:

A ≡


A1

1 A2
1 A3

1 A4
1 A5

1

A1
2 A2

2 A3
2 A4

2 A5
2

A1
3 A2

3 A3
3 A4

3 A5
3

A1
4 A2

4 A3
4 A4

4 A5
4

A1
5 A2

5 A3
5 A4

5 A5
5

 . (543)

In terms of the SU(3) gluonic G fields, the SU(2) weak boson W±,W 3

fields, and the U(1) field B, we then have

A =

a=23∑
a=0

A
aλ
a

2
=

1√
2



X1 Y1(
Gαβ −

2√
30
δαβB

)
X2 Y2

X3 Y3
X1 X2 X3 1√

2
W 3 + 3√

30
B W+

Y 1 Y 2 Y 3 W− − 1√
2
W 3 + 3√

30
B


.

(544)

This means that, in terms of the Aij fields, the B field takes the form:

B = 2

(
− 1√

15
Aαα +

√
3

20
Arr

)
, (545)
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As a check of Eq. (545), note that

− 1√
15

(
1√
2

−2√
30

)
× 3B +

√
3

20

(
1√
2

3√
30

)
× 2B =

1

2
B . (546)

Here, all normalizations are fixed by the requirement that the kinetic energy
terms for the individual fields have proper canonical normalization. Recall
that for a single real gauge field, the free-particle normalization should be
−1

4
F aµνF

aµν. In the non-abelian structure, recall that we write our kinetic

energy as −1
2
Tr[FµνF

µν], where Fµν = ∂µAν− ∂νAµ− ig[Aµ, Aν] and A
represents the full AaLa summation, where La is the representation matrix,
that we are here calling T a for the fundamental 5× 5 representation.

One can, in particular, check that this works for the B field. It is not
necessary to keep the derivatives for this check, just imagine they are there.
Then, if we take −1

2
Tr[AA] we get
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−1

2
Tr[AA] 3

−1

2

(
1√
2

)2
Tr



(
− 2√

30

)2
B2 . . . . . . . . . . . .

. . .

(
− 2√

30

)2
B2 . . . . . . . . .

. . . . . .

(
− 2√

30

)2
B2 . . . . . .

. . . . . . . . .

(
3√
30

)2
B2 . . .

. . . . . . . . . . . .

(
3√
30

)2
B2


= −1

4B
2
,

(547)

which is the desired result. Of course, the kinetic energies for the other
fields also work out correctly. As one more example, we can check the W 3

field. There,

−1

2
Tr[AA] 3 −1

2

(
1√
2

)2( 1√
2

)2

2(W 3)2 = −1
4
(W 3)2 . (548)
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In the above, the extra gauge bosons denoted by Xi and Yi, associated
with the (3, 2) part of the 24 (and their conjugates Xi and Y i, associated
with the (3̄, 2) part of the 24) must be very heavy since they would
yield transitions that would lead to proton decay, something that can
only occur at a very suppressed level. Presumably, their masses are of
order the MU scale at which this master SU(5) group is broken down to
SU(3)×SU(2)×U(1). We do not have time to go into details about how
this breaking occurs. Usually, extra Higgs fields (in particular a 24 Higgs
field) are introduced to accomplish this breaking in a manner analogous to
that you have studied for breaking SU(2)× U(1) down to U(1)EM .

So, now the key point related to the matrix T 0 and the relation between
g′ and g1 is to note that the covariant derivative for the SU(5) group will
take the form (prior to breaking down to SU(3)× SU(2)× U(1))

∂µ − ig5Aµ (549)

where

Aµ =

a=23∑
a=0

Aaµ
λa

2
=

a=23∑
a=0

AaµT
a (550)

with the T a being the 5× 5 matrices normalized according to our convention
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(Tr[T aT b] = 1
2
δab) when we consider this covariant derivative operating on a

fundamental 5-dimensional representation of SU(5). Thus, if the groups all
unify at MU to a common group, we will have g1 = g2 = g3 = g5 at MU .
Below MU , the coupling constants will diverge according to the individual
βi(gi), but we must use unification of, in particular, g1 (and not g′) with g2

and g3 as our starting point.

Now, we must fit the fermions into representations of SU(5). This is
done by putting part of them into a 5 (or, equivalently, 5̄) and part into a 10
(antisymmetric) representation. For a single family, we have to accommodate

(νe, e
−)L : (1, 2)

e−R = e+
L : (1, 1)

(ua, da)L : (3, 2)

(ua)R = ūaL : (3̄, 1)

(da)R = d̄aL : (3̄, 1) (551)

where I have used the equivalence of a fR state with the f̄L state (under
charge conjugation). Placement of these 1st family members is accomplished
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in the form
5̄ = (d̄1, d̄2, d̄3, e−,−νe)L , (552)

which could also be written as

5 = (d1, d2, d3, e
+,−ν̄e)R , (553)

and

10 =
1√
2


0 ū3 −ū2 u1 d1

−ū3 0 ū1 u2 d2

ū2 −ū1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0


L

. (554)

In the above, the 1, 2, 3 indices are the three SU(3) indices in the fundamental
representation, which we have earlier called r, g, b.

I have no time to go into details about the 10 representation. What we
want to focus on is the fundamental 5 representation. This is the key to
establishing the relation between the Y operator and the T 0 generator of the
U(1) subgroup of SU(5). We know from our SM work that the hypercharge
assignments of the 5 members imply (here [5] is the column matrix of 5
above)

Y [5] = diag[−2/3,−2/3,−2/3, 1, 1][5] . (555)
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Meanwhile,

T 0[5] =
1

2
√

15
diag[−2,−2,−2, 3, 3][5] . (556)

Thus, if we wish to make the identification

g1T
0B = g′

1

2
Y B , (557)

where g1 will unify with g2 and g3 at scale MU so that all take the value g5

of the universal SU(5) coupling constant at that scale, we must have

g1

1

2
√

15
× (−2) = g′

1

2
×
(
−2

3

)
(558)

or

g′ =

√
3

5
g1 , (559)

as employed earlier in getting the form of β1.

There are many other fascinating aspects to SU(5) (and its generalizations),
not the least of which is that it leads to the observed relation between quark
and lepton charges. Since the charge operator Q must commute with all the
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color operators, it can only be some linear combination of T 3 and T 0. In fact,
from the discussion just above, we see that

Q = T 3 +
Y

2
= T 3 +

√
5

3
T 0 (560)

so that for the fundamental 5 representation we have

Q[5] = diag[−1

3
,−1

3
,−1

3
, 1, 0][5] . (561)

We could have multiplied by an arbitrary overall factor, but, once we have
defined the e+ charge to be +1 in charge units, the quarks must have the
phenomenologically required fractional values!

Coupling Constant Unification

To review, we have:

β1(g1) =
g3

1

16π2

[
4

3
Ng +

1

10
ND1

]
; (562)
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β2(g2) = − g3
2

16π2

[
22

3
− 4

3
Ng −

1

6
ND1

]
; (563)

β3(g3) = − g3
3

16π2

[
11− 4

3
Ng

]
. (564)

The coupling evolution equations are then summarized in the form

∂gn

∂ lnµ
= − bn

16π2
g3
n (565)

with

−b1 = 4
3
Ng + 1

5
(NS2 + 4NS4) + 1

10
(ND1 + 9ND3) + 3

5
NT2 + 28

5
N34

−b2 = 4
3
Ng + 1

6
(ND1 +ND3) + 2

3
(NT0 +NT2) + 28

27
N34 − 22

3

−b3 = 4
3
Ng − 11 . (566)

where I have introduced a bunch of other possible Higgs representations that
might be present in a more general model: I denote the number of |Y | = 1
doublets by ND1, the number of |Y | = 2 triplets by NT2, and so forth; N34

denotes the number of (I = 3, |Y | = 4) representations. I do not consider
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|Y | ≥ 6 singlets, |Y | ≥ 5 doublets, or |Y | ≥ 4 triplets. Here, by doublets
and triplets and so forth, I refer to the weak isospin representation.

In the Minimal Supersymmetric Model, one adds only the superpartners of
the SM particles plus a 2nd Higgs doublet (as required for anomaly cancellation
and for giving masses to both up and down type quarks). The resulting bi are
derived in the Appendix following this section. One finds:

−b1 = 2Ng + 3
5
(NS2 + 4NS4) + 3

10
(ND1 + 9ND3) + 9

5
NT2 + 84

5
N34

−b2 = 2Ng + 1
2
(ND1 +ND3) + 2(NT0 +NT2) + 28

9
N34 − 6

−b3 = 2Ng − 9 .(567)

Note that in the above equations there is no influence from Y = 0 singlets,
but Y 6= 0 singlets affect b1. Note also that the Ng terms cancel in the
difference of any two bi’s in both the SM and the MSSM. Finally, in the
MSSM we note the upper limit of Ng = 4 in order that QCD be asymptotically
free. (Phenomenological constraints on an extra generation are quite severe
if one assumes coupling unification — basically, its members cannot be much
heavier than the top quark of the 3rd generation.)
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Now, the evolution equations are easily integrated to give

1

g2
n(µ)

− 1

g2
n(µ0)

=
bn

8π2
ln

(
µ

µ0

)
(568)

or
1

αn(µ)
− 1

αn(µ0)
=
bn

2π
ln

(
µ

µ0

)
. (569)

We identify µ0 with the unification scale MU at which all the αi are supposed
to unify to a single value that we denote by α5(MU). The lower scale µ
will be chosen to be of order the EWSB scale of order mZ or v ∼ 246 GeV.
By subtracting equations for two of the αi assuming that all the αi unify to
α5 at MU we obtain two equations. A useful pair is (for simplicity, I write
αi ≡ αi(µ))

1

α2

− 1

α3

=
b2 − b3

2π
L

1

α2

− 1

α1

=
b2 − b1

2π
L (570)

where L = ln(µ/MU) . We can solve the first equation for L/2π and
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substitute, obtaining

1

α2

− 1

α1

=
b2 − b1

b2 − b3

(
1

α2

− 1

α3

)
. (571)

We write this in the form:

1

α2

(
1− b2 − b1

b2 − b3

)
=

1

α1

− 1

α3

b2 − b1

b2 − b3

(572)

or
1

α2

(b1 − b3)−
1

α1

(b2 − b3) =
1

α3

(b1 − b2) . (573)

At the EWSB scale, we have the phenomenological results that

α1(µ) =
5

3

g′ 2

4π
=

5

3

αQED

cos2 θW

α2(µ) =
g2

4π
=

αQED

sin2 θW

α3(µ) = αs(µ) . (574)
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We substitute these into the above equation. The requirement of unification
then takes the form (with µ ∼ mZ)

αs(mZ) = αQED(mZ)
5(b1 − b2)

sin2 θW (5b1 + 3b2 − 8b3)− 3(b2 − b3)
(575)

We emphasize that the above equation assumes “standard” SU(5) normalization
of the U(1) coupling constant and a desert between mZ and MU . Once we
have a solution to Eq. (575), we can solve for L and thence MU using either
of the two equations (570). We can then solve for α5(MU) using one of the
equations (569).

Using αs(mZ) = 0.118 and sin2 θW = .2315, and the results of Eqs. (566)
and (567), the constraint of Eq. (575) reduces to

SM : 1 ' −0.09NS2 − 0.36NS4 + 0.13ND1 − 0.22ND3

+ 0.71NT0 + 0.44NT2 − 1.39N34 (576)

SUSY : 1 ' −0.33NS2 − 1.31NS4 + 0.49ND1 − 0.82ND3

+ 2.61NT0 + 1.63NT2 − 5.11N34 (577)

in the non-SUSY and MSSM cases, respectively. The exact coefficients in
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the equations above are sensitive to the precise αs and sin2 θW choices as
well as to whether all the Higgs bosons (and SUSY sparticles) have mass
near mZ, as assumed, or nearer to 1 TeV. Two-loop corrections also lead to
small changes in the unification conditions. Thus, the following discussion
of ‘solutions’ should be regarded as being a somewhat rough, but indicative,
guide to the possibilities.

First, we note that the simple SM with ND1 = 1 and all others zero does
not work, whereas the MSSM with (as required for anomaly cancellation)
ND1 = 2 provides an almost exact solution. If you plot graphically, the SM
failure looks less bad since the 1

αi
’s come close to crossing. Nonetheless, they

do not. The figure below shows this lack of crossing. (In a change of notation,
I write NT,Y = for the number of Higgs representations of a given type in the
figure and in the subsequent discussion.)

J. Gunion 230C, U.C. Davis, 280



2.5 5 7.5 10 12.5 15 17.5
Log10@ΜHGeVLD10

20

30

40

50

60
Α-1 N1�2,1=1, N1,0=0

3

2

1

In the SM case, we can only fix things up by bringing in the other Higgs
representations (or other particles that we do not consider). We find that
coupling unification can be achieved without SUSY by introducing additional
Higgs representations in the standard model.

Some simple choices are:
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Table 1: Higgs models that yield coupling unification in the SM context with
αs not far from 0.118

N1/2,1 N1/2,3 N0,2 N0,4 N1,0 N1,2 αs MU (GeV)
1 0 0 2 0 0 0.106 4× 1012

1 0 4 0 0 1 0.112 7.7× 1012

1 0 0 0 0 2 0.120 1.6× 1013

2 0 0 0 1 0 0.116 1.7× 1014

2 0 2 0 0 2 0.116 4.9× 1012

2 1 0 0 0 2 0.112 1.7× 1012

3 0 0 0 0 1 0.105 1.2× 1013

Remarks:

• Find lower MU than comfortable for proton decay.

Can fix by not having true group unification, as in some string models.

• My personal favorite: N1
2,1

= 2, N1,0 = 1 ⇒ αs(mZ) = 0.116, MU =

1.7× 1014 GeV
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The unification of the couplings is displayed in the figure below.
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This model has no phenomenological problems (other than needing the
above fix for proton decay) so long as the neutral member of the T =
1, Y = 0 triplet has zero vacuum expectation value. In fact, this neutral
triplet member is even a viable dark matter candidate.

Of course, without supersymmetry there is no cancellation of the quadratic
divergences, implying that a light mass for the Higgs boson (as required by
LEP data in the SM context) has no natural explanation. Something like
supersymmetry is required to make a light Higgs boson natural.
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Appendix: derivation of the MSSM bi

β3

It is simplest to begin with the b3 additions due to the spin-0 partners of
the spin-1/2 (two-component) quarks. In the first family, we have the partners
ũL, ũR, d̃L, and d̃R. In total, there are four spin-0 fields per family, a total of
4Ng spin-0 fields. Since they are spin-0, they enter with only 1/2 the weight
of the two-component spin-1/2 fermions. Referring back to Eq (527), we get
a correction to the bracket which then takes the form

[. . .]→
[
. . .− 2

3

(
1

2

)
(nfermionic triplets of given helicity +

1

2
nbosonic triplets)

]
.

(578)

We have

nfermionic triplets of given helicity = nbosonic triplets = 4Ng , (579)

so that the bracket becomes

[. . .− 4

3
Ng]→ [. . .− 2Ng] . (580)
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But, we are not done. We also have fermionic partners to the gluons, the
so-called gluinos. These are fermion partners of the gluons. There is one
(effectively with just one helicity since we are talking about a Majorana
fermion in this case) for each gluon. Let us recall that the contribution of a
fermion to the standard [. . .] is

−2

3
× color factor , (581)

where the color factor = 1
2

for a fundamental triplet insertion into a gluon
line is now replaced by the usual adjoint representation CA which is 3 for
SU(3). The result in the case of β3 is the replacement[

11

3
3− . . .

]
→
[(

11

3
− 2

3

)
3− . . .

]
, (582)

implying that the previous 11→ 9 inside the [. . .].

β2

Here, we get a modification of Eq. (529) in which

nweak−isospin doublets of given helicity → nweak−isospin doublets of given helicity

+
1

2
nweak−isospin bosonic doublets . (583)
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Since there is a squark or slepton for each L or R helicity quark or lepton,
we have

nweak−isospin bosonic doublets = nweak−isospin doublets of given helicity = 4Ng (584)

and the [. . .] in the form of β2(g2) obtained before including the Higgs field
gets modified in a manner very analogous to the color case:[

. . .− 4

3
Ng

]
]→

[
. . .− 4

3
Ng

3

2

]
= [. . .− 2Ng] . (585)

Note that once again we are getting the same (now −2Ng) term in both β3

and β2.

Similar to β3, we must include the effect on β2 of the fermionic partners of
the weak gauge bosons, the so-called “winos”. By analogy, it should be clear
that in the [. . .], we have[

11

3
2− . . .

]
→
[(

11

3
− 2

3

)
2− . . .

]
= [6− . . .] , (586)

where the 2 outside the parenthesis is just CA for the SU(2) group.

J. Gunion 230C, U.C. Davis, 286



The Higgs fields require special discussion. First, there are now two Higgs
complex bosonic doublet fields. Second, each of these fields comes with a
fermionic partner which contributes twice as much. As a result, the −1

6
ND1

component of β2 is replaced by

−1

6
ND1 → −

1

6
ND1 × 3 = −1

2
ND1 , (587)

where, in addition, ND1 = 2, 4, 6, . . . is required for anomaly cancellation.

β1

This requires going through the listing of the earlier tables and multiplying
each fermion contribution listed by 3

2
and each boson contribution listed by 3.

The result is [
4

3
Ng +

1

10
ND1

]
→
[
2Ng +

3

10
ND1

]
. (588)

There is, of course, also a bino partner to the B, but since the group is
U(1) there is no B-bino-bino vertex and so no effect on b1 from this particle.

You can now check that these modifications give the bi values quoted for

J. Gunion 230C, U.C. Davis, 287



the MSSM.

Unification plots

Of course, it is interesting to plot the coupling unification for the MSSM
to compare to the graphs obtained earlier for the SM.
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Note the much higher scale of MU ∼ 1.9 × 1016 GeV for the unification
point. This means that the MSSM is much safer (but still not entirely safe)
with regard to proton decay if there is true group unification — the required
X and Y bosons are much heavier than in the ad hoc SM case I gave as an
example earlier.

Also note the large value of α5 at the unification point.
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Computation of Πµν to order g2e2

This I will do from my notes (Renormalization Notebook). The idea is to
derive the first important correction appearing in the formula

R =

∑
q σ(e+e−→ qq)

σ(e+e−→ µ+µ−)
=
∑
q

e2
q

(
1 +

αs(Q
2)

π

)
(589)

using the Πµν computation. (As we have noted, there are alternative
approaches, but this approach teaches us some interesting things along the
way.) Incidentally, I will not keep track of up vs. down Lorentz indices. They
always enter in the right way in the end.

The Optical Theorem

The first basic idea is that σ(e+e− → qq) should be proportional to the
imaginary part of the amputated photon propagator function we called
Π(q2). We actually don’t care about the constant of proportionality
since this will cancel out in the ratio used to define R. This “unitarity”
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relationship is not something we have gone into in detail, but it is an
intuitively obvious generalization of the non-relativisitic QM result.

Let us give a general and then a specific derivation.

General Derivation

Let us write the S matrix in the form S = 1 + iT , in which case unitarity
S†S = 1 takes the form

−i(T − T †) = T †T . (590)

In the notation that we have been using for most of these lectures, which
derived from Mandl and Shaw, we wrote

Sfi = δfi + (2π)4δ4(
∑
f

p′f −
∑
i

pi)
∏
i

(
1

2V Ei

)1/2∏
f

(
1

2V E′f

)1/2

M .

(591)
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However, it has actually become more conventional to use

Sfi = δfi+ (2π)4δ4(
∑
f

p′f −
∑
i

pi)
∏
i

(
1

2V Ei

)1/2∏
f

(
1

2V E′f

)1/2

iM ,

(592)
i.e. differing by a factor of i. It is better to use this latter definition when
discussing unitarity in particular (this was also done in QFT-III notes on
unitarity, which we had skipped over — see about page 270 — there I
called it M̃ , but here I will for convenience drop the tilde.). So, in this
discussion, I will use the latter definition and one needs to keep in mind
that all our feynman rules are then for iM in our new definition.

So, we now take the matrix element of Eq. (590) between two-particle
states, 〈p1p2| and |k1k2〉, and use the definition of M that has an extra i,
as discussed above. For example,

〈p1p2|iT |k1k2〉 =
1√

2V E~p1

1√
2V E~p2

1√
2V E~k1

1√
2V E~k2

(2π)
4
δ
4
(p1 +p2−k1−k2)iM(k1k2 → p1p2) . (593)
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The left hand side of Eq. (590) becomes

1√
2V E~p1

1√
2V E~p2

1√
2V E~k1

1√
2V E~k2

(2π)
4
δ

4
(p1 + p2 − k1 − k2)

× [−iM(k1k2 → p1p2) + iM∗
(p1p2 → k1k2)

]
. (594)

Meanwhile, on the right hand side, we insert a complete set of states
labeled by momentum states {qi} and find (remembering the box to

continuum equivalence
∑
~q =

∫
V d3q

(2π)3)

〈p1p2|T †T |k1k2〉 =
∑
n

 n∏
i=1

∫
V
d3qi

(2π)3

 〈p1p2|T †|{qi}〉〈{qi}|T |k1k2〉

= (2π)
4
δ
4
(p1 + p2 − k1 − k2)

∑
n

 n∏
i=1

∫
V
d3qi

(2π)3


× 1√

2V E~p1

1√
2V E~p2

1√
2V E~k1

1√
2V E~k2

 n∏
i=1

1√
2V E~qi


2

×M∗(p1p2 → {qi})M(k1k2 → {qi})(2π)
4
δ
4
(k1 + k2 −

∑
i

qi) (595)

where we used the relationship between T andM. Equating the two sides
of our starting equation and removing the overall (2π)4δ4(p1+p2−k1−k2)
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gives

[−iM(k1k2 → p1p2) + iM∗(p1p2 → k1k2)]

=
∑
n

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
×M∗(p1p2 → {qi})M(k1k2 → {qi})(2π)4δ4(k1 + k2 −

∑
i

qi) .

(596)

Let us now take the forward case of p1 = k1 and p2 = k2. In this case, the
above relation can be abbreviated as

2ImM(k1k2 → k1k2) =
∑
f

∫
dΠfM∗

(k1k2 → f)M(k1k2 → f)

= 4Ecmpcmσtot(k1k2 → anything)
small masses→ 2sσtot(k1k2 → anything) . (597)

Feynman Diagram Derivation

The remarkable result is that this unitarity relationship applies at the
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Feynman diagram level in the sense of what are called the Cutkosky cutting
rules.

Let us derive it in the simplest case of a fermion loop in QED. We compute
the one loop insertion correction to the e+e−→ γ∗→ loop→ γ∗→ e+e−
forward amplitude, i.e. with the outgoing final e+ momentum p equal to
the incoming initial e+ momentum, and final e− momentum p′ equal
to the incoming initial e− momentum. The calculation for incoming
p, p′ → γ∗(µ, µ′) → loop → γ∗(ν, ν′) → p, p′ takes the form (we will
neglect e+, e− masses)

iM = v(p)(−ieγµ)u(p
′
)
−igµµ′
k2

iΠµ′ν′(k)
−igν′ν
k2

u(p
′
)(−ieγν)v(p)

= e
2
v(p)γµu(p

′
)

1

k2
iΠµν

1

k2
u(p

′
)γνv(p) , (598)

where, by convention, the first index (µ) of iΠµν goes with the incoming
γ∗ and the ν goes with the outoing γ∗. So, now let us consider the
one-loop µ+µ− type of contribution to Πµν(k). We know the form that it
takes very well from our earlier work.

iΠµν(k) = (−)(−ie)
2
∫

d4l

(2π)4
Tr

[
γµ

i

/l−m + iε
γν

i

/l + /k−m

]
= (−)e

2
∫

d4l

(2π)4
Tr
[
γµ(/l +m)γν(/l + /k +m)

] 1

l2 −m2 + iε

1

(l + k)2 −m2 + iε
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= e
2
∫

d4q

(2π)4
Tr

[
γµ

(
(
1

2
/k− /q)−m

)
γν

(
(
1

2
/k + /q) +m

)]
× 1

(1
2k− q)2 −m2 + iε

1

(1
2k + q)2 −m2 + iε

, (599)

where the explicit (−) is for the fermion loop and in the last step I switched
to q = l + 1

2
k. We must now discuss how to take the imaginary part of

M. It is easy to see from Eq. (598) that ImM ∝ ImΠµν and so we turn
now to the latter calculation. The key is understanding how to do the q0

integral given the four poles implicit in the two denominators shown. At a
certain point it will be important to recall the following standard identity:

1

x + iε
= P

(
1

x

)
− iπδ(x) . (600)

What we will show is that −2× ImΠµν is obtained by replacing[
1

(1
2
k − q)2 −m2 + iε

] [
1

(1
2
k + q)2 −m2 + iε

]
→

[
−2πiδ((

1

2
k − q)2 −m2)

]
θ(

1

2
k0 − q0)

×
[
−2πiδ((

1

2
k + q)2 −m2))

]
θ(

1

2
k0 + q0) . (601)
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in the right-hand side of Eq. (599). Assuming this result, defining r = 1
2
k−q

and r′ = 1
2
k + q, and taking the − sign to the other side, we obtain

2ImΠµν = −(−2πi)
2
e
2
∫

d4r

(2π)4

d4r′
(2π)4

(2π)
4
δ
4
(r + r

′ − k)Tr[γµ( /r −m)γν( /r
′

+m)]

×δ(r
2 −m2

)θ(r
0
)δ(r
′ 2 −m2

)θ(r
′ 0

)

= e
2
∫

d3r

(2π)32Er

d3r′
(2π)32Er′

(2π)
4
δ
4
(r + r

′ − k)Tr[γµ( /r −m)γν( /r
′

+m)]

= e
2
∫

d3r

(2π)32Er

d3r′
(2π)32Er′

(2π)
4
δ
4
(r + r

′ − k)
∑
sr,sr′

[u(r
′
)γµv(r)v(r)γνu(r

′
)] (602)

In order to write the last line, we had to know that the r and r′ were
on-shell as assumed when writing a u or v spinor.

If we now include the e+e− and γ∗ propagator stuff appearing in iM,

e2v(p)γµu(p′)u(p′)γνv(p)

(
1

k2

)2

(603)

and use (1/k2)2 = 1/s2 in the M expression, we obtain

2ImM = e
2
u(p

′
)γνv(p)v(p)γµu(p

′
)

(
1

s

)2

e
2
∫

d3r

(2π)32Er

d3r′

(2π)32Er′
×(2π)

4
δ

4
(r + r

′ − k)
∑
sr,sr′

[u(r
′
)γµv(r)v(r)γνu(r

′
)] (604)
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We now wish to compare this expression to the total cross section for
e+e− → µ+µ−. For this latter, we would write down the amplitude, take
the absolute square, and then integrate over final state phase space,
and finally divide by the appropriate flux factor. The amplitude for
e+(p)e−(p′) → µ+(r)µ−(r′) (where I am using momenta that match
our previous calculation conventions) is given by

iM(e+e−→ µ+µ−) = u(r′)(−ieγµ)v(r)
−igµµ′
s

v(p)(−ieγµ′)u(p′)

= ie2u(r′)γµv(r)
1

s
v(p)γµu(p′) . (605)

Next we take the absolute square:

|M|2 = e4u(r′)γµv(r)v(r)γνu(r′)
1

s2
v(p)γµu(p′)u(p′)γνv(p) . (606)

Finally, we multiply by the flux factor, simply 1/(2s) in this case, and
integrate over phase space which has the form∫

d3r

(2π)32Er

d3r′

(2π)32Er′
(2π)4δ4(r + r′ − k) , (607)
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and sum over final spins to obtain

σ(e
+
e
− → µ

+
µ
−

) =
1

2

e4

s3
v(p)γµu(p

′
)u(p

′
)γνv(p)

∫
d3r

(2π)32Er

d3r′

(2π)32Er′
×(2π)

4
δ

4
(r + r

′ − k)
∑
sr,sr′

[u(r
′
)γµv(r)v(r)γνu(r

′
)]

(608)

By comparing Eq. (608) to Eq. (604) you will see that

sσ(e+e−→ µ+µ−) = ImM(e+e−→ γ∗→ µ+µ−→ γ∗→ e+e−) .
(609)

This result agrees with the general optical theorem of Eq. (597) since
2Ecmpcm = s in the limit where the electron mass is neglected.

Proof of the replacement Eq. (601)

We wish to show, dropping the trace algebra stuff, which has no imaginary

J. Gunion 230C, U.C. Davis, 298



part, and defining10

iI ≡
∫

d4q

(2π)4

[
1

(1
2
k + q)2 −m2 + iε

] [
1

(1
2
k − q)2 −m2 + iε

]
, (610)

that (c.f. Eq. (602))

2ImI = −
∫

d4q

(2π)4

[
−2πiδ

((
k

2
+ q

)2

−m2

)]
θ

(
k0

2
+ q0

)
×
[
−2πiδ

((
k

2
− q

)2

−m2

)]
θ

(
k0

2
− q0

)
. (611)

By way of partial motivation for the rule, we note that I is real unless one
of the virtual propagator denominators vanishes, so that the iε prescription
for treating the poles becomes relevant. This is equivalent to saying that
the propagating particles can go on-shell as part of the q integration (which

10 The explicit i in front of I below is there because we want the imaginary part of M in the unitarity theorem,
whereas our Feynman rules apply to iM.
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we note can be performed by Wick rotating the dq0, thereby generating an
i to cancel the explicit i in the definition of I). The θ functions are simply
the usual positive energy requirement for an on-shell particle.

Let us begin by simply figuring out what the result is from applying the
Cutkosky rule. For our discussion, it is most convenient to employ the
center of mass frame where k = (k0, 0, 0, 0). The product of the two δ
functions then takes the form:

δ

(
(
1

2
k + q)2 −m2 + iε

)
δ

(
(
1

2
k − q)2 −m2 + iε

)
→ δ

(
[(q0 +

1

2
k0)− (E~q − iε)][(q0 +

1

2
k0) + (E~q − iε)]

)
×δ

(
[(q0 − 1

2
k0)− (E~q − iε)][(q0 − 1

2
k0) + (E~q − iε)]

)
≡ δ ([1][2]) δ ([3][4]) (612)

Let us use δ([1]) (i.e. q0 = −1
2
k0 + E~q) to do the q0 integration (we

cannot use δ([2]) since it does not obey the θ function requirement of
q0 + 1

2
k0 > 0), from which we obtain (assuming the Cutkosky rule formula)
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2ImI = −(−2πi)2

∫
d3q

(2π)4

1

2E~q
δ([−k0][−k0 + 2E~q])θ(k0 − E~q)

= −(−2πi)2

∫
4πdE~qE~q|~q|

(2π)4

1

2E~q

1

k0
δ([−k0 + 2E~q])

= 4π24πE~q~q

(2π)4

1

2E~q

1

2E~q

1

2

= +
1

8π

|~q|
E~q

(613)

where in going from the first to the second line we used the fact that
the residual θ(k0 − E~q) implies that k0 > 0 and so we cannot employ the
δ([−k0]) part of the δ function of the 1st line. The final 1

2
in the 3rd line

is from the Jacobian rule for the δ function.

To prove the Cutkosky rule formula, we must directly obtain ImI. First,
we note that I above defines an analytic function of s = k2. We next note
that the appearance of an imaginary part of I(s) ∝M(s) always requires
a branch cut singularity. By the unitarity argument, M only acquires an
imaginary part for s > s0, where s0 is the threshold for production of the
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lightest multiparticle state, here s0 = 4m2. For real s < s0 the intermediate
state (here consisting of the two particles with mass m) cannot go on-shell,
and so I(s) is real and

I(s) = [I(s∗)]∗ . (614)

In fact, each side of the above equation is an analytic function (a standard
fact of complex analysis that you should know) and so this equation can be
continued to the entire complex s plane. Once s > s0, I will develop an
imaginary part (which we shall explicitly compute) and from Eq. (614) we
have

ReI(s+ iε) = ReI(s− iε) , ImI(s+ iε) = −ImI(s− iε) . (615)

The − sign in the 2nd relation implies the presence of a branch cut across
the real axis for s ≥ s0. The discontinuity across this branch cut is obviously

DiscI(s) = 2iImI(s+ iε) . (616)

In fact, it is easier to compute this discontinuity than it is to compute
the imaginary part directly. The iε prescription in the Feynman propagator
indicates that physical scattering amplitudes should be evaluated above the
cut, at s+ iε.
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To evaluate iDiscI we again go to the center of mass frame where
k = (k0, 0, 0, 0). The product of the two denominators then takes the
form:

[(
1

2
k + q)2 −m2 + iε][(

1

2
k − q)2 −m2 + iε]

→ [(q0 +
1

2
k0)− (E~q − iε)][(q0 +

1

2
k0) + (E~q − iε)]

×[(q0 − 1

2
k0)− (E~q − iε)][(q0 − 1

2
k0) + (E~q − iε)]

≡ [1][2][3][4] (617)

From this we see that the integrand in the expression for iI has four poles
in the integration variable q0 located at

q0 =
1

2
k0 ± (E~q − iε) from [3] and [4]

q0 = −1

2
k0 ± (E~q − iε) from [1] and [2] . (618)

Two of these poles lie above the real axis([2] and [4]) at −1
2
k0 − E~q and

1
2
k0 − E~q and two lie below ([1] and [3]) at −1

2
k0 + E~q and 1

2
k0 + E~q.
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We can perform the dq0 integration by closing the contour either in the
upward direction or the downward direction. We choose to close downward
and pick up the [1] and [3] poles in the lower half plane. (These correspond
to the actual on-shell positive energy poles, but we would get the same
answer by closing up.) At the locations of these two poles, the product of
the rest of the brackets in Eq. (617)) reduces to

[2][3][4]→ [2E~q][−k0][−k0 + 2E~q] at pole of [1]
[1][2][4]→ [k0][k0 + 2E~q][2E~q] at pole of [3] (619)

The residues at these two pole locations are, respectively, then the inverse
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of these expressions:

[1] : −1

2
k0 + E~q ⇒

1

−k0

1

−k0 + 2E~q

1

2E~q
(620)

[3] :
1

2
k0 + E~q ⇒

1

k0

1

2E~q

1

k0 + 2E~q
. (621)

Only the pole residue of the [1] pole at q0 = −1
2
k0 + E~q can contribute

to the discontinuity since the residue at the other [3] pole has positive
definite stuff in the denominators (recall that k0 is the positive energy of
the incoming photon). We are left with (since the contour is clockwise,
there is an extra minus sign in the residue theorem)

iI = −2πi

∫
d3~q

(2π)4

1

2E~q

1

k0(k0 − 2E~q)
(622)

This result from picking up the residue of this pole is equivalent to replacing

1

(1
2
k + q)2 −m2 + iε

→ −2πiδ

((
k

2
+ q

)2

−m2

)
θ(

1

2
k0 + q0)
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= −2πiδ

(
(q0 +

1

2
k0 − E~q)(q0 +

1

2
k0 + E~q)

)
θ(...)

∼ −2πi
1

2E~q
δ

(
q0 +

1

2
k0 − E~q

)
, (623)

using the standard delta function Jacobian factor. The denominators
containing k0 in Eq. (620) come from the other propagator. In any case,
we are left with

iI = −2πi

∫
d3~q

(2π)4

1

2E~q

1

k0(k0 − 2E~q)

= −2πi
4π

(2π)4

∫ ∞
m

dE~qE~q|~q|
1

2E~q

1

k0(k0 − 2E~q)
(624)

The integral has a pole at E~q = 1
2
k0, which means that if k0 < 2m the pole

is not on the integration contour (since E~q ≥ m) and I is manifestly real.
When k0 > 2m, the pole lies just above or below the contour of integration,
depending upon whether k0 has a small positive or small negative imaginary
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part. Thus, the integral will acquire a discontinuity which is revealed by

1

k0 − 2E~q ± iε
= P

1

k0 − 2E~q
∓ iπδ(k0 − 2E~q) (625)

yielding discontinuity of −2πiδ(k0 − 2E~q). Substituting into Eq. (624) we
find for iDiscI = i(2iImI) (see Eq. (616)) the real result

i(2iImI) = (−2πi)2 4π

(2π)4

∫ ∞
m

dE~qE~q|~q|
1

2E~q

1

k0
δ(k0 − 2E~q)

= (−2πi)2 4π

(2π)4
E~q|~q|

1

2E~q

1

2E~q

1

2

= − 1

8π

|~q|
E~q

, (626)

or 2ImI = +
1

8π

|~q|
E~q

(627)

which is the same as the Cutkosky rule result of Eq. (613).

The result we have found is the first example of the Cutkosky cutting rules
for obtaining the discontinuity of a Feynman diagram across its branch cut.
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The general result is that the discontinuity of any Feynman diagram
contribution to iM (which gives −2ImM)) is given by the following rules:

1. Cut through the diagram in all possible ways consistent with all the cut
propagators simultaneously vanishing (i.e. all propagators on-shell).

2. For each cut propagator replace i
q2−m2+iε

→ 2πδ(q2 −m2)θ(q0) (note
how i in numerator of propagator cancels −i in −2πi so that phase is
not changing as you add to number of cut propagators).

3. Sum the contributions from all such cuts.
4. Perform integrations over the internal “q0” ’s using the above δ functions

leaving you with just the on-shell phase-space part:∫
d4qδ(q2 −m2)θ(q0)→ ∫

d3~q
2E~q

.

Using these cutting rules, the optical theorem can be proven to arbitrary
order in perturbation theory.

General proof of the Cutkosky prescription

The general Cutkosky prescription states that to obtain the discontinuity of
the matrix element associated with cutting a particular set of propagators,
which cut divides the diagram into two disconnected pieces, we replace
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1
q2−m2 → −2πiδ(q2 − m2) for each cut propagator. To obtain the full
discontinuity, one sums over the results from all such cuts. Of course, only
those cuts for which the energy or s being considered is sufficient to allow
all cut particles to be on-shell will contribute to the discontinuity.

A full proof of the Cutkosky prescription requires a fairly sophisticated
approach.

From the point of view of coordinate space, the proof can be found in
“Diagrammar” by ’t Hooft and Veltman.

From the point of view of the momentum space representation of Feynman
diagrams an excellent reference is Eden, Landshoff, Olive and Polkinghorne
“The Analytic S-Matrix”.

I will try to sketch the latter, leaving out a lot of details, but giving enough
so that you get a first glimpse of this whole analytic structure approach
that was so important in the pre-1970 period and that is now coming back
into use as a means of computing loop integrals by getting their imaginary
parts and then integrating in the context of dispersion relations, etc.

We begin with some simple remarks based on complex analysis. Let us
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consider the integral

f(s) =

∫ b

a

ds′
1

s′ − s = log

(
s− b
s− a

)
. (628)

The function f(s) develops a singularity at s = a and s = b since the
integration contour cannot be deformed at these end points so as to avoid
the points s′ = a and s′ = b. This kind of singularity is thus called an
“end-point” singularity.

For s real and in between a and b, we can analytically continue the function
by deforming the contour away from the real axis. Thus, there is no actual
singularity in this region, but there is a branch-cut connecting the points a
and b and there will be a discontinuity across this branch cut. Related to
the presence of this branch cut, one can think of the above integral as a
spectral representation of the function f(s) of the type

f(s) =
1

2πi

∫ b

a

ds′Disc[f(s′)]
1

s′ − s (629)

where by direct computation the discontinuity of f(s) defined by f(s +
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iε)−f(s− iε) ≡ Discf(s) is simply 2πi along the s ∈ [a, b] interval. This,
we can verify in two ways.

1.

f(s + iε)− f(s− iε) =

∫ b

a

ds
′
(

1

s′ − s− iε −
1

s′ − s + iε

)
=

∫ b

a

ds
′
2πiδ(s

′ − s)

= 2πi for s ∈ [a, b] (630)

and 0 elsewhere.
2. Alternatively, let us write s = a + reiθ, where r < b − a and θ = +ε′

defines a location corresponding to s = s + iε = a + r + iε and
θ = 2π − ε′ defines a location corresonding to s− iε = a+ r − iε. By
direct computation, we see that (the log(s− b) is the same at these two
locations)

log

(
1

s + iε− a

)
− log

(
1

s− iε− a

)
= − log(re

i(ε′)
) + log(re

i(2π−ε′)
)

ε′→0
= 2πi (631)

as consistent with the claimed discontinuity.
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There are also “pinch” singularities that arise when two (or more) singularities
approach the contour of integration defining some function from opposite
sides of the contour and coincide. In such a case, there is no way to deform
the contour so as to avoid these singularities.

An example of this type is provided by (think of a as the m2 of some
Feynman propagator and the iε is the Feynman prescription – meanwhile
s+ iε is always the physical location at which we evaluate some amplitude)

f(s) =

∫ 1

0

ds′

(s′ − s− iε)(s′ − a + iε)

=
1

s− a

[
log

1− s− iε
−s− iε − log

1− a + iε

−a + iε

]
(632)

For a > 1 the iε’s don’t matter and we simply get

f(s) = log

(
a(1− s)
(1− a)s

)
(a > 1) , (633)

which does have logarithmic singularities at s = 1, 0 of the end-point type,
but there is no singularity at s = a when a > 1 since the log vanishes
there. This corresponds to the fact that the contour is not pinched when
a > 1 since the integral only runs over s′ between 0 and 1.
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However, if a < 1 one must be careful with the iε’s and the fact that the
log function has a cut when its argument is negative. The iε’s are not
important for the log(1− s− iε) and log(1− a+ iε) and these cancel as
s→ a. But for the other two logs we must write

log(−a+ iε) = log(|a|eiπ) = log |a|+ iπ ,
log(−s− iε) → log(|a|e−iπ) = log |a| − iπ (634)

implying

f(s)
s→a→ 1

s− a(−2πi) 0 < a < 1 . (635)

What is happening is that if you try to distort the contour so as, let us say,
to avoid the s′ = s+ iε, you must push the contour past the s′ = a− iε
singularity which leaves behind a (clockwise) circular contour that circles
the pole at s′ = a − iε and gives you −1× the residue at that pole. But
this is only necessary if s ∼ a ∈ [0, 1].

With this warm up we can now turn to a function of the type we are
interested in:

I(s) =

∫
d4k1d

4k2 . . . d
4kl∏N

i=1(q
2
i −m2

i)
(636)
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where of the N propagators we are going to imagine that we can cut
through (with a simple line) the Feynman diagram by cutting through the
first r of these propagators. The 4l-dimensional kl integrations can be
transformed to new integration variables q2

1, q
2
2, . . . q

2
r and 4l − r other

variables ξs. We thus write

I(s) =

∫ b1

a1

dq2
1

∫ b2

a2

dq2
2 . . .

∫ br

ar

dq2
r

∫ ∏
dξs

1

J
∏r

1(q2
i −m2

i)
∏N
r+1(q

2
k −m2

k)
(637)

where J is the Jacobian of the variable transform. The limits (aj, bj) for
the q2

j integration are the extrema of q2
j with respect to all values of the kl

when q2
i for i < j are held fixed. Suppose we now write

I(s) =

∫ b1

a1

dq2
1

I1(q
2
1, s)

q2
1 −m2

1

, (638)

where m2
1 is really m2

1 − iε by the Feynman prescription.

Now, just as in the simple example we just did, I(s) will have a branch cut
singularity structure and we are wanting to know the discontinuity. To do
so we must understand its singularities.
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1a b 1 a 1
m

q 1

1

2

2 b 1

Figure 17: Example of contour pinching/trapping for
∫
dq2

1.

First note that I depends on the value of m2
1 but neither I1(q

2
1, s) nor

a1, b1 explicitly contains m2
1. A singularity of I at s = s0 will develop as

a result of the q2
1 contour integration being trapped between the fixed m2

1

singularity and a singularity q̃2
1 of I1 that approaches m2

1 when s→ s0. Let
us take this trapping explicitly into account by passing the contour in q2

1

which runs along the real axis past m2
1 − iε by moving the contour down

and keeping the extra clockwise (yielding the − sign below) circle around
m2

1 − iε needed to compensate. The result of this explicit circle is simply
to pick up −2πi times the residue

−2πiI1(m
2
1, s) . (639)

The contribution from the shifted down contour will not have any singularity.
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However, I1 may.

But, now we can write

I1(m
2
1, s) =

∫ b2

a2

dq2
2

I2(q
2
2, s)

q2
2 −m2

2

(640)

and repeat the above arguments, picking up all the poles until we arrive at

∫ br

ar

dq2
r

Ir(m2
1, . . . ,m

2
r−1, q

2
r, s)

q2
r −m2

r

. (641)

We still do not know for sure whether this expression actually has a
singularity in s — so far we have managed to shift integration contours,
but picking of the residual written above that might or might not have a
singularity at s0. For this final residual to have a singularity, it has to be
that as s→ s0 one of the end points of integration (ar and br depend on
s) moves toward q2

r = m2
r, let us say it is ar(s) that does so. So, picture

the interval [ar, br] and we are integrating along this interval and m2
r − iε

lies a bit below the interval near ar.
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m r
2

m r
2

ar br ar b r

Figure 18: The discontinuity associated with the end-point singularity coming
from

∫
dq2
r.

Write

ar(s) = ar(s0) + δ
dar

ds
(s = s0) = ar(s0) + |δ|eiθdar

ds
(s = s0) . (642)

Now rotate s (assumed > s0) from s+iε to s−iε by writing s−s0 = |δ|eiθ
with θ going from 0 to +2π. Then, ar(s) will describe a circle that wraps
in a counterclockwise direction (for dar/ds > 0 — the final result is the
same if dar/ds < 0 put the picture is different) around m2

r as θ goes
from 0 to 2π. The result for the s + iε result minus the s − iε result is
−2πi times the residue of the pole at q2

r = m2
r. Plugging this into the
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interatively developed expression for I(s), we have

DiscI(s) = (−2πi)r
∫ ∏

d4kl
δ(q2

1 −m2
1) . . . δ(q

2
r −m2

r)

(q2
r+1 −m2

r+1) . . . (q
2
N −m2

N)
. (643)

You will recognize this as being the generalization of what we found in the
two propagator case. If this integral is non-zero (as it will be if s is large
enough to put all the q2

r’s on-shell) then we have a discontinuity of I(s)
and a corresponding contribution to the total cross section.

Of course, I have glossed over lots of subtleties in the above. A fully
correct discussion requires lots more effort and time. You will need to look
at Diagrammar or The Analytic S Matrix for a more thorough treatment.

Relating to Π

We now return to the problem at hand by first relating Πµν to Π(k2) using

iΠµν(k) = iΠ(k2)[k2gµν − kµkν] . (644)

To repeat, the generic one loop insertion correction to e+e− → γ∗ →
loop→ γ∗→ e+e− takes the form (again using p for the e+ and p′ for the
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e− and neglecting their masses):

iM = u(p
′
)(−ieγµ)v(p)

−igµµ′
k2

iΠ(k
2
)[k

2
gµ′ν′ − kµ′kν′]

−igν′ν
k2

v(p)(−ieγν)u(p
′
)

= e
2
u(p
′
)γµv(p)

1

k2
iΠ(k

2
)[k

2
gµν − kµkν ]

1

k2
v(p)γνu(p

′
) . (645)

Note that even though we used the Feynman style propagator for the
virtual photons, any other form of the propagator (e.g. axial gauge) would
contain terms proportional to kα and/or k′α with α = µ, µ′, ν or ν′, any of
which would vanish either because they multiply the k2gµν−kµkν structure
or are sandwiched between spinors in such a way that you get, for example,
u(p′)(−ie/k)v(p) = −ieu(p′)(/p + /p′)v(p) which is zero after using the
Dirac equations for the spinors.

We will now average over the e− and e+ spins, which we take to be
the same in the initial and final state in order to connect to the e+e−
annihilation cross section. We convert the spin average into a trace in the
usual way to obtain:

iM = 1
4e

2
Tr[/p

′
γµ/pγν]

1

k2
iΠ(k

2
)[k

2
gµν − kµkν]

1

k2

= e
2
[p
′
µpν + p

′
νpµ − gµνp · p′]

1

k2
iΠ(k

2
)[k

2
gµν − kµkν]

1

k2

= e
2
[2k

2
p · p′ − 2p · kp′ · k− 4k

2
p · p′ + k

2
p · p′] 1

k2
iΠ(k

2
)

1

k2
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= −k4
e

2 1

k2
iΠ(k

2
)

1

k2
using p · p′ = k2

2 and p · k = p′ · k = k2

2

= −ie2
Π(k

2
) . (646)

So, after averaging over e+e− spins,

sσ(e+e−→ ff) = ImM = −e2ImΠ(s) . (647)

where Π(s) is to be computed for the fermionic loop for fermion type f .

Getting the imaginary part

So, the first order of business is to understand how to get the required
imaginary part in a manner that will be easily generalized to some arbitrary
number of loops. This is best done using the RGE equations.

We ignore QCD for the moment, since we know that only enters Π at
the two-loop level as a correction to the basic fermion=quark loops that
contribute to the photon propagator Π. We use the fact that Π will obey
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an RGE equation:

[
∂

∂t
− β(e)

∂

∂e
+ (1− γm)m

∂

∂m
− dN +Nγd

]
Π(etq0,m, e, µ) = 0 ,

(648)
where et = s was our momentum scaling factor and

mγm = µ
∂m

∂µ
, γd =

1

2
µ
∂

∂µ
(lnZ3) (649)

where for the latter we keep in mind that the only external fields are the
two photons and therefore only Z3 renormalization enters. Also, since we
have N = 2 external photon fields, we have an engineering dimension of
dN = 4−N = 2. We will neglect the m dependence. The solution of the
equation is then

Π(etq0, e, µ) = etdN exp

[
−N

∫ t

0

γd(e(t
′, e))dt′

]
Π(q0, e(t, e), µ) .

(650)
We will actually neglect the moving e and focus only on γd. In QED we

J. Gunion 230C, U.C. Davis, 321



found

Z3 = 1− e2

12π2

1

ε
(651)

which implies that

γdZ3 =
1

2
µ
∂Z3

∂µ
= −1

2
µ
∂e

∂µ

e

6π2

1

ε
. (652)

We then have to remember that

µ
∂e

∂µ
= d0 + d1ε , (653)

with d0 = e3

12π2 giving us the β(e) function, and, the crucial thing for this
calculation, d1 = −e. So, we now write our defining equation for γd in the
form:

γd

(
1− e2

12π2

1

ε
+ . . .

)
= −1

2
(d0 + d1ε)

e

6π2

1

ε
. (654)

To determine the ε→ 0 result for γd, we match powers of ε0 to obtain

γd = −1

2
d1

e

6π2
=

e2

12π2
. (655)
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Alternatively, we can go back to the more naive style of derivation and
write

e0 = µε
[
e+

e3

24π2

1

ε

]
. (656)

We then take µ ∂
∂µ

on this to get

0 = εµε
[
e+

e3

24π2

1

ε

]
+ µε

[
µ
∂e

∂µ

] [
1 +

e2

8π2

1

ε

]
, (657)

which gives

µ
∂e

∂µ
= −ε

[
e+

e3

24π2

1

ε

] [
1 +

e2

8π2

1

ε

]−1

= −εe
[
1− e2

12π2

1

ε
+ . . .

]
= −εe+

e3

12π2
. (658)

Substituting into the γd defining equation, Eq. (652), we have

γd

(
1− e2

12π2

1

ε
+ . . .

)
= −1

2

[
−εe+

e3

12π2

]
e

6π2

1

ε
. (659)
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At order ε0, this gives

γd =
e2

12π2
. (660)

which also leads to consistency at order 1
ε
.

The above calculation was for QED. For the SM, we actually have to sum
over all fermion loop contributions to γd. In this way, we get [defining
C = 1/(12π2)]

γd = Ce2
∑

k=all relevant fermions

e2
k (661)

where ek is the fractional charge, relative to e, of a given fermion. By
“all relevant fermions”, what I mean to imply is all the fermions that
are contributing to the particular total cross section of interest. If I am
interested in the total cross section for e+e−→ qq, then I will be summing
over all quarks. We can now plug this into our RGE solution form (with
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N = 2 and dN = 4−N = 2):

Π(etq0, e, µ) = e2t exp

[
−2

∫ t

0

C
∑
k

e2
ke

2(t′, e) dt′
]

Π(q0, e(t, e), µ).

(662)
For our purposes, we can neglect the movement of e (which would give a
small correction to this and later results). Let us also take µ = q0. Then

Π(q0, e(t, µ), µ) = −q2
0D , (663)

where q2
0 will be negative and D is just some numerical multiplier. The

factor of −q2
0 is required by the dimensionality of Π and the fact that only

q0 is available to carry the dimensions (neglecting the electron mass). One
can explicitly compute Π from the one loop diagram (see Peskin), but it
is not necessary for our purposes. Inserting Eq. (663) into Eq. (662), we
obtain

Π(q = etq0, e, µ) = −q2D exp[−2te2C
∑
k

e2
k] , (664)

with q2 < 0. Expanding to order e2 we get (using e2tq2
0 = q2 in the form
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t = 1
2

ln q2/q2
0)

Π(q, e, µ) = −q2D
[
1− 2te2C

∑
e2
k + . . .

]
= −q2D

[
1− e2C

∑
e2
k ln(q2/q2

0) + . . .
]
. (665)

Now, I did not stress yet that all these computations are absolutely valid in
the deep Euclidean region in which q2 < 0 and large, and we presume we
started the evolution at a q2

0 < 0 point.

So, where is the imaginary part that we want to identify with the cross
section?

We must continue (with care!) to the physical region where q2 > 0. We
write:

q2 = Q2eiθ , and q2
0 = Q2

0e
iθ0 , (666)

where Q2, Q2
0 > 0, and θ = θ0 = π to begin with. We now move to q2 > 0

and just above the physical cut along the positive q2 axis by taking θ → ε,
leaving θ0 = π. Then

ln
q2

q2
0

→ ln

(
Q2

Q2
0e
iπ

)
= ln

Q2

Q2
0

− ln eiπ ,⇒ Im ln
q2

q2
0

= −π . (667)
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Eq. (665) then gives

ImΠ = −q2D[−e2C
∑
k

e2
k(−π)] = −q2CDe2

∑
k

e2
kπ . (668)

Substituting into Eq. (647) then gives

sσ(e+e−→ qq) = −e2ImΠ = Q2De4C
∑

e2
kπ , (669)

where we used the fact that q2 = Q2 > 0 after this continuation in the
−q2 premultiplier appearing in Eq. (665).

Taking the ratio of the qq to the µ+µ− imaginary parts gives us the ratio
of the cross sections and we obtain the usual result:

R =
σ(e+e−→ qq)

σ(e+e−→ µ+µ−)
=

∑
quarks e

2
k

e2
k=µ

=
∑

quarks

e2
k . (670)

You may wonder why I bothered with all this formalism just to get the
result you know from simple calculation. The reason will become clear
when we go to the next order in QCD.
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In any case, let us review how well this tree-level result does in comparison
to the data.

The following plots show that the tree-level result gets the gross features of
R as a function of

√
s correct, but that there is clearly something missing

in that the data is clearly above the tree-level result at lower
√
s values

where αs(s = Q2) is largest.
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6 40. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 40.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section
of this Review, Eq. (9.12) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)).
Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ (nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the
details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available
at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.)) See full-color version on color pages at end of book.

Figure 19: The ratio R as a function of
√
s. The green dashed line is the

tree-level result. The red line is the 3-loop QCD corrected result.
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40. Plots of cross sections and related quantities 7

R in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 40.7: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 40.6. Note: CLEO data above Υ (4S) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007) See full-color
version on color pages at end of book.

Figure 20: The ratio R at low
√
s: note threshold jumps. The green dashed

line is the tree-level result. The red line is the 3-loop QCD corrected result.
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The one-loop QCD correction

We are finally in a position to use this technology to compute the
QCD correction which comes from the two-loop diagrams for the photon
propagator in which there is a fermion loop and a gluon exchange
somewhere. We wish to sum four graphs contributing to Π:

1. the quark loop graph without QCD correction;
2. the quark loop graph with g exchange between upper and lower quark

lines;
3. the quark loop graph with upper quark line corrected by g emission and

reabsorption.
4. the quark loop graph with lower quark line corrected by g emission and

reabsorption.

The result found (see later for a summary of the calculation) is

Z3 = 1 +O(e2) +O(e2g2) , (671)

where the O(e2) is that we have already discussed. After carrying out the
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calculation and then using Z3 to determine γd for the gluon, we find

γd = Ce2
∑

e2
k

[
1 +

3

16π2
CFg

2 + . . .

]
. (672)

Our renormalization group result for Π is then (neglecting the very small
effect from the movement of e with t′)

Π(q2) = −q2D exp

[
−2

∫ t

0

γd(e(t
′, e), g(t′, g)dt′

]
= −q2D

{
1− 2Ce2

∑
e2
k

∫ t

0

dt′
[
1 +

3CF

16π2
g2(t′, g) + . . .

]}
.(673)

Into this we insert (using short-hand b ≡ 11− (2/3)nf)

g2(t′) =
g2(0)

1 + b
8π2g2(0)t′

(674)

for which ∫ t

0

dt′g2(t′) =
8π2

b
ln

[
1 +

b

8π2
g2

0t
′
]t

0
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=
8π2

b
ln

[
1 +

b

8π2
g2

0t

]
. (675)

Thus, we have

Π(q2) = −q2D

(
1− 2Ce2

∑
e2
k

[
t+

3CF

16π2

8π2

b
ln

(
1 +

b

16π2
g2

02t

)])
(676)

where after continuation to positive q2 = Q2 we have 2t = ln Q2

Q2
0
− iπ. We

need

ln

(
1 +

b

16π2
g2

0

[
ln
Q2

Q2
0

− iπ
])

= ln

(
1 +

b

16π2
g2

0 ln
Q2

Q2
0

)
+ ln

1−
b

16π2g
2
0iπ

1 + b
16π2g

2
0 ln Q2

Q2
0


∼ ln

(
1 +

b

16π2
g2

0 ln
Q2

Q2
0

)
−

b
16π2g

2
0iπ

1 + b
16π2g

2
0 ln Q2

Q2
0

(677)
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with imaginary part given by

Im ln (. . .) = −π
b

16π2g
2
0

1 + b
16π2g

2
0 ln Q2

Q2
0

= −π b

16π2
g2(Q2) = −π b

4π
αs(Q

2) .

(678)
Our net result for ImΠ is then

ImΠ = Q2DCe2
∑

e2
k

(
−π + 2

3CF

16π2

8π2

b
(−π)

b

4π
αs(Q

2)

)
= −πQ2DCe2

∑
e2
k

(
1 +

3CF

4π
αs(Q

2)

)
= −πQ2DCe2

∑
e2
k

(
1 +

1

π
αs(Q

2)

)
(679)

using CF = 4/3. Using Eq. (647) this gives

sσ(e+e−→ qq) = πQ2DCe4
∑

e2
k

(
1 +

1

π
αs(Q

2)

)
. (680)

In taking the ratio of the cross section for e+e− → qq proportional to
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the above imaginary part to that for e+e− → µ+µ− (which has no QCD
correction and no

∑
e2
k factor), the πQ2DCe4 stuff cancels and we are left

with ∑
q σ(e+e−→ qq)

σ(e+e−→ µ+µ−)
=

∑
k=quarks

e2
k

(
1 +

αs(Q
2)

π

)
. (681)

We still have to compute the QCD loop diagrams to get the form of Z3

given earlier, but it is clear that this procedure generalizes nicely to higher
orders. The advantage of this procedure over that in which the cross
section is computed directly is that you do not have to consider the infrared
singularities arising from real gluon emission and how they cancel with the
infrared singularities present in the virtual gluon vertex correction diagrams
sketched diagramatically earlier.

In any case, we see from the previous two figures that the QCD corrections
are needed in order to get precision agreement with the measurements of
R.

Summary of Two-Loop Calculation

We now consider the two-loop QCD corrections to Πµν. It is possible to
reference the Itzykson-Zuber two-loop calculation for QED and generalize
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to QCD in a fairly obvious manner. Here, I will sketch the results so
obtained.

The two-loop diagrams we must compute are given in the figure. Note the
counter-term diagrams that we must include at this order.

Figure 21: Two-loop corrections to the photon propagator at order e2g2. The
diagrams are called: 1st row: a1, a2, b; 2nd row: a′1, a′2, b′1 3rd row: b′2.

I now outline the calculation results. I use ρ and σ for the external photon
indices and define γ̂ ≡ γE − ln 4π (where γE is what I called γ earlier).
(Details of this calculation for the 2nd diagram in the first row of the
above figure, called a2, are given later.) The result is (we drop CF for the
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moment and will restore this factor at the end and, also, we are doing the
calculation for fixed quark color — the sum over colors is done as part of∑
k):

Π
a
ρσ =

ααS

12π2

kρkσ
[
− 1

ε2
+

1

ε

(
−7

2
+ 2γ̂ + 2 ln

(
−k2

µ2

))
+

(
(7− 4γ̂) ln

(
−k2

µ2

)
− 2 ln

2
(
−k2

µ2

))]

−k2
gρσ

[
− 1

ε2
+

1

ε

(
2γ̂ − 4 + 2 ln

(
−k2

µ2

))
+

(
(8− 4γ̂) ln

(
−k2

µ2

)
− 2 ln

2
(
−k2

µ2

))] (682)

Note that this result is not yet entirely “transverse”, i.e. in the gauge-
invariant form. But, we have lots left to do. Next, we have the counter
term diagrams

Π
a′
ρσ = Π

a′1
ρσ + Π

a′2
ρσ

= −ααS

12π2
(k

2
gρσ − kρkσ)

{
2

ε2
+

1

ε

(
−2 ln

(
−k2

µ2

)
+

10

3
− 2γ̂

)
+ ln

2
(
−k2

µ2

)
+

(
2γ̂ − 10

3

)
ln

(
−k2

µ2

)}
(683)

Note that Πa
ρσ+Πa′

ρσ still has 1
ε2 and 1

ε
terms. The 1

ε2 terms will cancel after

including all diagrams, but the 1
ε

terms will not. This is to be expected: the
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diagram as a whole will require a (Z3− 1)e
2g2

counter term to be rendered
finite. We now turn to the vertex diagram and its two counterterms. We
have

Π
b
ρσ =

ααS

12π2

kρkσ
[

1

ε2
+

1

ε

(
5− 2γ̂ − 2 ln

(
−k2

µ2

))
+ 2 ln

2
(
−k2

µ2

)
+ ln

(
−k2

µ2

)
(4γ̂ − 10) + . . .

]

−gρσk2
[

1

ε2
+

1

ε

(
11

2
− 2γ̂ − 2 ln

(
−k2

µ2

))
+ 2 ln

2
(
−k2

µ2

)
+ ln

(
−k2

µ2

)
(4γ̂ − 11) + . . .

](684)

Now, because of the Ward identity in the form Z1 = Z2, the Πb′
ρσ =

Π
b′1
ρσ + Π

b′2
ρσ counter term diagrams exactly cancel the a′1 + a′2 counter

terms. Indeed, the latter are proportional to −(Z2 − 1)g
2

while the former

are proportional to (Z1 − 1)g
2
, where these Z1 and Z2 at order g2 are the

QCD corrections to the photon vertex and quark propagator respectively.
Since the photon does not couple to the exchange gluon, we do not have
the extra CA piece that upsets Z1 = Z2 that was present when doing gluon
propagator corrections.
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We now combine (including the CF color factor now)

iΠe2g2

ρσ = i
[
Πa
ρσ + Πb

ρσ

]
= (gρσk

2 − kρkσ)iΠe2g2
(k2) with

iΠe2g2
(k2) = i

ααS

π2
CF

(
− 1

8ε
+

1

4
ln
k2

µ2
+ . . .

)
. (685)

Note that the 1
ε2, ln2 k2

µ2 and 1
ε

ln k2

µ2 terms have all canceled and that the

result is now completely transverse (at least for the terms we have kept,
but in fact for all terms if one is careful).

The cancellation of the 1
ε

ln k2

µ2 terms is quite crucial as there would be no
way to remove such a momentum dependent singularity using a counter
term approach.

The cancellation of the 1
ε2 terms and the lock-step ln2 k2

µ2 terms is a general
property of the vacuum polarization, valid to all orders when we restrict
ourselves to diagrams with a single fermion loop. Indeed, it is possible
to fix order by order the gauge parameter so as to make Z1 = Z2 equal
to one. Consequently, the selected subset of diagrams does not exhibit
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any internal divergence and its contribution to the gauge-invariant quantity

Π(k2) behaves as a single power of 1
ε

(which would be ln Λ2

µ2 in the cut-off

regularization schemes).

The 1
ε

stuff does not, of course, cancel and you will note how it goes

along with a certain ln k2

µ2 term with the same coefficient. This matching is
encoded in our RGE equations by which we claim we can basically resum
the ln stuff by simply using the RGE equations based upon the counter
term information from the 1

ε
singularity structure.

The −1/(8ε) should be −1/(4ε), but I cannot yet find my mistake. I will
use the −1/(4ε) result in the following. (Actually, my result agrees with
IZ once you take their εIZ = 2ε, so they are wrong too, or else their Γb,
which I have not checked, but simply used with my ε definition, is wrong in
a compensating way.)

It is the 1
ε

in the final expression that must be counter-termed in the usual
sort of way. Recalling first the O(e2) result, Eq. (358), we had

iΠe2

ρσ = −1

ε

ie2

12π2
(gρσk

2 − kρkσ) = −i1
ε

α

3π
(gρσk

2 − kρkσ) (686)
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leading to, Eq. (359), Ce
2

= − α
3πε

which in turn gave

Ze
2

3 = 1 + Ce
2

= 1− α

3πε
. (687)

We now simply add in the order e2g2 result, yielding

iΠe2+e2g2

ρσ = −i1
ε

[
α

3π
+
ααS

4π2
CF

]
(gρσk

2 − kρkσ) (688)

leading to Ce
2+e2g2

= − α
3πε
− ααS

4π2ε
CF which in turn gives

Ze
2+e2g2

3 = 1 + Ce
2+e2g2

= 1− α

3πε
− ααS

4π2ε
CF

= 1− α

3πε

(
1 +

3

4

αS

π
CF

)
CF=4/3

= 1− α

3πε

(
1 +

αS

π

)
. (689)

The computations of γd and then of the e+e− → qq process proceed by
just including this extra parenthetical correction factor, as done earlier.
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Derivation of Πa
ρσ

We will now descend to one more level of detail so that you can glimpse
how the two-loop calculations are performed in an explicit fashion. I focus on
the a diagrams a1 and a2. In fact, these two contributions are equal and so I
will simply compute a2 and multiply by 2 at the end.

Assigning loop momentum p to the lower line of diagram a2 as it enters into
the photon vertex, so that the upper line will have p+ k, we find (neglecting
masses and defining −iΣ as the gluon correction to the fermion propagator
and including an overall minus sign for the fermion loop)

iΠ
a2
ρσ(k) = −

∫
dnp

(2π)n
Tr

[
i

/p + /k
(−ieµε)γρ

i

/p
[−iΣ(p)]

i

/p
(−ieµε)γσ

]
= −e2

µ
2ε
∫

dnp

(2π)n
Tr

[
1

/p + /k
γρ

1

/p
Σ(p)

1

/p
γσ

]
, (690)

where Σ(p) can be taken from the QCD analogue of the 2nd line of Eq. (307)
with m = 0 and e→ −g (and we will wait to bring in the CF factor which is
present in the QCD analogue):

Σ(p) = g2µ2ε
Γ
(
2− n

2

)
(4π)n/2

∫
dα[(1− α)/p(2− n)][−α(1− α)p2]n/2−2
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= g2µ2ε
Γ
(
2− n

2

)
(4π)n/2

(−p2)n/2−2(2− n)/p

∫
dααn/2−2(1− α)n/2−1

= g2µ2ε
Γ
(
2− n

2

)
(4π)n/2

(−p2)n/2−2(2− n)/p
Γ
(
n
2
− 1

)
Γ
(
n
2

)
Γ(n− 1)

= /pg2µ2ε
(−1)n/2−1Γ

(
2− n

2

)
(4π)n/2

Γ
(
n
2
− 1

)
Γ
(
n
2

)
Γ(n− 2)(p2)2−n/2

. (691)

Inserting this expression, there is a cancellation of a /p in the numerator with
one in the denominator, leaving you with the sub-calculation (for the 2nd line
we employ the generalized Feynman trick as derived in the Appendix; for the
3rd line we shift to p′ = p+ wk):

∫
dnp

(2π)2

Tr
[
( /p + /k)γρ /pγσ

]
(p + k)2(p2)3−n/2

=

∫
dw(1− w)

2−n/2
∫

dnp

(2π)2

Tr
[
( /p + /k)γρ /pγσ

]
[
(1− w)p2 + w(p + k)2

]4−n/2

Γ
(

4− n2
)

Γ(1)Γ
(

3− n2
)

=

∫
dw(1− w)

2−n/2
∫
dnp′
(2π)2

Tr
[
( /p ′ + (1− w) /k)γρ( /p ′ − w /k)γσ

]
[
p′ 2 + w(1− w)k2

]4−n/2
(3− n/2) . (692)

At this point, we can drop the terms that are odd in p′ and employ the q → 0
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limits of Eqs. (311) and (313), which I repeat here:

∫
dnp′

(2π)n
1

[p′ 2 +M2]A
=

i(−1)n/2

(4π)n/2Γ(A)

Γ(A− n
2
)

(M2)A−n/2
(693)∫

dnp′

(2π)n

p′µp
′
ν

[p′ 2 +M2]A
=

i(−1)n/2

(4π)n/2Γ(A)

1

2
gµν

Γ(A− 1− n
2
)

(M2)A−1−n/2
. (694)

These will be employed with A = 4− n/2 and M2 = w(1− w)k2. The two
structures in the trace then yield (for consistency with Itzykson and Zuber, I
adopt their convention of Tr[I] = 4 instead of my 2n/2 — however, they also
use n = 4 − ε; I will stick with n = 4 − 2ε, so be careful in comparing my
results with theirs):

Tr[γµγργνγσ]

∫
p′µp
′
ν

→ Tr[γµγργνγσ]
i(−1)n/2

(4π)n/2Γ(4− n/2)

1

2
gµν

Γ(3− n)

[w(1− w)k2]3−n

= (1− n/2)Tr[γργσ]
i(−1)n/2

(4π)n/2Γ(4− n/2)

Γ(3− n)

[w(1− w)k2]3−n
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= (1− n/2)4gρσ
i(−1)n/2

(4π)n/2Γ(4− n/2)

Γ(3− n)

[w(1− w)k2]3−n
(695)

and

−w(1− w)Tr[/kγρ/kγσ]

∫
→ −w(1− w)4(2kρkσ − gρσk2)

i(−1)n/2

(4π)n/2Γ(4− n/2)

Γ(4− n)

[w(1− w)k2]4−n

= −4(2kρkσ − gρσk2)
i(−1)n/2

(4π)n/2Γ(4− n/2)

Γ(4− n)

k2[w(1− w)k2]3−n
(696)

There are then two identical
∫
dw’s that must be performed:∫

dw(1− w)2−n/2[w(1− w)]n−3 =
Γ(n− 2)Γ(n/2)

Γ(3n/2− 2)
(697)

The net result is then, at first writing separately all the various factors,

−(e
2
µ

2ε
)(g

2
µ

2ε
)
Γ(2− n/2)

(4π)n/2
(−1)

n/2−1Γ(n/2− 1)Γ(n/2)

Γ(n− 2)
(3− n/2)

i(−1)n/2

(4π)n/2Γ(4− n/2)
×

J. Gunion 230C, U.C. Davis, 345



4
Γ(n− 2)Γ(n/2)

Γ(3n/2− 2)

[
(1− n/2)gρσΓ(3− n)(k

2
)
n−3 − (2kρkσ − gρσk2

)Γ(4− n)(k
2
)
n−4

]
= −(e

2
µ

2ε
)(g

2
µ

2ε
)

i(−1)n−1

(4π)nΓ(3− n/2)
Γ(2− n/2)

Γ(n/2− 1)Γ2(n/2)

Γ(3n/2− 2)
×

4
[
(1− n/2)gρσΓ(3− n)(k

2
)
n−3 − (2kρkσ − gρσk2

)Γ(4− n)(k
2
)
n−4

]
= (e

2
µ

2ε
)(g

2
µ

2ε
)

i(−1)n

(4π)n(2− n/2)

Γ(n/2− 1)Γ2(n/2)

Γ(3n/2− 2)
×

4
[
(1− n/2)gρσΓ(3− n)(k

2
)
n−3 − (2kρkσ − gρσk2

)Γ(4− n)(k
2
)
n−4

]
= i

e2g2

64π4

(
4πµ2

−k2

)2ε
1

ε

Γ(1− ε)Γ2(2− ε)
Γ(4− 3ε)

[
(−1 + ε)gρσk

2
Γ(−1 + 2ε)− (2kρkσ − gρσk2

)Γ(2ε)
]

(698)

This expression is evaluated for the 1
ε2, 1

ε
and constant terms using the

Mathematica file that appears in a short section following this main section of
the lecture. I summarize the output below, keeping (as in Itzykson and Zuber)
only the k2 dependent parts of the constant piece and defining γ̂ = γE−ln 4π.
Keep in mind that I use n = 4− 2ε while IZ use d = 4− ε. So, if you look at
their book, you must change their ε to 2ε in making the comparison. If you
do, we seem to get the same result. The result is:

iΠ
a2
ρσ = i

ααS

24π2

kρkσ
[
− 1

ε2
+

1

ε

(
−7

2
+ 2γ̂ + 2 ln

(
−k2

µ2

))
+

(
(7− 4γ̂) ln

(
−k2

µ2

)
− 2 ln

2
(
−k2

µ2

))]

−k2
gρσ

[
− 1

ε2
+

1

ε

(
2γ̂ − 4 + 2 ln

(
−k2

µ2

))
+

(
(8− 4γ̂) ln

(
−k2

µ2

)
− 2 ln

2
(
−k2

µ2

))] (699)

This result for diagram a2 must be multiplied by ×2 in order to get a1 + a2.
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The general Feynman trick for combining
denominators

Consider the integral

∫
dw

wα−1(1− w)β−1

[wA+ (1− w)B]
α+β

. (700)

Change variables to

z ≡ wA

wA + (1− w)B
, (1− z) =

(1− w)B

wA + (1− w)B
, dz =

ABdw

[wA + (1− w)B]2
,

(701)

which gives

∫
dw

wα−1(1− w)β−1

[wA+ (1− w)B]
α+β

=
1

AαBβ

∫ 1

0

dzzα−1(1− z)β−1

=
1

AαBβ
B(α, β) , (702)

J. Gunion 230C, U.C. Davis, 347



where

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (703)

This gives us a way of writing 1
AαBβ

for arbitrary (including non-integer) α
and β:

1

AαBβ
=

∫
dw

wα−1(1− w)β−1

[wA+ (1− w)B]
α+β

Γ(α+ β)

Γ(α)Γ(β)
. (704)
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Mathematica File for e2g2 two-loop calculation

This file takes off from Eq. (698). The result from the Mathematica file
must be divided by 384π4ε2, the factor that I remove in order to make the
output simple and to make the expansion simple. Note that I have defined a
quantity game = γE − ln 4π. In the equations following Eq. (698), I have
simply denoted this quantity by γ̂. In comparing to Itzykson-Zuber, one must
keep in mind that his calculation is in the Euclidean convention, whereas mine
is in the standard metric approach. Thus, his k2 in the ln forms is actually
k2
E = −k2. So, in the file, absk2 = k2

E = −k2.

The two terms in the mathematica output are:

• finkk, which is the kρkσ coefficient;

• fingksq, which is the k2gρσ coefficient.

Now, there are a bunch of constants in the expression multiplying ε2, which
become simply constants after dividing by ε2. These are neglected in Itzykson
and Zuber and in my summary.
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In[20]:= finkk = -2* H1�4L H1� H4*Pi^2L^2L H4 Pi mu^2�absk2L^82*eps< * H1�epsL *HGamma@1 - epsD * HGamma@2 - epsDL^2�Gamma@4 - 3*epsDL *Gamma@2*epsD *eps^2;

In[21]:= finkk2 = Simplify@finkkD;
In[22]:= finkk3 = Simplify@384*Pi^4*Series@finkk2, 8eps, 0, 2<DD;
In[23]:= finkk4 = Simplify@finkk3 �. EulerGamma ® game + Log@4D + Log@PiDD
Out[23]= 9-1 + ikjj-

7
�����
2

+ 2 game - 2 LogA mu2
�����������������
absk2

Ey{zz eps +ikjjjj-
45
��������
4

+ 7 game - 2 game2 +
Π2

��������
6

- 8 Log@2D2 - 2 Log@4D2 + Log@4D Log@256D +

H-7 + 4 gameL LogA mu2
�����������������
absk2

E - 2 LogA mu2
�����������������
absk2

E2y{zzzz eps2 + O@epsD3=
In[28]:= fingksq = H1�4L H1� H4*Pi^2L^2L H4 Pi mu^2�absk2L^82*eps< *H1�epsL * HGamma@1 - epsD * HGamma@2 - epsDL^2�Gamma@4 - 3*epsDL *HH-1 + epsL *Gamma@-1 + 2*epsD + Gamma@2*epsDL *eps^2;

In[29]:= fingksq2 = Simplify@fingksqD;
In[30]:= fingksq3 = Simplify@384*Pi^4*Series@fingksq2, 8eps, 0, 2<DD;
In[31]:= fingksq4 = Simplify@fingksq3 �. EulerGamma ® game + Log@4D + Log@PiDD
Out[31]= 91 + ikjj4 - 2 game + 2 LogA mu2

�����������������
absk2

Ey{zz eps +ikjjjj14 - 8 game + 2 game2 -
Π2

��������
6

- 4 H-2 + gameL LogA mu2
�����������������
absk2

E + 2 LogA mu2
�����������������
absk2

E2y{zzzz eps2 + O@epsD3=

epemtoqqbar_2loopqcd.nb 1
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More uses of unitarity

Unitarity plays a crucial role in our understanding of why we need a Higgs
boson. Let us first discuss the general partial wave formulation of unitarity.

For 2→ 2 scattering we have the standard formula

dσ

dΩ
=

1

64π2s
|M|2 . (705)

If we do the partial wave decomposition (the form employed assumes I am
dealing with spin-0 particles — effectively the longitudinally polarized W ’s
that I will be discussing can be thought of as spin-0 objects)

M = 16π

∞∑
J=0

(2J + 1)PJ(cos θ)aJ (706)

and recall the standard orthogonality relation∫ 1

−1

dxPJ(x)PJ ′(x) =
2

2J + 1
δJ,J ′ (707)
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we obtain

σ =
8π

s

∞∑
J=0

(2J + 1)

∞∑
J ′=0

(2J ′ + 1)aJa
∗
J ′

∫ 1

−1

d cos θPJ(cos θ)PJ ′(cos θ)

=
16π

s

∞∑
J=0

(2J + 1)|aJ|2 . (708)

Meanwhile, the optical theorem says that

sσ = ImM(θ = 0) = 16π

∞∑
J=0

(2J + 1)ImaJ . (709)

If a single partial wave is dominant, we end up with the requirement that

ImaJ = |aJ|2 . (710)

In fact, this equation applies for every value of J even if more than one partial
wave is present (requires more work to show explicitly — see short appendix
— but is basically a statement of angular momentum conservation for the
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elastic process). However, the above equality requires that the only process
contributing to the total cross section be the 2→ 2 process. Normally, there
are many inelastic channels such as 2 → 2′, 2 → 3, 2 → 4, ..... The ImaJ
must take into account all these extra channels. In short, what we really have
is

ImaJ ≥ |aJ|2 = (ImaJ)2 + (ReaJ)2 , (711)

When the equality holds, we can write

aJ = eiδJ sin δJ , (712)

which form automatically satisfies ImaJ = |aJ|2 and makes it clear that
|aJ|2 = sin2 δJ ≤ 1 with maximum value of 1 when aJ is purely imaginary,
δJ = π/2.

It is useful to have a graphical picture. On the unitarity circle, we can
rewrite ImaJ = |aJ|2 as

1

4
= (ImaJ −

1

2
)2 + (ReaJ)2 . (713)
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so that in the complex plane aJ will lie on a “unitarity” circle of radius 1/2.

−1/2 1/20

Im A

Re A

1/2
η/2

1

al
2δ

Figure 22: The partial wave unitarity circle.

Allowing for the presence of inelasticity, we can write

1

4
≥ (ImaJ −

1

2
)2 + (ReaJ)2 , (714)
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implying that aJ will lie inside the unitarity circle. In this case, we can write

aJ =
ηJe

2iδJ − 1

2i
, (715)

since ImaJ − 1
2

= −1
2
ηJ cos 2δJ and ReaJ = 1

2
ηJ sin 2δJ so that

(ImaJ −
1

2
)2 + (ReaJ)2 =

1

4
η2
J (716)

which will be ≤ 1
4

if ηJ ≤ 1. The quantity ηJ is called the inelasticity. To
repeat, ηJ ≤ 1 is required in order for aJ to be within the unitarity circle.

As a point of reference, you are presumably familiar with the standard
spin-J resonance form of

aJ = a =
−mΓel

s−m2 + imΓtot
(717)

which saturates the unitarity circle when Γel = Γtot. You will notice that
when the latter is true then at s = m2 one finds aJ = i so that one is at
the top of the circle. As one starts from low s� m2 with ReaJ > 0, passes

J. Gunion 230C, U.C. Davis, 355



through s = m2 with ReaJ = 0 and on to s � m2 with ReaJ < 0 one is
rotating in a counter-clockwise sense about the unitarity circle.

The important final result is that the largest value of |ReaJ| that is possible
if on the “unitarity” circle is |ReaJ| = 1

2
. And, if there is inelasticity then we

have our final constraint of

|ReaJ| ≤
1

2
. (718)

Usually it is the J = 0 constraint that is the strongest for a typical process of
interest to us.

We now wish to apply this to WW →WW scattering where the W ’s all
have longitudinal polarization.

In the SM, the partial wave amplitudes take the asymptotic form

aJ = AJ

(
s

m2
W

)2

+BJ

(
s

m2
W

)
+ CJ , (719)

where s is the center-of-mass energy squared. Contributions that are divergent
in the limit s→∞ appear only for J = 0, 1, 2. The A-terms vanish by virtue
of gauge invariance, while, and here enters the Higgs boson, the B-term for
J = 1 and 0 (B2 = 0) arising from gauge interaction diagrams is canceled by
Higgs-boson exchange diagrams. In the high-energy limit, the result is that
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aJ asymptotes to an mh-dependent constant. Imposing the unitarity limit
of |ReaJ| < 1/2 implies the Lee-Quigg-Thacker bound for the Higgs boson
mass: mh <∼ 870 GeV.

What happens if mh is increased beyond 870 GeV is that the perturbatively
calculated aJ violates unitarity at lower and lower s values. This is not to say
that the theory actually violates unitarity. When aJ approaches the unitarity
bound, the theory becomes strongly interacting and we are no longer able to
calculate the consequences of the theory perturbatively. At the moment we
do not have any means of computing what actually happens. Nonetheless,
the theory cannot actually violate unitarity since unitarity is guaranteed simply
by the hermiticity of the Hamiltonian that we began with. In other words,
mh = 870 GeV is the largest value for which a perturbative approach to
computing in the theory is possible.

Alternatively, if aJ reaches the unitarity limit at some value of s, we can
hope that some beyond-the-SM physics enters that will be such that we can
compute perturbatively in the extended model. The value of s at which the
SM violates unitarity then sets the upper bound on the scale at which such
new BSM physics must enter.

Anyway, let us give some more details on the perturbative SM calculation.
In detail, we have the following. (In my normalization, v = 246 GeV and
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mW = gv
2

. And, GF√
2

= g2

8m2
W

= 1
2v2.) The various contributions to the

amplitude are given in Table 2. From the table, we see that the gauge boson
contributions and Higgs exchange contributions cancel at O(s2) and O(s1).

diagram O(s
2

v4) O(s
1

v2)

γ, Z s-channel − s2

g2v44 cos θ − s
v2 cos θ

γ, Z t-channel − s2

g2v4(−3 + 2 cos θ + cos2 θ) − s
v2

3
2
(1− 5 cos θ)

WWWW contact − s2

g2v4(3− 6 cos θ − cos2 θ) − s
v22(−1 + 3 cos θ)

h s-channel 0 − s
v2

h t-channel 0 − s
v2
−1+cos θ

2

Sum 0 0

Table 2: The leading contributions toM(W+
LW

−
L →W+

LW
−
L ) amplitude —

where M is defined in the convention Sfi = δfi + i(2π)4δ4(pf − pi)Mfi.

The cancellation of the O(s2) contributions in Table 2 between the contact
term and s- and t-channel gauge-boson exchange diagrams is guaranteed by
gauge invariance. The Higgs or something like it is required for cancelling the
s1 terms.

The easiest of the amplitudes above to derive is that from the WWWW
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contact interaction. First, we need to write down the polarization vector for
a massive, longitudinally-polarized W of momentum p. If we start with a
massive vector boson with momentum kµ = (m, 0, 0, 0), then the 3 orthgonal
polarizations are

εµ = (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) . (720)

If we now boost along the z direction, the first two (the transverse
polarizations) remain unchanged. The third (the longitudinal polarization)
boosts to (k ≡ kz)

εµL(k) =

(
k

m
, 0, 0,

Ek

m

)
(721)

which generalizes for arbitrary direction to

εµL(~k) =

(
|~k|
m
,
~k

|~k|
E~k
m

)
∼ kµ

m
+O

(
m

E~k

)
(722)

(Note that the first, exact form on the rhs of the equation is explicitly
orthogonal to kµ = (E~k,

~k).) It is the proportionality of the longitudinal
polarization to the momentum which makes longitudinally polarized W ’s so
“dangerous”. Of course, for our case of W ’s, m→ mW .
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Meanwhile, the WWWW contact interaction takes the familiar form
in the all outgoing convention (and Sfi = δfi + (2π)4δ4(pf − pi)iMfi

convention):

iMabcd
αβγδ(p, q, r, s) = −ig2

ceabcecd
(
g
αγ
g
βδ − gαδgβγ

)

+ c
eac
c
edb

(
g
αδ
g
γβ − gαβgγδ

)

+ c
ead

c
ebc
(
g
αβ
g
γδ − gαγgβδ

) , (723)

which, for the SU(2) group and a, b, c, d index choices corresponding to
(a = W+)(d = W−) → (b = W+)(c = W−) scattering reduces to11

(after noting that the incoming W+W− should be converted to outgoing
(a = W−)(d = W+) to apply the “all-outgoing” vertex)

−ig2(gαδgβγ + gγδgαβ − 2gβδgαγ) (724)

where the first two terms are s and t channel-like (outgoing W−W+) and
11A convenient reference for electroweak theory Feynman rules is the book “Gauge Theories of the Strong, Weak and

Electromagnetic Interactions” by Chris Quigg, pages 113-16, or Appendix B of Cheng and Li.
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the last is u channel-like (outgoing W−W−) and thus comes with a larger
coefficient and opposite sign.

To see how this works in the case of the WWWW vertex starting with

the general result of Eq. (723), we first recall that W± = W 1∓iW 2
√

2
. So, what

we are interested in is (using a shorthand)

a =
1 + i2√

2
, b =

1− i2√
2
, c =

1 + i2√
2
, d =

1− i2√
2

, (725)

where we used the fact that, for example,

W aa 3W 11 +W 22 =
W 1 − iW 2

√
2

1 + i2√
2

+
W 1 + iW 2

√
2

1− i2√
2

= W+1 + i2√
2

+W−
1− i2√

2
, (726)

where the W− field operator either annihilates a W− or creates a W+. So,
if we want to create an outgoing b = W+ we connect to b = 1−i2√

2
and if we

want to connect to an outgoing a = W− we should use a = 1+i2√
2

. Thus, the
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general vertex of Eq. (723) reduces for the case of interest to

iMabcd
αβγδ(p, q, r, s) = −ig2

ce
1+i2√

2

1−i2√
2 c

e1+i2√
2

1−i2√
2
(
g
αγ
g
βδ − gαδgβγ

)

+ c
e1+i2√

2
1+i2√

2 c
e1−i2√

2

1−i2√
2
(
g
αδ
g
γβ − gαβgγδ

)

+ c
e1+i2√

2

1−i2√
2 c

e1−i2√
2

1+i2√
2
(
g
αβ
g
γδ − gαγgβδ

) , (727)

Now, for SU(2) we have cabc = εabc so that for the 1st term we have the
form

c
e1+i2√

2

1−i2√
2 c

e1+i2√
2

1−i2√
2 =

(
−2i

(
√

2)2
ε
e12

)(
−2i

(
√

2)2
ε
e12

)
= −1 . (728)

The 2nd term is 0 because of the antisymmetry of the ε’s and the 3rd term
has the order switched on the last c and thus gives +1. The net result for
the vertex is then:

iM = −ig2
[− (gαγgβδ − gαδgβγ)+

(
gαβgγδ − gαγgβδ)]

= −ig2(gαδgβγ + gγδgαβ − 2gβδgαγ) (729)
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Now we can return to using this form for the scattering process of interest.
We simply multiply M by the polarization vectors which in leading order
means we multiply by

pα

mW

qβ

mW

rγ

mW

sδ

mW

, (730)

yielding

M(W+
LW

−
L →W+

LW
−
L ) ∼ − g2

m4
W

(p · sq · r+ r · sp · q− 2p · rq · s) . (731)

Now, one goes to the center of mass frame where (all outgoing convention)

p = −
√
s

2
(1, 0, 0, βW )

s = −
√
s

2
(1, 0, 0,−βW )

q =

√
s

2
(1, 0, βW sin θ, βW cos θ)

r =

√
s

2
(1, 0,−βW sin θ,−βW cos θ) (732)
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with βW =
√

1− 4m2
W/s. In this frame, one easily finds

2p · s = 2q · r = s− 2m2
W ,

2p · q = 2r · s = t− 2m2
W = −s

2
(1− cos θ)− 2m2

W cos θ ,

2p · r = 2q · s = u− 2m2
W = −s

2
(1 + cos θ) + 2m2

W cos θ (733)

Substituting and collecting the leading terms of order s2 one obtains

M(W+
LW

−
L →W+

LW
−
L ) 3 − g2

m4
W

s2

16
(3− 6 cos θ − cos2 θ) (734)

which agrees with the O(s2) result in the table for the contact interaction
term after substituting mW = gv/2.

To get the O(s) term of the table, the exact forms of the polarization
vectors must be used.

The Higgs exchange diagrams are, of course, easier. For example for the
s-channel Higgs exchange diagram, remembering that the Feynman rule for
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the hWµWν vertex is igmWgµν, we find

iM =
i

s−m2
h

(igmW )2εp · εs εq · εr

' −ig2m2
W

1

s−m2
h

(
p · s q · r
m4
W

)
' −i4m4

W

v2

1

s−m2
h

(
1
4
s2

m4
W

)
= −i 1

v2

s2

s−m2
h

= −i 1

v2

(
s+

sm2
h

s−m2
h

)
. (735)

The first term is listed as the O(s) term for this diagram and the 2nd term
will appear below

In any case, after including the Higgs diagrams and summing everything
together, we are left with a constant behavior for the amplitude. In the limit
where s,m2

h� m2
W ,m

2
Z we find:

M(W+
LW

−
L →W+

LW
−
L ) = −m

2
h

v2

[
s

s−m2
h

+
t

t−m2
h

]
. (736)
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This is too naive if s is near m2
h; one must include the Higgs width

appropriately. For now, we only consider s� m2
h or s� m2

h.
The above result can also be derived using the Goldstone Equivalence

theorem. It states that in the limit of m2
h � m2

W interactions of enhanced
strength, O (GFm2

h

)
, arise only from diagrams in which the internal particles

are also Goldstone bosons or the Higgs boson. The relevant interactions are
summarized by the Lagrangian:

L = −λ
(
w

+
w
−

+
1

2
z

2
+

1

2
h

2
+ vh +

1

2
v

2 − µ2

2λ

)2

(737)

where h is the Higgs field, the w’s, z are the charged and neutral Goldstone
bosons, respectively, v is the usual vev related to mW as above and λ is the
bare coupling of the λφ4 theory.

Crudely, one can arrive at this result as follows. First, we note that using

m2
h = 2λv2 and mW = gv/2 one finds λ = g2 m2

h

8m2
W

. When m2
h� m2

W , λ is

large and the Higgs self coupling term in V (φ) = λ(φ†φ)2 − µ2(φ†φ) is the
source of the strongest interactions. Writing φ = (h+, 1√

2
(v + h + ia)) the

two terms of V (φ) are

λ(φ
†
φ)

2
= λ

(
(h
−
,

1√
2

(v + h− ia)), (h
+
,

1√
2

(v + h + ia))

)
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= λ

(
(h

+
h
−

) +
1

2
[(v + h)

2
+ a

2
]

)2

−µ2
(φ
†
φ) = −µ2

(
(h

+
h
−

) +
1

2
[(v + h)

2
+ a

2
]

)
. (738)

It is the h± and a fields that are eaten and become the longitudinal modes
of the W± and Z. Thus, we denote them by w± and z. In this notation,
L 3 −V = µ2(φ†φ) − λ(φ†φ)2 takes the form of Eq. (737) after including
a conventional constant such that V = 0 at the tree-level minimum where
∂V
∂h
|h=0 = 0 requiring λv2 = µ2.

Although the last two terms in Eq. (737) cancel at tree level, they
more generally yield a tadpole counterterm which is fixed at each order in
perturbation theory in such a way that the physical Higgs field has zero vev.
This extra counter term can be ignored for our present purposes.

The Lagrangian of Eq. (737) generates the Feynman rules of Fig. 23. For
example, the upper left Feynman rule comes from the −2λvw+w−h cross
term coming from the square using

−2λv = −2
g2m2

h

8m2
W

2mW

g
= − gm

2
h

2mW

(739)

and supplying the usual i from expanding exp[iL].
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Figure 23: Feynman rules from Eq. (737).
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The Feynman rule just below comes from the −λw+w−w+w− term of

L after substituting λ =
g2m2

h

8m2
W

, taking account of the fact that there are

two possible ways to contract the w+w+ with two such external states and
similarly for w−w− — thereby leading to a net contraction counting factor of
4, and supplying the standard i.

In these Feynman rules, we have effectively chosen to work in the Landau
gauge where the w± and z propagators have zero mass and the W± and
Z propagators (not given explicitly) are proportional to gµν − kµkν/k2. In
this way, gauge-boson-scalar mixing is avoided, since any such interaction
is proportional to the gauge-boson four momentum kµ. Furthermore, we
can neglect diagrams with internal W± and Z propagators since they are
suppressed by m2

W/m
2
h in this gauge. Thus, the Landau gauge is the simplest

and most natural gauge in which to employ the Goldstone-boson equivalence
theorem.

For ww → ww scattering there are diagrams with s-channel h exchange,
t-channel h exchange and the wwww contact interaction diagram. The result
for the amplitude is (in agreement with the earlier-stated result)

iM(ww → ww) =

(
−ig m

2
h

2mW

)2
i

s−m2
h

+

(
−ig m

2
h

2mW

)2
i

t−m2
h

− ig2 m
2
h

2m2
W
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= −ig
2m2

h

4m2
W

(
m2
h

s−m2
h

+
m2
h

t−m2
h

+ 2

)
= −im

2
h

v2

(
s

s−m2
h

+
t

t−m2
h

)
. (740)

Let us now take the partial wave projection of M(ww → ww),

aJ =
1

32π(2J + 1)

∫
d cos θPJ(cos θ)M (741)

to obtain (using t = −s
2
(1 − cos θ) implying 2

s
dt = d cos θ and the next to

last form for the parenthesis in M above):

a0 =
1

16πs

∫ 0

−s
dtM(W+

LW
−
L →W+

LW
−
L )

= − 1

16π

m2
h

v2

[
2 +

m2
h

s−m2
h

− m
2
h

s
log

(
1 +

s

m2
h

)]
. (742)

Now let us consider some interesting limits:

J. Gunion 230C, U.C. Davis, 370



1. s� m2
h� m2

W ,m
2
Z:

We get

a0 → −
m2
h

8πv2
. (743)

Requiring |Rea0| ≤ 1
2

this gives

m2
h ≤ 4πv2 = (872 GeV)2, . (744)

This is the absolute upper limit on mh in order that unitarity hold for
all s. If we consider a full coupled channel analysis (which includes
ZLZL → W+

LW
−
L , hh → hh, hh → W+

LW
−
L , . . .) then this limit gets

reduced to
m2
h
<∼ (700 GeV)2 . (745)

2. m2
W ,m

2
Z � s� m2

h:

By carefully expanding the log to 2nd order in the (small) ratio s/m2
h we

find
a0 →

s

32πv2
. (746)
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Requiring |Rea0| ≤ 1
2

this gives

s ≤ 16πv2 . (747)

An even better bound emerges by considering the (properly normalized)
isospin zero channel

√
1/6(2W+

LW
−
L + ZLZL) and is

s ≤ 8πv2 = (1233 GeV)2 . (748)

The interpretation of this limit is that if the Higgs is very heavy, then the
SM can only be valid (in the sense of satisfying unitarity perturbatively)
if
√
s < 1.23 TeV. After that energy, new physics must enter or the

W+
LW

−
L →W+

LW
−
L , . . . sector must become strongly interacting.

If one does a full treatment, then the kind of plot for Rea0(W
+
LW

−
L →

W+
LW

−
L ) as a function of

√
s that emerges is that below (only look at

the SM curves which are for mh = 870 GeV and 1000 GeV). Note how
near the Higgs resonance Rea0 goes positive, but not so positive as to
violate the unitarity limit. This is the result obtained after including the
Higgs width in the formula for a0; basically m2

h → m2
h − imhΓh. Near

the resonance, one is inside the Argand circle that typifies a resonance.
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η0 < 1 in the case of W+
LW

−
L →W+

LW
−
L because Γh includes “inelastic”

channels such as h→ ZLZL as well as h→W+
LW

−
L .
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However, for s� m2
h, Rea0 asymptotes towards −1

2
in the mh = 870 GeV

case and falls much below −1
2

for mh = 1000 GeV. As mh is increased
further, the

√
s value at which a0 falls below −1/2 decreases slowly,

ultimately reaching the value of
√
s =
√

2 × 1.233 TeV (the
√

2 because
this figure does not include the full coupled channel analysis). If mh is
decreased below mh = 870 GeV, the SM a0 curve for W+

LW
−
L →W+

LW
−
L

asymptotes to a less negative value for
√
s→∞ following Eq. (743).

Well, this is only a brief introduction to all this. There are endless
ramifications of unitarity in the context of every new physics model. It
might turn out that the WLWL, hh, ZLZL sector simply becomes strongly
interacting and the LHC job will be to sort out exactly what kind of theory
is describing these strong interactions.

This is closely analogous to the old situation in which we had strong
interactions in the ππ scattering and related channels and only after much
misery figured out that the π’s were bound states of quarks.

In the strongly interacting WW -scattering scenario, the LHC will have a
very tough time in sorting things out. The energy and luminosity are not
quite up to the job. The old SSC was designed at higher energy precisely
to cover adequately this unpleasant scenario. The problem is that there is a
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huge background coming from the scattering of transversely polarized W ’s,
such as WTWT → WTWT , WLWL → WTWT , WTWT → WLWL, . . .
from which it is very difficult to extract the W+

LW
−
L →W+

LW
−
L scattering

of interest.

As a final note, you will notice that the final J = 0 amplitude for
WLWL → WLWL is real. And, recall that our unitarity statement is that
|Rea0| ≤ 1/2. You might then wonder how it works that Ima0 ≥ |Rea0|2?
The point is the Ima0 is higher order in g2, so that to this order in perturbation
theory in g2 there is no contradiction — Ima0 must be generated by diagrams
in which one real amplitude is connected to a 2nd real amplitude by two
propagators, yielding something of order g4!!

To prove that everything works, you would need to evaluate the imaginary
part of the repeated real amplitude diagram by using the Cutkowsky cutting
rules for the two propagators.
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Partial Wave Appendix

Starting from the most general unitarity statement, Eq. (596) repeated
below,

[−iM(k1k2 → p1p2) + iM∗(p1p2 → k1k2)]

=
∑
n

(
n∏
i=1

∫
d3qi

(2π)3

1

2Ei

)
×M∗(p1p2 → {qi})M(k1k2 → {qi})(2π)4δ4(k1 + k2 −

∑
i

qi)

(749)

we consider only the same two-body final state as the initial state (i.e. n = 2).
We imagine that ~k1 (= −~k2) in the com is along the z axis and that ~p1 is in
the x − z plane at location θ, φ = 0. The two particle intermediate state is
defined to have ~q1 (= −~q2) defined by location θ′, φ′. The angle between ~p1

and ~q1 we define to be γ.
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Two-body phase space in the massless limit reduces to∫
d3q1

(2π)32E1

d3q2

(2π)32E2

(2π)4δ4(k1 + k2 − q1 − q2) =
1

32π2

∫
d cos θ′dφ′ .

(750)
So, now let us do partial wave expansions of all the M’s (implicitly I am
assuming spin-0 equivalent as appropriate for WL scattering)

M(k1k2 → p1p2) = 16π
∑
J

(2J + 1)PJ(cos θ)aJ

M∗(p1p2 → k1k2) = 16π
∑
J

(2J + 1)PJ(cos θ)a∗J

M(k1k2 → q1q2) = 16π
∑
J

(2J + 1)PJ(cos θ′)aJ

M∗(p1p2 → q1q2) = 16π
∑
J

(2J + 1)PJ(cos γ)a∗J (751)

Inserting into Eq. (749), we get

32π
∑
J

(2J + 1)PJ(cos θ)ImaJ =
1

32π2

∫
d cos θ

′
dφ
′

×(256π
2
)
∑
J′

(2J
′
+ 1)PJ′(cos θ

′
)aJ′

∑
J′′

(2J
′′

+ 1)PJ′′(cos γ)a
∗
J′′ (752)
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So, now let us write (the standard addition theorem from Jackson)

PJ ′′(cos γ) =
4π

2J ′′ + 1

∑
m

Y ∗J ′′m(θ′, φ′)YJ ′′m(θ, φ = 0) (753)

The
∫
dφ′ simply gives∫
dφ
′
PJ′′(cos γ) = (2π)

4π

2J ′′ + 1
Y
∗
J′′0(θ

′
)YJ′′0(θ)

= (2π)
4π

2J ′′ + 1

[√
2J ′′ + 1

4π

]2

PJ′′(cos θ
′
)PJ′′(cos θ)

= (2π)PJ′′(cos θ
′
)PJ′′(cos θ) . (754)

Eq. (752) then reduces to∑
J

(2J + 1)PJ(cos θ)ImaJ

=
1

2

∫
d cos θ

′∑
J′

(2J
′
+ 1)PJ′(cos θ

′
)aJ′

∑
J′′

(2J
′′

+ 1)PJ′′(cos θ
′
)PJ′′(cos θ)a

∗
J′′

=
1

2

∑
J′

(2J
′
+ 1)aJ′

∑
J′′

(2J
′′

+ 1)
2

2J ′ + 1
δJ′,J′′PJ′′(cos θ)a

∗
J′′

=
∑
J′

(2J
′
+ 1)PJ′(cos θ)aJ′a

∗
J′ (755)
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from which we immediately conclude that

ImaJ = aJa
∗
J (756)

if only the same two-body intermediate state is present as in the initial and
final states (equivalent to there being no inelastic scattering).
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